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Abstract

Background: Tyrosine kinase inhibitor (TKI)-based therapy is a recommended treatment for patients with chronic
myeloid leukemia (CML). However, a considerable group of CML patients do not respond well to the TKI therapy.
Challenging to overcome this problem, we tried to discover molecular signatures in gene expression profiles to
discriminate the responders and non-responders of TKI therapy.

Methods: We collected three microarray datasets of CML patients having total 73 responders and 38 non-responders.
Statistical analysis was performed to identify differentially expressed genes (DEGs) as gene signature candidates from
integrated microarray datasets. The classification performance of these genes and further selected discriminator gene
sets was tested by using random forest and iterative backward variable selection methods.

Results: We identified a set of genes including CTBP2, NADK, AZU1, CTSH, FSTL1, and HDLBP showing the highest
accuracy more than 69.44 % to classify TKI response in CML patients. Interestingly, four genes of them are on the
signaling pathway of cell proliferation. This set of genes showed much higher performance than the average
performance of other genes in downstream signaling of TKI target, BCR-ABL.

Conclusions: In this study, we could find a set of potential companion diagnostic markers for TKI treatment and, at the
same time, the potential of gene expression analysis to enhance the coverage of companion diagnostics.

Keywords: Gene expression signature, Chronic myeloid leukemia (CML), Tyrosine kinase inhibitor (TKI), Meta-analysis,
Random forest

Background
Chronic myeloid leukemia (CML) is a myeloproliferative
disease with pluripotent hematopoietic cell and caused
by a reciprocal translocation between chromosome nine
and chromosome 22, which is specifically designated
t(9;22)(q34;q11) [1]. This translocation creates a novel
fusion gene, BCR-ABL, which encodes a constitutively
active isoform of ABL tyrosine kinase (TK) and leads to
pathophysiology of CML [2–5]. Treatment with tyrosine
kinase inhibitor (TKI) such as Imatinib, Dasatinib, and
Nilotinib had been proved to be an effective therapy as

inducing a complete cytogenetic response in more than
half of with newly CML patients [6, 7]. However, a lot of
patients failed to TK inhibitor treatment because of in-
trinsically resistant or developed resistance to drugs [8].
In order to increase efficiency of treatment, it is neces-
sary to predict the response to drugs which patients
would benefit from treatment before clinical therapy.
DNA Microarray is one of the most powerful technol-

ogy developed in recent years to profile gene expression,
identifying the differentially expressed genes (DEGs),
correlation of genes and their biological pathways [9–12].
DNA microarray and following data analysis solutions have
become a new research tool for a disease diagnosis, prog-
nosis, monitoring progress of a disease, and discovering
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gene signatures of various diseases [13, 14]. For example,
based on multiple microarray data indicating drug re-
sponse condition from RA patients, common DEGs were
found in different dataset and one of them was selected as
most believable biomarker by meta-analysis method [14].
In the aspect of cancer, patient classifier was set up based
on microarray data from Imatinib-naive CML patients and
correctly predicted responders and non-responders [15]. In
addition, besides protein-encoding gene, long noncoding
RNAs (lncRNAs) were found significantly changed be-
tween Dasatinib-resistance/sensitive patients, which indi-
cated lncRNAs might be related to mechanisms of drug
response [16]. Although DEG sets were identified from
each dataset, it is necessary to integrate them and to iden-
tify gene expression signatures to predict the drug response
with a more reliability in inter-patient heterogeneity.
To this end, we compiled three microarray datasets

from CML patients with the clinical outcome of TKI
therapy. Therefore, we used statistical analysis to identify
DEGs as gene signature candidates from three sets of
microarray datasets covering 101 CML patients grouped
by the response of TKI treatment. After statistical ana-
lysis on gene expression profiles, we selected the gene
signatures to discriminate responder and non-responder
patients treated with TKI agents using a random forest
(RF) classifier. In addition, we performed functional an-
notation of these gene signatures to figure out the role
of TKI related pathway in CML. We found that four genes
were associated with cell proliferation of TKI resistance
mechanisms in CML. This study provided to develop a ro-
bust gene expression signature-based classifier of the clin-
ical outcome to TKI-based therapy. Moreover, our finding
suggests biomarker candidates that could discriminate re-
sponder and non-responder patients treated with TKI. It
would help to apply companion diagnostics by further
experimental validation of putative biomarkers and to
discover key targets of novel drugs for patients.

