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The DIALS diffraction-modeling software package has been applied to serial

crystallography data. Diffraction modeling is an exercise in determining the

experimental parameters, such as incident beam wavelength, crystal unit cell and

orientation, and detector geometry, that are most consistent with the observed

positions of Bragg spots. These parameters can be refined by nonlinear least-

squares fitting. In previous work, it has been challenging to refine both the

positions of the sensors (metrology) on multipanel imaging detectors such as the

CSPAD and the orientations of all of the crystals studied. Since the optimal

models for metrology and crystal orientation are interdependent, alternate

cycles of panel refinement and crystal refinement have been required. To

simplify the process, a sparse linear algebra technique for solving the normal

equations was implemented, allowing the detector panels to be refined

simultaneously against the diffraction from thousands of crystals with excellent

computational performance. Separately, it is shown how to refine the metrology

of a second CSPAD detector, positioned at a distance of 2.5 m from the crystal,

used for recording low-angle reflections. With the ability to jointly refine the

detector position against the ensemble of all crystals used for structure

determination, it is shown that ensemble refinement greatly reduces the

apparent nonisomorphism that is often observed in the unit-cell distributions

from still-shot serial crystallography. In addition, it is shown that batching the

images by timestamp and re-refining the detector position can realistically

model small, time-dependent variations in detector position relative to the

sample, and thereby improve the integrated structure-factor intensity signal and

heavy-atom anomalous peak heights.

1. Introduction

Serial crystallographic methods are widening the scope of

structural biology, allowing the examination of macro-

molecular structure with short radiation pulses that generate

diffraction from samples nearly free of radiation damage.

Room-temperature experiments preserve the physiologically

relevant dynamic motion of proteins that cryopreservation

quenches and can span multiple time points along enzymatic

pathways. Present-day developments began with the intro-

duction of X-ray free-electron laser (XFEL) sources (Berg-

mann et al., 2017); however, the latest generation of

synchrotron-radiation sources have introduced pulse dura-

tions and focus sizes that confer some of the same benefits.

While groundbreaking in its promise, serial crystallography

presents numerous technical challenges, including those

involving data analysis. With short X-ray pulses, ranging from
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microseconds at synchrotrons to femtoseconds at XFELs,

crystalline specimens are essentially still for the duration of a

single shot, after which the crystal is replaced. This contrasts

with conventional methods, in which a single crystal is conti-

nually rotated on a goniometer. The data-processing work-

flows are broadly similar for both methods, consisting of the

location of Bragg spots by a spot-finding algorithm, the

determination of the crystal lattice by an indexing procedure,

the integration of diffraction intensities at predicted Bragg

spot positions, and finally the scaling and merging of repeated

Bragg measurements. Also, in both cases the approach

involves inverse modeling, in which a computer representation

of the experiment is used to predict properties of the

diffraction image, including the Bragg spot positions, after

which the parameters of the model are iteratively adjusted to

best match the observed images.

However, while the treatment of rotation shots has been

well established for several decades, experimental innovations

in serial crystallography have required new models. XFEL

facilities, in particular, introduced pixel-array detectors that

are uniquely designed to integrate X-ray signals over periods

of femtoseconds. These carry the performance tradeoff of

being constructed as multipanel units, with the added issue

that the geometrical relationship between the individual

panels (the ‘metrology’) must be included in the computa-

tional model. Our group (Hattne et al., 2014) and others

(Yefanov et al., 2015; Ginn & Stuart, 2017) have shown that the

positions and orientations of individual detector panels, which

are poorly determined initially, can be determined to subpixel

accuracy by iterative nonlinear least-squares refinement,

which minimizes the residual difference between observed

and predicted Bragg spot positions.

Despite the success of the Ha14 (Hattne et al., 2014)

metrology code included with our program cctbx.xfel, it has

been understood that the implementation would eventually

need to be redesigned for several reasons. Ha14 embeds the

image data from all detector panels into a single square-

shaped data array that represents the whole detector, with

panels in their approximate geometric positions, against a

backdrop of pixels that are set to a special value to signify the

inactive areas between panels. Superficially, this is open to the

criticism that the inactive areas waste memory and disk space.

However, the disadvantage has proven to be more severe

owing to the necessity of encoding the number of panels and

their dimensions, as well as the need for special code to ignore

the inactive pixels for image processing. As a result, while the

code supports the 64-panel CSPAD (Fig. 1; Hart et al., 2012)

installed at the Linac Coherent Light Source (LCLS) at the

time of the Ha14 publication, it cannot be easily adapted for

use with subsequent detector models, including the eight-

panel MPCCD detector at SACLA (Kameshima et al., 2014)

and the 128-panel AGIPD detector at the European XFEL

(Henrich et al., 2011). Even the temporary loss of a single

sensor on the CSPAD detector requires the reduced sensor

complement to be hard-coded.

