
ones showed that long-termHFNC at home was feasible and safe
with benefits in terms of reduction of exacerbation, leading to
consideration of HFNC at home as a supplement to long-term
oxygen therapy in the management of patients with severe COPD.�
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Airway Mucus Dysfunction in COVID-19

Several anecdotal reports suggested the occurrence of excessive
mucus production in coronavirus disease (COVID-19), but no
systematic analysis had been published until the article by Kato and
colleagues (pp. 1336–1352) in this issue of the Journal (1). In autopsy

specimens, they found high degrees of production of the secreted
airway mucinMUC5B andmoderate amounts of MUC5AC.
Strikingly, they also found occlusion of�50% of the small airways by
mucus, as well as widespread aberrant expression of MUC5B within
microcysts in damaged alveolar parenchyma. These findings have
implications for understanding the pathophysiology and treatment of
COVID-19 in particular and of viral pneumonia in general. Here, we
address these implications in three sections.

Airway Mucus Occlusion

The first important finding is widespread small airway occlusion by
mucus. This is somewhat surprising because the cough that
accompanies SARS-CoV-2 infection of the lower respiratory tract has
generally been reported to be nonproductive (2, 3). However, mucus
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occlusion of small airways often does not generate a productive
cough, as also occurs in asthma or in chronic obstructive pulmonary
disease with an emphysematous phenotype (4). The finding of small
airway mucus occlusion also surprises because prior systematic
analyses of lung pathology focused on alveolar injury, flooding, and
endotheliitis without reporting airway mucus occlusion. However, the
presence of excessive mucus can be missed with standard
hematoxylin and eosin staining, where it appears blandly
eosinophilic, similar to proteinaceous edema fluid. The presence of
mucus is best identified with special histochemical stains such as
Alcian blue and/or periodic acid–Schiff or with
immunohistochemical staining. This in turn raises the question
whether we have underestimated the role of mucus dysfunction in
other viral pneumonias. The true importance of mucus occlusion in
COVID-19 will not be known until the effects of targeted
interventions such as mucolytics are determined, possibly with
computed tomographic imaging of mucus plugs as an endpoint (5).
Current in vitro evidence for the value of the mucus barrier in
protection against severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) infection is contradictory (6, 7), but it will need to be
considered in therapeutic interventions and might first be tested in
animal models. Kato and colleagues provide in vitro evidence for the
efficacy of dexamethasone, IL-1 antagonists, and epidermal growth
factor receptor antagonists in reducing airway epithelial mucin
production, all of which have been and/or are in clinical trials.
Regarding epidermal growth factor receptor antagonists, preclinical
studies in animal models of SARS-CoV-2 infection could be helpful
in analyzing beneficial effects in reducing mucin production versus
possible adverse effects in repair of lung injury (see below). In
considering therapeutic intervention, it should be noted that airway
mucus occlusion, besides being caused by increased mucin
production, is most likely also due to impairment of ciliary beating
(6, 8) and to mucus dehydration from activation of the epithelial
apical sodium channel as in other respiratory viral infections.

MUC5B Predominance

A second important finding is that MUC5B expression is more highly
increased thanMUC5AC in COVID-19 (1). This is different from
most well-studied respiratory viral infections in mice and humans,
such as with paramyxoviruses, rhinoviruses, and influenza viruses,
wherein MUC5AC is more highly upregulated (9–11).
Accompanying this difference is evidence that mucin expression
appears to be driven mostly by IL-1 signaling in COVID-19, in
contrast to the prominent role of IL-13 in other respiratory viral
infections in mice and humans. The in vitro studies of IL-1 signaling
in epithelial cells by Kato and colleagues were performed in the
absence of leukocytes, but epithelial cells have a critical role in biasing
immune responses, so these are likely to be informative. Consistent
with the findings of differential cytokine and mucin expression
between SARS-CoV-2 and other respiratory viral infections, prior
studies have shown that IL-1b increases expression of MUC5B
moderately more thanMUC5AC (12), whereas IL-13 increases
expression of MUC5AC far more thanMUC5B (9). Of interest,
IL-13 attenuates SARS-CoV-2 infection (6, 7), raising the question
whether deviation away from type 2 immunity is an evasion strategy
of SARS-CoV-2.