Methods
Collection of microarray data
We searched microarray dataset to find available gene
expression profiles that could predict treatment outcome
of TKI therapy in CML patients. Microarray data were
derived from the NCBI Gene Expression Omnibus
(GEO) web site by KEY words such as “Imatinib”, “Dasati-
nib”, “Drug Response”, “Gene Expression”, and “Chronic
Myeloid Leukemia” as dataset title and descriptions. We
focused on the microarray data from blood samples with
responder and non-responder patient treated with drugs
targeting the same target because we were interested in
collection of multiple microarray data to provide validated
conclusion.
We selected three sets of gene expression datasets:

GSE14671, GSE2535, and GSE33224. The GSE14671

dataset included 41 blood samples from responder pa-
tients and 18 samples from non-responder patients to
Imatinib. This dataset was based on the Affymetrix Hu-
man Genome U133 Plus 2.0 Array [15]. The GSE2535
dataset included 16 blood or bone marrow samples from
responder patients and 12 samples from non-responder
patients to Imatinib; this dataset was based on the Affy-
metrix Human Genome U95 Version 2 Array [6]. The
GSE33224 dataset included 12 peripheral blood samples
from responder patients treated with Dasatinib, 16 samples
from non-responder patients measured on Agilent-014850
Whole Human Genome Microarray 4x44K G4112F [16].
SOFT formatted family files of three sets of microarray data
were parsed by using the GEOquery R package [17]. We
collected the 101 samples including 73 responders and 38
non-responders from three gene expression datasets. The
101 samples were randomly selected 38 responders and 38
non-responders for avoiding overfitting. Next, 76 samples
were divided into two-thirds training and one-third testing
datasets for gene signature selection and performance
test of them.

Microarray data preprocessing
With two-channel microarray dataset GSE33224, we firstly
combined two dye swap technical replicates into one by
take the average of them and transformed the expression
values by inverting the log2-transformation. Then, we
processed quantile normalization to each of the three
microarray datasets using the limma R package [18]. We
converted the probe IDs into Entrez Gene IDs using plat-
form information of each dataset to make the unique ID.
We mapped to the Entrez Gene IDs from probe IDs in
each set of microarray data and collapsed their expression
values by averaging them to make each microarray dataset
contain non-redundant set of genes.

Selection of gene signature candidates using statistical
analysis
We analyzed each microarray dataset individually to
identify gene signatures that are differentially expressed
in two conditions of responder and non-responder pa-
tients treated with TKI. Student t-test analysis coupled
with False Discovery Rate for multiple testing correc-
tions were performed using the genefilter R package [19]
to find out the DEGs between responders and non-
responder groups.
We performed meta-analysis to combine the results of

each microarray dataset and to extract more robust DEGs.
We used MetaQC and MetaDE in R packages for quality
controls and DEGs identification [20]. MetaQC calculated
six quantitative quality control (QC) measures: internal
quality control for homogeneity of co-expression struc-
ture among studies (IQC), external quality control for
consistency of co-expression pattern with pathway database
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(EQC), and accuracy and consistency quality control of
differentially expressed gene detection (AQCg and CQCg)
or enriched pathway identification (AQCp and CQCp).
MetaDE contained 12 major meta-analysis method for
DEG detection including three categories of combining
P-value, combining effect size, and combining ranks.
After QC measure process, the dataset with a poor IQC
score excluded from meta-analysis which indicates that
this dataset has a heterogeneous information with other
datasets. We used the moderated-t statistics as an argu-
ment of function ind.method to calculate p-values of
each gene in each microarray dataset. In addition, we
conducted meta-analysis that identify DEGs from the
results of each dataset using MetaDE with the three
popular meta-analysis methods including Fisher method,
maximum p-value (maxP) method, and adaptively weighted
(AW) Fisher method of a type of combining p-values. The
Fisher method summed up minus log-transformed p-values
so that larger score reflected integrated differentially
expressed evidence. The maxP method is taken as the
maximum p-value among datasets. The AW Fisher
method characterizes effective studies contributing to
the meta-analysis for better biological interpretation.

