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a b s t r a c t 

Chordoma is the most common malignant tumor of the sacrum and is associated with sig- 

nificant neurologic morbidity. Local recurrence is very common, and the long-term prog- 

nosis is poor. High-intensity focused ultrasound (HIFU) is a noninvasive and nonionising 

ablative therapy that has been successful in treating other tumor types and is being evalu- 

ated as a new therapy for sacral chordoma. Contrast-enhanced magnetic resonance imaging 

is typically used to evaluate tumor perfusion following HIFU; however, its utility is limited in 

poorly perfused tumors. Diffusion-weighted imaging (DWI) provides tissue contrast based 

on differences in the diffusion of extracellular water without using gadolinium-based con- 

trast agents. We present novel DWI findings following a planned partial HIFU ablation of a 

large sacral chordoma which had recurred after radiotherapy. Following HIFU, the treated 

tumor volume demonstrated loss of restriction on DWI correlating with photopenia on 

positron emission tomography. This suggests successful ablation and tumor necrosis. This 

novel finding may provide guidance for sequence selection when evaluating HIFU therapy 

for sacral chordoma and other tumor types for which contrast-enhanced magnetic reso- 

nance imaging may have limited utility. 
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Background 

Chordomas are low-grade malignant tumors characterized by
slow, but locally invasive and aggressive growth [1] . Chordo-
mas arise from notochordal remnants in the axial skeleton,
and most commonly in the sacrum [2] . Sacral chordoma typ-
ically presents with pain and neurologic symptoms, such as
motor, bladder, bowel, or sexual dysfunction. The symptoms
are slowly progressive, and the tumor is typically large by the
time of presentation. 

While radical en-bloc surgical resection with wide margins
is the treatment of choice for primary sacral chordoma [3] ,
this is often not feasible due to the proximity of the tumor
to essential structures. Even when feasible, there is high as-
sociated morbidity, for example, formation of colostomy and
urostomy. Radiotherapy is used as an adjuvant or alterna-
tive to surgery, and recently particle beam therapy has shown
promise [4,5] . Despite this, local recurrence is very common
[6] and the long-term prognosis is poor [7] . Therefore, there
is an ongoing search for improved treatments for sacral chor-
doma. 

High-intensity focused ultrasound (HIFU) is a noninva-
sive and nonionising ablative therapy. HIFU delivers a large
amount of acoustic energy to a small focal spot, causing in-
stantaneous targeted tissue necrosis by both thermal and me-
chanical mechanisms [8] . HIFU has received Food and Drug
Administration approval for the treatment of uterine fibroids,
bone metastases, and prostate cancer [9] and is being trialled
in several other tumor types [10] . 

HIFU has the potential to be a new therapy for sacral chor-
doma. Within the context of a phase II clinical trial, we have
used HIFU to treat patients with sacral chordoma to date at
our center [11] . In these cases, magnetic resonance imaging
(MRI) demonstrated reduced contrast enhancement and re-
duced volume of the ablated tumor tissue in keeping with par-
tial response to HIFU. 

Gadolinium-based MRI contrast agents typically provide
an effective means of assessing response. However, in certain
tumor types, including previously irradiated recurrent sacral
chordoma such as in our patient, contrast agents have lim-
ited value due to poor and heterogeneous baseline contrast
enhancement. Moreover, gadolinium is associated with an ex-
tremely low, but serious, risk of allergic reaction, retention,
and nephrogenic systemic fibrosis [12] . 

Diffusion-weighted imaging (DWI) provides tissue contrast
based on local differences in the diffusion of water molecules
within the extracellular space and does not require gadolin-
ium. Diffusion characteristics are usually quantified using ap-
parent diffusion coefficient (ADC) values. It has been shown
in human and animal models of brain tumors that there is
a positive correlation between ADC and necrosis [13] , and
a negative correlation between ADC and tumor cellularity
[14] . 