Several additional considerations led us to abandon the

single-array approach to data representation. Firstly, the Ha14

design unnecessarily conflates the concepts of measurement

and model. For example, if we determine after data collection

that our model should move one of the sensors two pixels to

the right, a new copy of the data array has to be created to

reflect the updated sensor position. Furthermore, the single-

array approach does not allow the possibility that the

distances between sensors can assume fractional pixel values

or that the sensors might be slightly rotated with respect to

each other. Thus, the Ha14 code is forced to maintain a

separate data structure that encodes corrections to the unit-

pixel metrology. A better software design, adopted here, is to

maintain two data structures, one that simply contains the

original detector-panel measurements in their unaltered forms

(as a list of rectangular sensor arrays of pixels) and another

that represents the complete vector description of each panel,

including the origin vector d0 that locates the panel in relation

to the crystal and two vectors dx and dy that define the fast and

slow readout directions (Parkhurst et al., 2014). This approach

also removes the undesirable requirements in Ha14 that all

detector panels are coplanar and that the plane of the detector

is normal to the beam.
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Figure 1
Overview of the CSPAD (Cornell–SLAC Pixel Array Detector). (a)
Photograph of the instrument (credit: Philip Hart). (b) Hierarchical
organization. Each level groups objects that can be refined together. The
pink ASICs in level 3 are used with powder patterns for quadrant
alignment (x3.2). The blue and red vectors are the dx and dy directions
used to orient the group. The dn vector completing the coordinate system
is orthogonal to both, pointing out of the page for levels 0–2. At level 3, a
y-axis sign flip is used to align the fast (blue) and slow (red) directions
used to read out the pixels from the raw data, which also flips dn to point
into the page (note the inverted ‘A0’ and ‘A1’ labels). (c) Origin vectors
dn for each level of the CSPAD hierarchy. Starting at the origin of
laboratory space, the detector is shifted by the detector origin vector. The
deeper hierarchy levels point from the parent object origin to the child
object origins, or in the case of the ASICs to the position of the (0, 0)
pixel. Note that it might be expected that quadrants 1–3 would be rotated
90, 180 and 270� clockwise, respectively, and that S6 and S7 would be
rotated 180�, all to maintain the fourfold symmetry of the detector.
However, how the metrology is converted from optical measurements to
vectors is arbitrary and varies each time the CSPAD is reassembled,
sometimes producing a quadrant pattern without fourfold symmetry.
Such is the case for the L785 experiment illustrated here. DIALS handles
arbitrary configurations, so this is not an issue.



There is also good reason to reorganize our geometric

description of a multipanel detector (referred to below as

simply the ‘detector model’) with a hierarchical design that

mirrors the physical construction of the device (Brewster et al.,

2014). For the CSPAD detector in particular (Fig. 1), we assign

four levels of organization, with the overall detector composed

of four separately constructed quadrants, each of which in turn

is composed of eight silicon-wafer sensors. The silicon sensors

are bump-bonded to two 194 � 185 pixel ASIC (application-

specific integrated circuit) arrays (Hart et al., 2012). Model

elements at each level contain d0 vectors expressed relative to

the next highest level (Fig. 1). The LCLS facility has the

capability of determining the sensor positions within each

quadrant at the time of assembly to pixel-level accuracy, using

optical microscopy methods. Expressing our detector model as

a hierarchy allows us to insert the LCLS quadrant-level cali-

brations at the appropriate level, to be used as starting values

for the least-squares refinement, with the main uncertainties

therefore being the interrelationship of the four quadrants and

the position of the detector as a whole. Additionally for the

CSPAD, defining explicit readout directions (dx and dy)

accounts correctly for the pinwheel construction of the device,

where quadrants have an approximately 90� relation to each

other, rotated around a common origin. Within each quadrant,

groups of two sensors also have an approximate 90� rela-

tionship (Fig. 1). Therefore, in contrast to the monolithic array

of Ha14, the present design implements separate data arrays

corresponding to each sensor, which, while having a common

layout in memory, represent four distinct orientations in space.

To implement our replacement for Ha14, we adopted the

DIALS software framework (Diffraction Integration for

Advanced Light Sources; Winter et al., 2018) that has

previously been used for inverse modeling of synchrotron-

based rotation crystallography experiments (Waterman et al.,

2016). One relevant difference is that while rotation experi-

ments generally treat one crystal at a time, the refinement of

multipanel detector geometry required us to combine Bragg

positional data from thousands of crystals. The parameter-

fitting problem is thus highly interdependent, with all detector-

panel positions feeding into the refinement of the orientation

and unit-cell parameters of each crystal, while simultaneously

each crystal model determines the positions of all of the

detector panels. Standard methods in iterative least-squares

parameter refinement, such as the Levenberg–Marquardt

algorithm (x4), involve the construction of a set of linear

equations with as many unknowns n as free parameters;

therefore, an n � n normal matrix must be decomposed

(Bevington & Robinson, 2003). Naively expressed, this is a

very large matrix; for example, 32 sensor tiles with xy trans-

lations and one rotation each, plus 3000 hexagonal crystals

with three orientation angles plus a and c parameters, would

produce a total of n = 15 096. As a short cut, the work

presented in Ha14 employed alternating cycles of refinement,

alternating between the detector panels and the individual

crystal models, such that the full matrix is never constructed.

However, for the work presented below, we wished as a

general principle to minimize the construction of arbitrary

refinement pathways (such as detector panels first then crystal

models) and to rely whenever possible on the global refine-

ment of all free parameters. To this end, we exploited the fact

that many of the parameters are independent (for example, all

of the cross-terms involving two distinct detector panels or two

distinct crystals contribute zero-valued coefficients to the

normal equations). Since the sparsely dependent structure of

the normal equations is known ahead of time, we show (x4)

how sparse linear algebra techniques can be employed to

substantially reduce the computational resources needed to

solve the problem.

Also, we show below how the DIALS framework can be

adapted to describe serial crystallography experiments invol-

ving two imaging detectors at different crystal-to-detector

distances (x5) and how the simultaneous refinement of

detector and crystal models improves the accuracy of poorly

measured unit-cell axis lengths for unit-cell axes that are

oriented nearly parallel to the X-ray beam (x6). Finally,

considering recent reports from other groups describing how

small changes in the crystal-to-detector distance can affect

experimental results (Nass et al., 2016), we develop a proce-

dure to discover small time-dependent changes in the distance,

thereby improving the integrated Bragg spot signal (x7).

2. Data sets

We reprocessed thermolysin diffraction patterns collected at

the CXI endstation at LCLS (Table 1). Sample preparation

and injection, beamline parameters and data-collection

methods are described in Kern et al. (2014). 760 110 shots were

collected over 107 min, with an incident photon energy set

point of about 9.75 keV. The front CSPAD was positioned at

either 130 or 105 mm from the sample-insertion position, while
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Table 1
Data sets.

Sample names and LCLS proposal numbers are given for the two data sets used in this work, as well as the total number of shots collected, the detector distances at
which the data were collected and the incident photon energy.

Sample
LCLS
proposal No.

Published
PDB code Run Nos.