Identification of gene signatures with random forest
To identify gene signatures for discriminating patients
between responders and non-responders, we performed
classification analysis either responders or non-responders
using RF. The RF algorithm is a combinational classifier
that selects one classifier model by constructing multiple
classification trees. Each classification tree is constructed
using bootstrap sample of two-thirds of datasets from total
datasets. RF method has several properties that are less
overfitting, feature selection, and robust performance by
parameter choices. RF model was selected to find sets of
gene signatures by Gini variable importance and was eval-
uated by out-of-bag (OOB) testing. This OOB estimate is
as accurate as using validation test with a test set of the
same size as the training set. To find a set of gene signa-
tures from results of statistical analysis, RF was performed
by using varSelRF [21] that can select the sets of gene
signatures with high accuracy. The following argu-
ments of varSelRF were used for selection of gene sets:
ntree = 10000, ntreeIterat = 2000, mtryFactor = 1, and
vars.drop.frac = 0.02. We finally selected and validated
a set of gene expression signatures from testing datasets.

Functional analysis
The functional meaning and related pathway informa-
tion of the each list of DEGs that was identified by indi-
vidual analysis and meta-analysis was interpreted using
functional enrichment analysis. This analysis was based
on a one-sided Fisher’s exact test using Gene Ontology
(GO), KEGG pathway, BIOCARTA pathway, Panther
pathways, and Reactome pathway in The Database for
Annotation, Visualization and Integrated Discovery
(DAVID) [22]. The p-values were adjusted by multiple
testing corrections using Benjamini correction method.

Results
Characteristics of analyzed dataset
To perform this study, we selected three available studies
that examined gene expression profiles of blood samples
to predict treatment outcome of TKI therapy in CML pa-
tients. Detailed information of each dataset was described
in Table 1. In the dataset of GSE2535, patients from con-
secutive Novartis-sponsored trials were included. Imatinib
responders were defined as they achieved complete
cytogenetic response (CCR) within 9 months while
non-responders failed to achieve a major cytogenetic
response (MCR) within 1 year of treatment. Samples
from total bone marrow (BM) white cells, or peripheral
blood (PB) white cells were collected to perform micro-
array. In GSE14671, patients who had failed in prior
interferon-α-based therapy were included. Imatinib re-
sponders were defined as they showed cytogenetic response
(CR) within 12 months of treatment while non-responders
as all other patients. Cells from BM were collected and then
CD34+ cell were selected as samples for microarray. In
GSE33224, patients previously resistant to Imatinib were
included. Dasatinib responders were defined as they
achieved CR while non-responder belonged to ≥ 90 % Ph +
metaphases. Samples from peripheral blood mononuclear
cells (PBMCs) were collected to perform microarray.
Since previous studies were performed individually ac-

companying with clinical and experimental variations, as
well as being analyzed by different statistical analysis
methods, no overlapped DEGs were found between
them. Even though, two studies set up models of drug
response classifiers based on DEGs from single dataset,
and one of them correctly predicted ≥80 % of responder
and non-responder [15]. Another studies evaluated
DEGs/lncRNAs functional relevance by using Ingenuity

Table 1 Studies included in analysis

Study GEO
dataset

The number of samples Cell type/Tissue Drug Platform

Responder Non-responder

McWeeney et al., 2010 [15] GSE14671 41 18 CD34+ cell/BM Imatinib HG-U133_Plus_2

Crossman et al., 2005 [6] GSE2535 16 12 White cell/Blood, BM Imatinib HG-U95Av2

Silveira et al., 2013 [16] GSE33224 6 8 PBMC/Peripheral Blood Dasatinib Agilent-014850
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Pathway Analysis (IPA) tools. Interestingly, most of
DEGs were identified within “Cell-to-Cell Signaling and
Interaction” category and differently expressed lncRNAs
were in “Cell Death” category [16].