In this case report, we describe novel DWI characteristics
of sacral chordoma following HIFU, which have been corre-
lated with functional metabolic assessment. We believe this
will provide guidance for sequence selection when evaluating
HIFU response in sacral chordoma and other poorly perfused
tumor types. 
Clinical presentation 

All patients enrolled on the clinical trial at Churchill Hospi-
tal, Oxford, received a patient information leaflet and careful
counselling as to available treatment options prior to giving
written, informed consent [15] . 

A 48-year-old man, with no past medical history of note,
presented with a large mass arising from the lower sacrum
and coccyx, which was histologically confirmed as sacral chor-
doma. 

Surgical resection was not performed given the close rela-
tionship of the tumor mass to essential pelvic structures. The
patient opted for carbon ion radiotherapy (CIRT). A radiopro-
tective silicon spacer was inserted between the tumor and the
rectal wall. He initially received CIRT at a total dose of 70.4 Gy.

A year later, MRI showed satellite nodules within the right
gluteal subcutaneous fat. He received further CIRT at a total
dose of 57.6 Gy to this region. 

Unfortunately, 4 years after his initial presentation, MRI
showed that the tumor mass was progressive. He commenced
imatinib therapy. He was then referred to our center for con-
sideration of HIFU treatment within a clinical trial. 

The patient was assessed by a multidisciplinary team con-
sisting of a neurosurgeon, a radiologist, and a HIFU specialist.
Contrast-enhanced MRI with DWI sequences was performed
for procedure planning. Given the radiotherapy-related skin
change and tethering on the right buttock, it was decided to
undertake HIFU treatment with palliative intent on the left
side only to reduce the risk of any further skin damage. 

The patient had HIFU treatment under sedation using
an extracorporeal HIFU device (Model JC200 Focused Ultra-
sound Tumor Therapeutic Systems, Haifu Medical, Chongqing,
China). A 7 × 6 × 6 cm volume on the left side of the
sacral chordoma was successfully ablated under ultrasound-
guidance. There were no complications. Given the success of
the initial procedure, the patient had a second attempted HIFU
procedure to the right side of the tumor; however, the proce-
dure was abandoned due to pain when treating over the area
of radiotherapy-related skin change. 

Response to treatment was evaluated with MRI 1 month af-
ter the first HIFU ablation. Tumor volume was determined by
an experienced radiologist measuring the maximum linear di-
mension in 3 planes and applying the ellipsoid formula (prod-
uct of the 3 measurements × 0.52) [16] . Following HIFU to the
left side of the tumor, there was a 15% reduction in total tumor
volume. There was no clear change in contrast enhancement;
however, this was poor and heterogeneous at baseline. DWI
showed restricted diffusion within the untreated right side of
the tumor, which is typical for chordoma [17] . In contrast, the
treated left side showed low signal on b1000 images and high
ADC values. This indicates reduced diffusion restriction in the
treated tumor volume (see Fig. 1 ). 

Eleven months post-HIFU, the patient underwent 18F-
fluorodeoxyglucose (18F-FDG) positron emission tomography/
computed tomography (PET/CT) imaging for the characteriza-
tion of new soft tissue lesions in the lumbar spine and lung.
PET/CT showed mild FDG avidity within the untreated right
side of the sacral chordoma, which is expected for this tu-
mor type [18–21] . However, the treated left side was markedly
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Fig. 1 – MRI prior to HIFU treatment (top row) and at 1 month (middle row) and 8 months (bottom row) after HIFU treatment. 
Left column: axial T1-weighted fat-suppressed fast-spoiled gradient echo (LAVA) sequence, venous phase imaging. Middle 
and right columns: axial DWI and ADC map at b = 800 (top row), b = 1000 (middle row), b = 700 (bottom row). ADC values are 
significantly higher on the HIFU-treated left side of the chordoma than the untreated right side, indicating a reduction in 

diffusion restriction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

photopenic, in keeping with tumor necrosis and supporting
the previous DWI findings (see Fig. 2 ). Unfortunately, despite
successful local tumor ablation, the new soft tissue lesions in
the lumbar spine and lung are thought to represent chordoma
metastases. 