Collection
time (min)

No. of
shots

Front detector
distance (mm)

Back detector
distance (m)

Photon
energy (keV)

Thermolysin L785 4tnl 11–22 71 503605 130 2.5 9.75
26–29 36 256505 105 2.5 9.75

Cry3A toxin LS02 4qx0 2–4 7 49453 111 2.5 8.50
5 5 38808 181 2.5 8.50
6–7, 10–12 41 292479 166 2.5 8.50



the back detector was positioned �2.5 m from the sample-

insertion position, so that low-angle diffraction transmitted

through the central aperture of the front CSPAD was collected

on the back detector. Data collection occurs in ‘runs’, which

represent continuous time intervals (typically 5–10 min each)

during which experimental parameters are held constant. The

runs listed in Table 1 are grouped by front detector distance.

We also reprocessed Cry3A toxin data collected about a

week later on the same CSPAD detector at CXI. 380 740 shots

were collected over 53 min at an incident photon energy set

point of 8.5 keV. Sample preparation and injection, beamline

parameters and data-collection methods are described in

Sawaya et al. (2014).

3. CSPAD detector metrology refinement

We refined the CSPAD detector metrology using custom-

written code for serial crystallography incorporated into

dials.refine. x3.1 describes the hierarchical organization of the

CSPAD and x3.2 describes the automatic determination of

initial quadrant locations using powder patterns. Given this

initial alignment, we can index the data (x3.3), perform joint

refinement on the detector and crystal models (xx3.4 and 3.5)

and assess the accuracy of the results (x3.6).

3.1. CSPAD hierarchy

Our detector model represents the panels of the CSPAD in

a four-level hierarchy (Fig. 1): detector, quadrant, sensor and

ASIC. Switching the local frame of reference between levels

involves a coordinate transformation Fparent!child, defined as a

change of basis from a parent coordinate system to a child

coordinate system or back again (i.e. F�1
parent!child =

Fchild!parent). The transformation F can be expressed with an

origin vector that translates from the origin of the parent

frame to the origin of the child frame and a unitary matrix

describing a rotation. The first frame shift, Flab!d, moves from

the laboratory origin (i.e. the crystal location) to the center of

the detector as a whole. Next, we describe four detector-to-

quadrant frame shifts, Fd!q0 through Fd!q3. There are then 32

quadrant-to-sensor frame shifts, Fqi!s0 through Fqi!s7, where i

ranges from 0 to 3. Finally, since all pairs of ASICs are

constrained to have the same three-pixel gap between them,

there are exactly two sensor-to-ASIC frame shifts, Fs!a0 and

Fs!a1, applied to all ASICs.

The full transformation of position p from the laboratory

frame to the ASIC frame would be expressed as

pa ¼ ðFs!aFq!sFd!qFlab!dÞplab: ð1Þ

For convenience, we express Flab!d as a homogenous trans-

formation matrix consisting of the components of the rotation

matrix (dx, dy, dn) (where dn is the normal vector, dx� dy), and

the translation vector d0:

Flab!d ¼

dx1 dy1 dn1 d01

dx2 dy2 dn2 d02

dx3 dy3 dn3 d03

0 0 0 1

0
BB@

1
CCA: ð2Þ

The other frame shifts are expressed in the same form but

are generated from different sets of d0, dx and dy vectors. The

4� 4 homogenous transformation matrix allows both rotation

and translation to be expressed by single matrix multi-

plication. The global, cumulative d0, dx and dy vectors used to

compute pixel positions (Parkhurst et al., 2014) can then be

easily derived from (1) given a cumulative frame shift F:

d0

1

� �
¼ F

0

0

0

1

0
BB@

1
CCA;

dx

1

� �
¼ F

1

0

0

0

0
BB@

1
CCA;

dy

1

� �
¼ F

0

1

0

0

0
BB@

1
CCA:

ð3Þ

In (3), after multiplying F by a four-element vector, we drop

the last element in the resultant homogenous vector to

construct the d vectors. The location of a pixel in the plane of

the ASIC chip is determined using a pixel-to-millimetre

conversion function that takes into account pixel size

(including rectangular pixels and optionally parallax effects;

Parkhurst et al., 2014; Waterman et al., 2016).1

The reverse operation (determining plab given pa) can be

performed using reversed and inverted matrix multiplications

from (1):

plab ¼ ðF
�1
lab!dF�1

d!qF�1
q!sF

�1
s!aÞpa: ð4Þ

These transformations group the 64 ASICs into hierarchical

sets. With this organization, it is possible to refine the detector

as a whole without modifying the frames of child components

or to refine a quadrant as a whole without modifying the

frames of its parent or children, and so on. Detailed specifi-

cations as to how these transformations are recorded have

been presented previously (Brewster et al., 2014).

3.2. Automatic CSPAD quadrant alignment using rotational
autocorrelation

Within each CSPAD quadrant, the initial panel positions

are determined at the LCLS facility using an optical micro-

scope. Therefore, when the CSPAD is assembled and installed,

the positions of the quadrants relative to each other and to the

beam are unknown.

We developed an automated approach for deriving quad-

rant positions; more specifically, we calculate the xy positions

(in the detector plane) of the four sensors closest to the direct

beam (Fig. 1, shaded in pink). Firstly, we generate a ‘composite

maximum’ image, taking the maximum pixel values among all

images in a data-set run. Overlaying all of the Bragg spots
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1 More complex panels, such as curved or nonrectangular chips, can be
represented in DIALS given an appropriate pixel-to-millimetre implementa-
tion. At present, the pixels need to be addressable using two dimensions, but
the software can be extended to triangular or hexagonal pixel shapes should
the need arise. In the case of the CSPAD all panels have the same pixel size,
but this need not be true for other detectors represented by models in DIALS.



from a run in this manner generates a virtual powder pattern,

since the individual crystals have random orientations. If a

quadrant is properly placed, after rotating a strong powder

pattern 45� around the beam center, the overlapping pixel

values will be highly correlated. We can therefore perform a

grid search over xy offsets for each quadrant separately

(limiting our examination to the sensor closest to the beam

center), searching for the position with the highest rotational

autocorrelation coefficient (CC). This produces a heat map

(Fig. 2) where each pixel [for example (3, 4)] represents the

CC when the quadrant is translated by that amount (three

pixels in x, four pixels in y). The coordinates of the heat-map

maximum give the best positional correction for that quadrant

(Table 2).