Selection of gene signature candidates
To combine and compare the DEGs of each dataset, it is
necessary to analysis datasets with coherent conditions.
We firstly filtered 5658 probes which were examined in
all datasets, extracting their values to perform following
analysis steps. Then, we performed student’s t-test to
identify DEGs between responder and non-responder
groups from individual dataset. FDR as multiple-testing
was used to adjust p-values. Since none of the genes
passed the significant threshold with FDR p-value < 0.05,
we selected DEGs based on raw p-values and set threshold
as 0.05. We identified 536 DEGs for GSE14671, 134 DEGs
for GSE2535, and 629 DEGs for GSE33224 (Additional file
1: Table S1). With comparing DEGs in 3 datasets, we
found 14 DEGs overlapped between GSE14671 and
GSE2535, 67 DEGs overlapped between GSE14673 and
GSE33224, 10 DEGs overlapped between GSE2535 and
GSE33224, and 2 DEGs (PARP3, SUMO3) overlapped in
all three datasets (Fig. 1a).
To further investigate the role of DEGs, we performed

functional enrichment to DEGs in each dataset by DAVID.
Raw p-value threshold was set to 0.05 and significantly
enriched annotation terms were shown in Additional file 2:
Table S2. 205 annotation terms were found in GSE14671
and the most significant term, “defense response”, contains
54 genes. 21 annotation terms were found in GSE2535 and
the most significant term “immune response” contains 16
genes. 212 annotation terms were found in GSE33224 and
the most significant term, “response to organic substance”
contains 55 genes. Duplicate analysis showed 3 overlapped
annotation terms including “defense response”, “immune

response” and “response to organic substance” were found
among all datasets. 57 overlapped annotation terms includ-
ing “immune response”, “defense response”, “response to
organic substance” and “homeostatic process” were found
between GSE14671 and GSE33224. 12 overlapped an-
notation terms including “immune response”, “defense
response”, “response to organic substance” and “actin
cytoskeleton organization” were found between GSE2535
and GSE33224. Eventually, three overlapped annotation
terms “immune response”, “defense response” and “re-
sponse to organic substance” were shared by all datasets
(Fig. 1b). Considering the fact that only a few number of
common DEGs and functional terms found in all datasets,
we guessed individual analysis for dataset separately pro-
vide insufficient statistic power and the result is variously
dependent on experimental or sample bias, limiting to find
the common features from different datasets.
To overcome the problem, we used meta-analysis on

gene expression profiles that combines the results from
independent datasets to increase statistical power. To
measure six quantitative QC, all 3 microarray datasets
with 1299 DEGs according to above individual analysis
were included. Although the scores of CQCg, CQCp,
AQCg, and AQCp from all datasets were not statistically
significant, there was none of poor score of IQC from
any datasets. Therefore, we then conducted meta-analysis
on all genes of the datasets. We used three p-value combin-
ation methods including Fisher method, maximum p-value
method, and adaptively weighted Fisher method for meta-
analysis. We identified 54 DEGs with Fisher method, 45
DEGs with maxP method, and 56 DEGs with AW method
when raw p-value <0.01 was set as threshold (Table 2). We
further investigate the biological process of these DEGs.
We integrated non-redundant 99 DEGs by using three dif-
ferent methods and performed a functional enrichment
analysis based on GO and pathway resources. 31 significant

Fig. 1 Duplicate analysis of differentially expressed genes and related functional terms for each microarray dataset. a Venn diagram showing the
overlap of DEGs between each dataset and b Venn diagram showing the overlap of functional annotation terms between each dataset
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functional terms with raw p-value <0.05 were found that
the most significant term “anti-apoptosis” with p-value of
1.65E-03 and other terms related with CML including
“regulation of apoptosis”, “regulation of cell death”, “regula-
tion of programmed cell death”, and “myeloid leukocyte ac-
tivation” were significantly enriched.