Discussion 

The MRI appearances of chordoma have been described pre-
viously [2,22] . Sacral chordoma is typically a lobulated mass
arising from the sacrum. On T1-weighted images, chordomas
are iso- or hypointense relative to muscle, with areas of high
signal corresponding to hemorrhagic and mucinous material.
On T2-weighted images, chordomas are very hyperintense,
reflecting the high water content of the notochordal-origin
nucleus pulposus tissue. Chordomas show a modest degree
of heterogenous contrast enhancement. DWI characteristics
have been described in skull-base chordomas [17] ; they show
low ADC values indicating abnormal diffusion restriction. This
may be because their mucinous stroma impedes the free mo-
tion of extracellular water. 

Following HIFU ablation of sacral chordoma, our group
has previously described low signal change and nonenhance-
ment on T1-weighted fat-suppressed fast-spoiled gradient
echo (LAVA) sequence [11] . In our patient, who had previ-
ously received radiotherapy, the tumor showed poor and het-
erogeneous contrast enhancement prior to HIFU treatment,
hence contrast-enhanced MRI was of limited value in evalu-
ating HIFU response. 

DWI appearances following HIFU ablation of sacral chor-
doma have not been characterized before. We are the first to
report a significant low signal change on DWI and increase in
ADC values following HIFU, indicating reduced diffusion re-
striction after ablation. 

Interestingly, a study of skull-base chordomas found that
ADC values are higher after radiotherapy [17] . Similar DWI
findings have been described in other benign and malignant
tumors treated with HIFU. In patients with bone metastases
[23] , uterine fibroids [24] and primary hepatic carcinoma [25] ,
ADC values are significantly higher after HIFU ablation. In an
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Fig. 2 – Axial ADC map 8 months after HIFU treatment (left) and axial fused 18F-FDG PET/CT 11 months after HIFU treatment 
(right). The HIFU-treated left side of the chordoma show excellent correlation with high ADC values and no 18F-FDG uptake, 
indicating tumor necrosis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ex vivo animal study, a 20% increase in ADC following HIFU
ablation correlated with macroscopic tissue damage [26] . This
suggests that DWI is able to evaluate the nonperfused volume
following HIFU ablation. 

18F-FDG PET/CT is a mainstay of staging for many
metabolically-active cancers. Typically sacral chordoma
demonstrates heterogeneously increased 18F-FDG uptake
[18–21] . In our study, the HIFU-treated tumor volume showed
excellent volumetric correlation between high ADC values
and complete lack of 18F-FDG uptake. This suggests the DWI
appearances are likely to represent tumor necrosis after HIFU
ablation. 

Summary 

A 48-year-old man with local recurrence of sacral chordoma
after CIRT and imatinib therapy was referred to our center for
HIFU ablation. He successfully underwent HIFU ablation with
palliative intent to the left side of the tumor. The right side was
not treated due to overlying postradiotherapy skin change.
We report novel diffusion weighted imaging findings following
HIFU ablation. The treated tumor volume demonstrated high
ADC values, indicating a reduction in abnormal diffusion re-
striction. There was no FDG uptake within the treated tumor
volume on PET/CT, suggesting the DWI appearances represent
tumor necrosis following HIFU ablation. 

Learning points 

• HIFU is an established treatment for many benign and ma-
lignant tumors and is being trialed in patients with sacral
chordoma. 

• Gadolinium-based contrast enhanced MRI is typically used
to assess the radiological response to HIFU ablation, but
of limited value when assessing poorly perfused tumors.
DWI provides contrast based on differences in the diffusion
of water molecules and avoids the risks associated with
contrast agents. 
• Sacral chordoma typically demonstrates abnormal diffu-
sion restriction. Following HIFU ablation, we report loss of
diffusion restriction on DWI sequences together with a lack
of FDG uptake on PET/CT. This is likely to represent necro-
sis of the ablated tumor volume. 
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