We tested three virtual powder patterns to estimate the

quadrant positions for the front CSPAD detector using the

thermolysin data (Fig. 2a). The first is derived from a weak run

(run 22) with few hits, leading to thin powder rings. The second

is derived from a strong run (run 14) with many hits. The third

is a composite of many runs collected at a single detector

distance (runs 13–22). In all three patterns, the discontinuities

in the powder rings indicate that the quadrants are not

aligned.

Fig. 2(b) shows the rotational autocorrelation heat maps for

these three virtual powder patterns. For the weakest, run 22,

the maximum of the heat map is unclear. It is better resolved

for run 14 and is strongest for the composite pattern (runs

13–22). Alternating bands of low and high correlation occur

owing to the alternating strong and weak bands in the powder

pattern. When, after translating the quadrant, bands in the 45�

rotation overlap with similarly bright bands in the unrotated

pattern, the CC is higher. Likewise, the translation can cause

bands in the rotated pattern to systematically overlap gaps in

the unrotated pattern and produce a low CC.

For weaker patterns or sparser data, it can be useful to try

many rotations. We repeated the rotation test for each of the

virtual powder patterns at different angles from 20 to 70� in

2.5� increments. For each xy offset, we selected the maximum

CC observed from all of the angles tested to generate a new

heat map. This eliminates the ‘beat pattern’ of local maxima in

single-angle heat maps and in general produces smoother heat

maps with clear global maxima (Fig. 2c). For weak data (for

example run 22), however, the global maximum may still be

very far off from the best quadrant position. In such cases, it is

prudent to cross-check by manual examination of virtual
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Figure 2
Automatic quadrant alignment by rotational autocorrelation from
thermolysin data. (a) Composite maximum images from run 22, run 14
and runs 13–22. The red arcs and dotted extensions have been placed to
show that the virtual powder rings are not circular. (b) Rotational
autocorrelations of quadrant 2. The x and y axes represent the
incremental shifts in the quadrant position used to calculate the
autocorrelation, with the center coordinate (0, 0) representing no shift.
The heat map is colored by the rotational autocorrelation of the quadrant
with itself, rotated 45� around the beam center. Heat maps are all colored
on the same scale (see color bar). The maximum value is marked with a
green dot. (c) Autocorrelation map using multiple rotation angles. Each
point is the maximum CC value found when rotating the panel in steps
from 20 to 70� in 2.5� increments. (d) Diagram illustrating rotational
autocorrelation. The quadrant is rotated 45� and a CC is computed
between the pixel values in the overlapping areas. This is repeated for
each of the grid points after translating the quadrant. (e) The maximum
composite pattern from runs 13–22 after applying the x and y shifts for
each quadrant that maximize the rotational autocorrelation.

Table 2
Results of alignment by rotational autocorrelation.

Runs: a weak run (22), a strong run (14) and a many-run composite image
(runs 13–22). For the single-angle method and the multi-angle method, for
each quadrant the pixel offset needed to move the quadrant to maximize the
rotational autocorrelation CC and the CC at that position are listed.

Single-angle method Multi-angle method

Run(s) Quadrant CC (%)
Quad offset
(pixels) CC (%)

Quad offset
(pixels)

22 0 6.1 (3, 2) 16.4 (20, �20)
1 8.0 (5, 2) 12.5 (�8, �13)
2 6.3 (2, 1) 11.9 (�19, 6)
3 6.5 (1, �5) 11.1 (11, 15)

14 0 21.5 (3, 2) 24.6 (3, 2)
1 23.0 (5, 3) 27.0 (5, 3)
2 25.8 (4, 0) 27.7 (4, 0)
3 23.6 (0, �6) 26.5 (1, �5)

13–22 0 28.4 (3, 2) 32.5 (3, 2)
1 32.6 (5, 3) 37.7 (5, 4)
2 36.6 (4, 0) 41.5 (3, 0)
3 33.9 (0, �6) 37.8 (0, �7)



powder patterns overlaid with circles

emanating from the beam center.

Once the quadrant positions have

been optimized, it is often possible to

estimate the sample-to-detector

distance to within �1 mm (data not

shown) by overlaying the corrected

composite image with predicted rings

calculated from the known unit-cell

parameters of the protein producing the

virtual powder pattern.

3.3. Initial indexing

After refinement of the quadrant

positions by rotational autocorrelation,

we performed initial indexing of the

thermolysin data on the front CSPAD to

generate a data set from which we could

refine the complete detector metrology.

We determined a starting detector

distance by performing rounds of

indexing at increasing distances and

choosing the distance producing the

highest number of indexed images, as

described previously (Hattne et al.,

2014). We then indexed all of the

images, determining initial basis vectors

using the one-dimensional Fourier

method (Steller et al., 1997), while

guiding the selection of candidate basis

vectors using a target unit cell (a = b =

92.9, c = 130.4 Å, � = � = 90, � = 120�; Hattne et al., 2014). For

each image, we independently refined the crystal orientation

matrix and unit-cell parameters, while holding the wavelength

and detector position constant. This produced 118 318 indexed

lattices from both detector distances (�130 and 105 mm). In

subsequent sections, we refine the detector metrology using a

subset of these lattices from initial indexing (xx3.5 and 3.6) and

then use the refined metrology to reindex the data, producing

successfully indexed patterns that previously did not index

(x3.7).