Identification of gene signatures
We aimed to discover an optimal set of gene signatures
for patient classification with TKI-based therapy. So, we
performed Random Forest (RF) with DEGs which were
identified by meta-analysis above as features to select
the most accurate and smallest gene signature set. In
Table 3, 99 gene combinations with low OOB error were
identified. Moreover, the set of six genes including
CTBP2, NADK, AZU1, CTSH, FSTL1 and HDLBP, with
least OOB error of 0.2291 from training dataset were se-
lected by variable selection. Next, based on six gene sig-
natures, we construct RF model from training set and
test performance of classification by testing set. Accur-
acy of the six gene signatures was 69.44 %. Ten genes in
both BCR-ABL downstream signaling pahtway and our
datasets including GRB2, KRAS, MAPK1, PIK3CG,
AKT1, AKT3, CBL, SHC1, CSK, and SRC were collected
by Kolch W. and Pitt A. study [23]. As a result, seven
sets of genes were selected by RF and a set of GRB2 and

KRAS was the lowest OOB error rate of 0.278. In
addition, average classification error of seven sets of genes
was 0.321.
After identifying six genes signatures, we then interested

in these genes function and how they participate in CML
development or TKI-resistance mechanism in patients.
We surveyed canonical pathways of CML signaling and
TKI signaling from literatures, IPA software and public
biological databases. First of all, to find relationships be-
tween six gene signatures and known CML-associated
genes, we collected 258 CML-associated genes from
five available disease-associated databases including
OMIM (Online Mendelian Inheritance in Man) [24],
Genetic Association Database [25], PharmGKB [26],
KEGG DISEASE [27], and Cancer gene census [28].
None of the six genes mapped with CML-associated
genes. We then used our comprehensive protein-protein
interaction database, ComBiCom [29] to discover inter-
action between six gene signatures and CML-associated
genes. As a result, two genes, CTBP2 and FSTL1, directly
interact with three proteins (BCL3, MDM2, and MDS1)
and one protein (TGFB1), respectively.
On the other aspect, we investigated relationship be-

tween six gene signatures and TKI-resistance mecha-
nisms in CML. We filtered out 22 molecules form
“Imatinib-resistant CML disease” in IPA and manually
added another 26 TKI-resistance related molecules which
mentioned in literatures but not contained in IPA. The
added genes were listed as follows: 1) 16 genes related to
alternative signaling pathways, 2) four genes related drug
transporter regulation, 3) two genes related to DNA repair
pathway, and 4) four genes related to epigenetic modifica-
tion [30, 31]. After input of six gene signatures, we ex-
panded connections between each molecules and overlaid
“disease & function” and “canonical pathway” layer to all
genes. As a result, CTBP2 was found to interact and de-
crease activity of HDACs as well as increase activity of
PI3K. In addition, CTBP2 located in the downstream of
TGF-beta signal pathway in CML, mediating cell growth
inhibition. PP1 was found as intermediate between AZU1
and AKT/MAPK/SRC signaling pathways. PP1 inhibits
AZU1 release and reduces activation of PI3K, SRC, BCR-
xL, Ras and AKT. HDLBP inhibits mRNA of CSF1R
which activates PI3K, AKT, and STAT and also interacts
with HDACs. In summary, three of the total six genes
(CTBP2, AZU1 and HDLBP) were found to be related
with TKI-resistance mechanisms.

Discussion
We performed combined analysis with statistical analysis
and classification analysis on gene expression data to
identify gene expression signatures for classification of
CML patients to the drug response of TKI-based therapy.
Based on our results, there was a few overlapped DEGs