Alveolar Microcysts

A third important finding is the presence of numerous
mucin-expressing microcysts in the lung parenchyma. These bear
pathological andmolecular resemblance to “pods” observed as a
sequela of respiratory viral infections in mice and to the “honeycomb
cysts” of advanced idiopathic pulmonary fibrosis (IPF). The most
relevant comparison would appear to be with postviral pods in mice
because of the shared viral infection pathogenesis. Severe viral injury
mobilizes rare P631 cells in distal airways, which quickly proliferate
and invade alveolar regions to restore the damaged epithelial barrier,
then persist as SOX21 airway cells without differentiation into
gas-exchanging alveolar cells (13–17). These epithelial pods polarize
and formmicrocysts, possibly either by self-organization around an
expanding lumen as in cultured organoids or by spreading along
remaining basement membrane surrounding destroyed alveoli.
Molecularly, their P631 cell origin imparts postviral pods a basaloid
signature, including the master transcriptional regulator P63, as well
as KRT5, ITGB6, and EPHB2, as also noted in the COVID-19
microcysts by Kato and colleagues. The resemblance between
COVID-19 microcysts and IPF honeycomb cysts could reflect a
limited repertoire of repair processes in injured lungs or might point
to a role for viral respiratory infections interacting with genetic
predisposition in IPF pathogenesis.

Conclusion
In summary, COVID-19 has only been with us a short while; yet, it is
now perhaps the best-studied human viral pneumonia. Further
analysis of similarities with and differences from other viral
pneumonias should provide us new insight into cellular and
molecular mechanisms of lung immunity, injury, and repair to
guide diagnosis and treatment.�
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Understanding Sex-based Differences in Intensive Care Unit
Mortality: Moving Beyond the Biology

Many observational studies have pointed to survival differences
between critically ill men and women with varying directionality
depending on the disease state (1–3). Women, as compared with
men, have displayed worse outcomes in coronary artery disease,
cardiac surgery, and after cardiac arrests (4, 5). However, women are
more likely to survive than men with certain conditions such as
chronic obstructive pulmonary disease and respiratory viral
diseases (6, 7).

Although the interplay between the patient’s biological and
immunological factors has been speculated as the potential
unmeasured drivers for observed sex-based differences in care
outcomes (8, 9), the potential contributions of systemic and implicit
biases and cognitive errors have been largely understudied. Other
factors historically overlooked, such as care environment, caseload,

and team dynamics, are being independently investigated and
increasingly recognized as important determinants of outcome,
particularly for those at a high baseline risk of death (10–12).
Similarly, exploring the variation in intensive care unit (ICU)
mortality outcomes by the sex of the patient will require dedicated
investigation that transcends the lens of acute physiology and
comorbidity and other host factors.

In this issue of the Journal, Modra and colleagues
(pp. 1353–1360) report their findings from a large, cross-sectional
study of adult patients admitted to ICUs in Australia and
New Zealand. Modra and colleagues took a deep dive into
understanding variation in hospital mortality in men and women
on the basis of how frequently a given condition occurred within
each sex. The primary exposure variable was “sex balance”, defined
as the percentage of patients in a diagnostic group who were
women, and the primary outcome was sex difference in adjusted
hospital mortality by ICU admission diagnosis. The study was
large, encompassing over 1.4 million ICU admissions between 2011
to 2020 in the ANZICS APD (Australia and New Zealand Intensive
Care Society Adult Patient Database) (13). Using mixed-effects
logistic regressions, the authors adjusted for severity of illness,
hours of hospitalization before ICU admission, and year of
admission, with hospital site as a random effect.

The key findings were that women displayed better risk-adjusted
survival than men in sepsis, respiratory disorders, and in the
combined category of metabolic/renal and hematological disorders.
On the other hand, women fared worse than men in burns and
cardiovascular disorders, with the most marked sex difference
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