3.4. Refinement target function

Computational models for still-shot experiments were

incorporated into the parameter-refinement framework

(Waterman et al., 2016) within DIALS. Best-fit models for the

detector, crystal and beam were determined by minimizing the

nonlinear least-squares target function

L ¼
1

2

Pm
i¼1

wi;xðxcalc � xobsÞ
2
þ wi;yðycalc � yobsÞ

2
þ wi; ð calcÞ

2;

ð5Þ

where the index i traverses all m Bragg spot measurements in

the entire data set, x and y refer to the fast and slow coordi-

nates of the Bragg spot centers of mass on their respective

detector panels, the subscript ‘obs’ refers to the observed

position and the subscript ‘calc’ refers to the position

predicted by the computational model. The quantity  calc is

the smallest crystal rotation angle required to place the

reciprocal-lattice point exactly in the reflecting condition

described by Bragg’s law. As described previously (Sauter et

al., 2014), it is necessary to include this restraint to prevent the

crystal orientation model from rotating around axes that are

perpendicular to the beam vector, as these rotations do not

directly change the Bragg spot positions. The weighting

scheme (wi,x, wi,y and wi, for the ith observation) uses a

statistical weight for wi,x and wi,y equal to the inverse variance

of the observed spot position and a constant weight for the

 calc angle. The default wi, value of 106 generally puts the

 calc term on the same scale as the x and y terms.

3.5. Refinement of the detector model

To determine the correct positions of the CSPAD detector

panels to subpixel accuracy, we conducted iterative nonlinear

least-squares parameter optimizations designed to jointly

refine the detector geometry and crystal models. We used

Bragg spot positions measured on thermolysin diffraction

images selected from the 130 mm run group (Table 1) and

limited our refinement to the 3000 images with the most

reflections indexed to the corners of the detector. In addition

to the geometric degrees of freedom of the detector, explained
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Table 3
Refinement procedure (hierarchical mode).

Level: the hierarchy level being refined. At the detector level, the basis frame of the entire detector is
refined as a block. At the quadrant level, the four quadrant frames are independently refined. At the
sensor level, the 32 individual sensors are independently refined. Sensors: which of the eight sensors per
quadrant are refined (see Fig. 1). Fix: parameters that are not allowed to refine. Refine: parameters that
are refined (note that all of the thousands of crystal cells and orientations are always simultaneously
refined with the detector model). Constraints: how the parameters are constrained to change in concert.
After the first refinement step, the distance parameter of the child frames being refined are all constrained
to change by the same amount. This preserves a coplanar detector while refining the detector distance at
each step.

Level Sensors Fix Refine Constraints

Detector All �1, �2, �3 Distance, Shift1, Shift2 None
Quadrants All �1group1, �2, �3 Distance, �1, Shift1, Shift2 Coplanar
Sensors All �1group1, �2, �3 Distance, �1, Shift1, Shift2 Coplanar

Table 4
Refinement procedure (expanding mode).

As Table 3, except that not all sensors are refined at each level. Instead, sensors are added in order of
increasing radial distance from the detector center. For example, in the first refinement step reflections
from sensor 1 of each quadrant are used to refine the detector as a whole. In the second refinement step,
the same reflections are used to refine the quadrants individually. In the third, sensors 0 and 1 from the
four quadrants are refined individually, and so forth until all 32 sensors are refined in the last step.

Level Sensors Fix Refine Constraints

Detector 1 �1, �2, �3 Distance, Shift1, Shift2 None
Quadrants 1 �1group1, �2, �3 Distance, �1, Shift1, Shift2 Coplanar
Sensors 1, 0 �1group1, �2, �3 Distance, �1, Shift1, Shift2 Coplanar
Sensors 1, 0, 7 �1group1, �2, �3 Distance, �1, Shift1, Shift2 Coplanar
Sensors 1, 0, 7, 3 �1group1, �2, �3 Distance, �1, Shift1, Shift2 Coplanar
Sensors 1, 0, 7, 3, 2 �1group1, �2, �3 Distance, �1, Shift1, Shift2 Coplanar
Sensors 1, 0, 7, 3, 2, 6 �1group1, �2, �3 Distance, �1, Shift1, Shift2 Coplanar
Sensors 1, 0, 7, 3, 2, 6, 4 �1group1, �2, �3 Distance, �1, Shift1, Shift2 Coplanar
Sensors 1, 0, 7, 3, 2, 6, 4, 5 �1group1, �2, �3 Distance, �1, Shift1, Shift2 Coplanar



below, we treated the two hexagonal unit-cell lengths and the

three crystal orientation angles as free parameters refined

independently for each shot. The beam direction is considered

to be static, and since each X-ray pulse has slightly different

mean energy, measured by the beamline instrumentation, this

measured energy is used here without refinement.

Two different protocols were developed, ‘hierarchical

mode’ (Table 3) and ‘expanding mode’ (Table 4), consisting of

sequences of either three or nine optimizations, respectively,

with each step in the sequence including a wider list of free

geometric parameters describing the detector. The general

motivation for this was to avoid trapping the detector

geometry in a local minimum of (5) and instead to refine the

most reliable parameters first. In particular, the ‘expanding

mode’ protocol refines the positions of the four sensors (one

per quadrant) closest to the direct beam, before sequentially

adding groups of sensors at larger diffraction angles, as illu-

strated in Fig. 3.

The refinable parameters for a detector panel or group of

panels include distance (the translation along dn), Shift1 and

Shift2 (the translations along dx and dy) and �1, �2 and �3 (the

rotations around dn, dx and dy, respectively). Tables 3 and 4,

which list the details of the two protocols, summarize which

geometric parameters are refined as the optimizations

progress from the entire detector to each quadrant separately

and finally to individual sensors. Each row represents a

separate refinement operation of up to 3000 crystal models

and one detector model. The output models from each row are

used as inputs for the next. Since the crystal rotation around

the beam axis is directly correlated with the detector rotation

around this axis, we fix �1. This is different from rotation

crystallography as rotation around the goniometer breaks the

degeneracy between the detector and crystal rotations around

the beam axis. However, we do refine �1 at the levels of the

individual quadrants and sensors. Furthermore, we fixed the

detector �2 and �3. This is not strictly necessary, as DIALS is

capable of refining three translations and rotations for all

detector elements. Refinement of the tilt is routinely

performed for synchrotron data. However, for this particular

experiment we found that refinement of the detector �2 and �3

produced little difference in the results (data not shown). For

the quadrants and sensors we fixed �2 and �3 as well as distance

offsets, so as to constrain all detector panels to be coplanar,

because we considered the refinement of independent panel

tilts and distances to be beyond the scope of this study.