Table 2 The number of differentially expressed genes by
meta-analysis methods

p-value Fisher maxP AW

P < 0.01 54 45 56

P < 0.05 203 189 212

Table 3 Error rates of sets of gene signatures

Number of genes OOB error SD.OOB

99 0.2916667 0.06560571

79 0.2083333 0.05861786

63 0.25 0.0625

50 0.25 0.0625

40 0.2708333 0.0641422

32 0.25 0.0625

26 0.2291667 0.0606646

21 0.2291667 0.0606646

17 0.2291667 0.0606646

14 0.2291667 0.0606646

11 0.2291667 0.0606646

9 0.2291667 0.0606646

7 0.2291667 0.0606646

6 0.2291667 0.0606646

5 0.3125 0.06690225
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among microarray datasets by individual analysis. It could
be caused by a diverse of variables in each dataset such as
characteristics of patients, platforms of microarray, ana-
lysis methods, and a type of drugs. To diminish the bias,
we compared three sets of microarray data by three differ-
ent method of meta-analysis and discovered 99 non-
redundant DEGs by Fisher method, maxP method, and
AW method with p-value <0.01. Among them, a set of six
DEGs including CTBP2, NADK, AZU1, CTSH, FSTL1,
and HDLBP with the highest accuracy of 69.44 % was
identified. Moreover, we found that CTBP2, NADK,
AZU1, and HDLBP were related to BCR-ABL inhibitor re-
sistance mechanisms in BCR-ABL downstream signaling
pathways.
In CML, two group mechanisms, BCR-ABL-dependent

and –independent mechanisms, have been found to con-
tribute TKI-resistance [31]. BCR-ABL mutation in kinase
domain or ATP-binding domain, BCR-ABL amplification
and BCR-ABL signaling impairing belongs to BCR-
ABL-dependent group whereas TKI metabolism, drug
transporters-induced TKI influx/efflux, micro-environment
such as inflammatory elements or hypoxia alteration and
DNA repair mechanism deficient induced BCR-ABL-
independent pathways [32]. With subsequently functional
analysis, we identified three genes, CTBP2, HDLBP, and
AZU1, related to TKI-resistance mechanism. Although
FSTL1 were identified to interact with TGF beta-dependent
pathway, it is still out our discussion area because it not re-
lated to BCR-ABL pathways in CML (Fig. 2). Whereas
NADK was not identified by IPA, but it may also affect
drug efflux/influx by completely consume ATP with TKI

membrane transporter, leading to decrease efficacy of trans-
port TKI into cells. CTBP2 is the most closely related genes
since it directly interacts with downstream component of
BCR-ABL signal as well as regulating HDAC and PI3K,
leading to alteration of epigenetic modification and activa-
tion of PI3K/AKT signal pathway. HDLBP indirectly block
BCR-ABL downstream signaling by block the expression of
intermediator CSF1R. PP1, a negative intermediator for
AZU1, prevents downstream signaling pathway, leading to
co-changes between AZU1 and CML signaling pathways.

Conclusions
We performed both statistical and classification analysis
to identify gene expression signatures to discriminate pa-
tients between responder and non-responder groups
from integrated gene expression profiles. In our analysis,
we used three gene expression profiles which were dif-
ferent in terms of platforms, sample sources, drugs, and
clinical criteria between drug responders and non-
responders. So, the biological and technical biases were
controlled by the following ways. 1) The systematic inte-
gration of gene expression profiles from multiple
sources, meta-analysis, were used to analyze three data-
sets for reducing platform-caused batch effects. 2) All of
samples from three datasets belongs to blood-related
mononuclear cells, which are key cells lesion in CML
disease. 3) Both of selected drugs, Imatinib and Dasati-
nib, directly bind BCR-ABL kinase and inhibit the func-
tion of BCR-ABL in CML therapy, which reduced drugs-
caused bias. 4) All datasets used CR as major clinical cri-
teria to decide drug response vs. non-response groups.

Fig. 2 Four gene signatures (red border) in BCR-ABL inhibitor resistance mechanism
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The slightly difference in each dataset is that GSE2535
defined drug-response patient when they achieved CR
within 9 months whereas GSE14671 defined them when
they achieved CR within 12 months. This approach
could reduce the heterogeneity of various datasets hav-
ing a similar purpose and make them comparable to
each other. To our knowledge, there is no other study
that used the meta-analysis and classification analysis on
gene expression dataset to identify a set of gene signa-
tures and their biological functions for the response of
TKI-based therapy in CML patients. Our study suggests
potential drug-response biomarkers from gene expres-
sion profiles and provides a leading view to understand
more precise control mechanisms of drugs.
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differentially expressed genes of each dataset (GSE14671, GSE2535, and
GSE33224). (XLS 143 kb)
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