As detailed in Tables 3 and 4, our sequence of optimizations

begins at the level of refining the overall detector distance and

xy shift and ends at the level of individual sensor xy shifts and

�1 rotations: we do not refine the relative positions of the 2� 1

pairs of ASICs independently. Doing so would have no

physical meaning, as each pair of ASICs is bonded to a single

chip, oriented by lithography and uniformly three pixels apart

from one another, and any deviations from this are under-

stood to be the result of absorbing error elsewhere in the

model. Finally, when refining the �1 angles at the level of

individual quadrants or sensors, we are careful to lock down

one of them (the first one in each group, �1group1), since only N
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Figure 3
Iterative CSPAD refinement. (a) Using initial positions provided by
optical measurement of the panel positions, the quadrants are aligned
using a powder pattern and all patterns are then indexed. The best 3000
images are combined into an initial data set (leftmost image). The layout
of the CSPAD is shown with every indexed reflection plotted as a single
dot. The dots are colored by �xy, the magnitude of the difference
between the observed (obs) and predicted (calc) spot locations [see the
color bar at the bottom of (b); blue indicates a prediction nearly matching
the observation, while green through yellow indicate poorly predicted
reflections]. Cycle 1 shows �xy after the first round of refinement.
Subsequent cycles (2–4) show iterations of reindexing using the new
metrology and re-refinement of that metrology. (b) Detail of cycle 1 in the
expanding-mode refinement. After the initial set of reflections is selected
on the inner four sensors, the detector is refined as a group and the
quadrants are then refined separately. The next four sensors out are then
added and the eight sensors are refined independently. This continues
until the entire detector is refined.



� 1 of the angles are independent, where N is the number of

detector panels to be refined. In other words, in Table 3 one of

the four quadrants in row 2 is fixed and one of the 32 sensors in

row 3 is fixed.

After the entire optimization protocol has ended, we repeat

the entire cycle up to four times to assess the ability to

converge to a stationary solution (Fig. 3a and Tables 5 and 6).

We defined convergence as (i) the root-mean-squared differ-

ences (r.m.s.d.s) between observed and calculated spot posi-

tions no longer decreasing and (ii) the detector positions no

longer shifting appreciably. Before each subsequent cycle, the

3000 images were reindexed and crystals with a poor r.m.s.d.

were discarded as outliers (Brewster et al., 2016). For this

reason, subsequent cycles have fewer than 3000 crystals

contributing to the joint refinement (Table 5).

3.6. Refinement accuracy and precision

The greatest improvement in r.m.s.d. is found after cycle 1

(Fig. 3a and Table 5, expanding protocol), but reindexing the

images and re-refining gives an additional improvement (cycle

2). It is expected that the metrology should converge rapidly,

and we see that subsequent cycles do not appreciably improve

the spot predictions, so we regard cycles 3 and 4 as controls.

Again, each cycle (1–4) consists of indexing and refinement.

The initial data set consists of�700 000 reflections across 3000

images with an r.m.s.d. of 221 mm. During refinement, outlier

rejection (Sauter & Poon, 2010) reduces this data set to

�580 000 reflections. After reindexing and re-refinement

(which again includes outlier rejection), cycle 2 produces a

data set with only �330 000 indexed reflections. In this work,

we do not investigate the cause of this fall-off; however, we

note that it is associated with a radial streaking of reflections

at high resolution (Hattne et al., 2014) producing poorly

measured spot centroids for reflections with a high � angle.

Refinement moves the tiles such that these reflections are no

longer close enough to their predictions to be indexed with

our monochromatic beam model, since when the centroids

from the elongated reflection are moved to reciprocal space

their non-integer Miller indices are no longer close enough to

a round number (the default cutoff is 0.3 of a whole integer).

Because of this, and because r.m.s.d. is sensitive to sample size,

we additionally computed an r.m.s.d. using only those reflec-

tions indexed in all cycles and both modes. This ‘common set’

of reflections, as determined by observed spot centroids in

pixels (an invariant property of the reflections), consists of

218 954 reflections. Determining the r.m.s.d. on only this set

ensures that the cycles and modes are comparable. We can see

that most of the improvement occurs during a single round of

indexing and refinement (cycle 1, 157.9 to 60.1 mm in the

expanding case, or roughly half a pixel for these 110 mm

CSPAD pixels). An additional round of reindexing and

refinement (cycle 2) improves the expanding case by a small

amount to 50.1 mm. Cycles 3 and 4 do not appreciably change

the r.m.s.d. or tile positions (Table 6). Note that the average

change in sensor position (�xy) is 9.8, 11.1 and 9.0 mm in

cycles 2, 3 and 4, respectively, while the overall detector and

quadrant shifts are much lower (<2 mm). This suggests that

reindexing and reoptimization impart random xy shifts at the

sensor level while not appreciably improving the accuracy,

thus giving a rough estimate for the precision of about 10 mm.
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Table 5
R.m.s.d. of reflections on the front detector.

R.m.s.d.s of the observations versus the predictions are listed at each cycle of indexing and refinement for each mode, hierarchical and expanding. Step: stage in
refinement procedure. Initial: r.m.s.d. of indexed reflections before refinement. Cycle 1: r.m.s.d. of reflections after refinement. Cycles 2–4: r.m.s.d.s after reindexing
using the metrology of the previous cycle and re-refining the same set of images. The overall r.m.s.d. is listed, which is the r.m.s.d. of all reflections in the data set for
the cycle. The ‘common set’ r.m.s.d. is also listed, which is the r.m.s.d. of reflections that were indexed in every data set between both modes (218 954 reflections).

Hierarchical Expanding

R.m.s.d. (mm) R.m.s.d. (mm)

Step No. of images No. of reflections Overall Common set No. of images No. of reflections Overall Common set

Initial 3000 700222 221.0 157.9 3000 700222 221.0 157.9
Cycle 1 2999 621516 138.6 62.9 3000 580093 129.4 60.1
Cycle 2 2727 383446 81.5 56.5 2701 328309 62.3 50.1
Cycle 3 2705 361339 76.0 55.4 2684 302271 54.4 47.9
Cycle 4 2712 355910 73.6 54.8 2709 298874 51.6 48.0

Table 6
Magnitudes of metrology changes.

Changes after each cycle of indexing and refinement using the expanding
method are shown. Cycle 1: result after refining initial indexing solutions.
Cycles 2–4: results after reindexing using the metrology of the previous cycle
and re-refining using the expanding method. Shift: mean� standard deviation
of the magnitude of shifts in the xy plane (orthogonal to the beam vector). As
an example, during cycle 1 the four quadrants moved 138 � 111 mm on
average. z Offsets: shifts along the z axis (equivalent to the detector distance).
As the detector is constrained to be coplanar, all groups move the same
amount. �1: mean � standard deviation of the rotation around the z axis. All
values are relative to the parent frame.

Level Shift (mm) z Offsets (mm) �1 (�)

Cycle 1 Detector 56.3 � 0.0 99.3 0.0 � 0.0
Quadrants 138.3 � 110.7 �118.1 0.2 � 0.2
Sensors 53.7 � 53.5 37.2 0.2 � 0.1

Cycle 2 Detector 0.4 � 0.0 �42.8 0.0 � 0.0
Quadrants 3.8 � 1.5 �18.0 0.0 � 0.0
Sensors 9.8 � 6.3 71.0 0.0 � 0.0

Cycle 3 Detector 0.1 � 0.0 �84.0 0.0 � 0.0
Quadrants 1.6 � 0.5 3.6 0.0 � 0.0
Sensors 11.1 � 6.1 86.0 0.0 � 0.0

Cycle 4 Detector 0.2 � 0.0 �92.2 0.0 � 0.0
Quadrants 1.5 � 0.7 3.3 0.0 � 0.0
Sensors 9.0 � 6.3 90.9 0.0 � 0.0



This is similar to the precision that we previously reported for

the Ha14 method.

An interesting trend can be seen in cycles 3 and 4, in which

minimal improvement in r.m.s.d. after refinement is seen.

Hierarchy level 0, the whole detector, is refined using only the

innermost reflections. During cycles 3 and 4 the detector as a

whole shifts away from the crystal by nearly 100 mm. Then,

after all the sensors have been added while refining at hier-

archy level 2, the detector distance shifts back to where it

started. This indicates a small, resolution-dependent mis-

prediction of reflections.

3.7. Reindexing using refined metrology

With cycle 4 of the expanding refinement showing the best

r.m.s.d.s, we repeated the indexing and integration of all shots

with this metrology, including searching for a second lattice

from a possible second crystal on each image. We also took

into account the small change in detector distance from the

final refined model (a decrease of about 36 mm), and we used

as a target unit cell the mean unit cell of the refined crystal

models (a = b = 93.28, c = 130.81 Å). This produced 119 774

primary lattices (an improvement of nearly 1500 lattices from

the unrefined metrology) and 46 476 secondary lattices, giving

a total of 166 250 lattices.

4. Refinement engines and sparse matrices

Parameter-optimization engines require a target function to

be minimized, a set of parameters and a set of observations. A

given engine will modify the parameters in ‘steps’ and accept

the incremental change if the target function decreases. The

direction of the step is generally determined by a gradient

vector consisting of the first derivative @L/@p of the target

function L with respect to each parameter p, which indicates

how each parameter needs to change to lower the target

function. The parameters that have the most influence on the

target function can be determined using curvatures, the second

derivatives @2L/@p2 of the target with respect to each para-

meter, which determine (in an inverse sense) the step size for

each parameter. The engine continues to take steps until some

convergence criteria are reached. The overall scale of our

optimization problem is uncommonly large, with tens or

hundreds of thousands of free parameters (x1), and as such is

not adequately treated in recent macromolecular crystallo-

graphy diffraction modeling literature. We therefore survey

the available methods briefly, investigating three potential

approaches in common crystallographic use, before finally

choosing a fourth method that is adopted from the sparse-

algebra community.

Firstly, the limited-memory Broyden–Fletcher–Goldfarb–

Shanno (LBFGS) algorithm is a quasi-Newton method that

uses a low-memory approximation to the second-derivative

matrix (the Hessian matrix) to compute a step size between

iterations, and is thus suitable for optimization problems with

large number of parameters (Liu & Nocedal, 1989). It does not

rely on analytical second derivatives that can be difficult to

derive and thus present a barrier to programming. However,

with a large number of parameters LBFGS has a poor

convergence rate, as hundreds to thousands of steps may be

necessary to find a minimum.

Construction of the approximate Hessian may be seeded by

providing a vector of curvatures representing the diagonal

elements of the Hessian matrix. Providing the curvatures can

dramatically improve the performance of LBFGS, and thus

constitutes our second optimization method. As implemented

in DIALS, the second partial derivatives are not analytically

calculated.2 However, we can use the assumption that the

target function L is of least-squares form to calculate an

approximate value for the second derivative,

@2L

@p2
’

@L

@p

� �2

: ð6Þ

This is the approximation used in the Gauss–Newton algo-

rithm as a modification of Newton’s method (see equation

10.24 in x10.3 of Nocedal & Wright, 2006). The approximation

has the pleasing property of improving as the refinement

approaches convergence. In many instances, we find that

supplementing the LBFGS algorithm with approximate

curvatures is essential for reducing the number of steps before

convergence to an acceptable level.

LBFGS, even with curvatures, can still take too many steps

for our joint refinement of the detector and crystals. We

previously noted (Waterman et al., 2016) that a third algo-

rithm, based on Gauss–Newton methods, but modified by the

Levenberg–Marquardt (LevMar) approach to remain robust

in the presence of covariance, would be ideal since it explicitly

takes account of the nonlinear least-squares form of the target

function and as a result requires far fewer steps, while avoiding

any need for second derivatives. Briefly, the Gauss–Newton

method derives the vector d of increments to the current

parameter estimates by utilizing the Jacobian matrix J, defined

as the matrix of partial derivatives of each residual term r with

respect to each parameter. In this matrix, row i represents the

derivative of the ith residual. Note that there are m observa-

tions but 3m residuals, since (5) gives three residuals

(xcalc � xobs, ycalc � yobs and  calc) for each measurement.

Furthermore, column j represents the derivative with respect

to the jth freely refined parameter, with n total parameters:

J ¼

@r1

@p1

. . .
@r1

@pn

..

. . .
. ..

.

@r3m

@p1

. . .
@r3m

@pn

0
BBBB@

1
CCCCA
: ð7Þ

Matrix J is used to construct a set of normal equations

Ad = b, where A = JTJ and is a symmetric matrix of size n� n,

b =�JTr and r is the vector of all residuals (Nocedal & Wright,

2006). LevMar modifies A, adding a damping factor that

affects the step size (Bevington & Robinson, 2003; Nocedal &

Wright, 2006). Considering the large matrix sizes here, it is
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2 We developed a prototype using explicit second derivatives but found this to
be a time-consuming process that does not lend itself well to rapid software
development and algorithm improvement.



prohibitively expensive to explicitly compute the inverse

matrix A�1 in order to solve for d. However, it is possible to

perform a Cholesky decomposition, expressing the matrix as a

product of a lower triangular matrix L and its transpose,

A = LTL, and then to derive d by back-substitution. While this

algorithm offers the best convergence behavior for optimiza-

tion sizes typical of rotation-based crystallography (Waterman

et al., 2016), the performance of the Cholesky decomposition

limits problem sizes to n < 5000 (Fig. 4a).

To overcome this performance limitation, we took advan-

tage of the fact that both the Jacobian and normal matrices for

our problem are sparse, meaning we have prior knowledge

that most of the elements are zero. Elements of the normal

matrix are (structurally) zero when they represent cross-terms

between independent free parameters. For example, the unit-

cell parameters and orientation angles for a given crystal are

independent of the parameters describing all of the other

crystals. Only the cross-terms relating detector-panel para-

meters and crystals are in general nonzero. Knowing which

elements of A are zero leads us to deduce, using graph theory,

which elements of the Cholesky factor are also structural

zeroes (Liu, 1990; Mehta & Sahni, 2004; Rennich et al., 2014),

thus allowing a dramatically reduced level of computational

effort to calculate the nonzero elements of the Cholesky

factor. Sparse-matrix Cholesky decomposition methods, which

are well known in mathematics but not in crystallography,

therefore afford us our fourth algorithmic approach, and the

only one that is suitable for a 3000-crystal problem. We

incorporated the open-source Eigen linear-algebra library

(Guennebaud & Jacob, 2010) into our software distribution

for this application.

To evaluate the performance and memory requirements of

the four engines, we simultaneously refined between 50 and

5000 random images from a single run jointly with the 32

sensor positions (Fig. 4). For each problem size and each

engine, we performed ten independent trials to obtain an

average run time, accounting for local variation in the

computing environment. Time trials were run single-process

on a 12-core, 64-bit Intel Xeon X5675 processor (3.07 GHz)

with a 12 MB cache and 24 GB RAM running Red Hat

Enterprise Linux Server 7.3. C++ code was compiled under

GCC 4.8.5. The initial detector model had quadrants aligned

using rotational autocorrelation from a powder pattern, but

was otherwise unrefined, meaning that this refinement was

equivalent to the third step of Table 3, skipping the first two

steps. Starting with the largest data set, each smaller data set

was a random subset of the next largest. We disabled outlier

rejection in order to focus on the performance of the refine-

ment steps themselves. We averaged the ten run times, but

since the inputs were the same the r.m.s.d.s, number of steps

until convergence and memory usages (Figs. 4b, 4c and 4d)

were constant within each group of ten trials. Sparse-matrix

LevMar had the shortest run time of the four (Fig. 4a), while

the LBFGS implementations were markedly slower owing to

the number of steps that were needed for convergence. Once

the number of parameters exceeded 5000, LevMar became

completely unacceptable in its run time. Indeed, the final data

points using 3000 and 5000 images were terminated after 48 h

in the queue at LCLS. Of the four, LBFGS without curvatures

took the most steps to converge (Fig. 4b) and had slightly

poorer r.m.s.d. values than the other three (Fig. 4c; see below).

Fig. 4(d) shows the memory savings achieved using sparse-

matrix LevMar compared with LevMar. The normal matrix

size (the square of the number of parameters n) is shown on a

log scale. Likewise, the number of nonzero values in the

normal matrix and the number of nonzero values in the

Cholesky factor are shown (these nearly overlap). The size of

the normal matrix increases on the order of k1.89, where k is
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Figure 4
Comparison of four different refinement engines: LBFGS, LBFGS with
curvatures, LevMar and sparse LevMar. 50–5000 crystal models and each
of the 32 sensors were refined simultaneously. (a) Total run time for
refinement, averaged over ten trials. (b) Number of steps taken by each
engine during refinement (LevMar and sparse LevMar exactly overlap).
(c) Data-set r.m.s.d.s (obs � calc) from each refinement engine. Except
for LBFGS, the traces from the engines overlap. (d) Array sizes for
Levenberg–Marquardt. A normal matrix used for refining n parameters
contains n(n + 1)/2 elements in the upper triangle, of which only a subset
are nonzero. Therefore, the number of elements in the normal matrix
grows faster than n and faster than the number of nonzero elements in the
normal matrix. (e) Extended refinement of 500 images using LBFGS and
LBFGS with curvatures. 10 000 steps are shown after removing the
r.m.s.d. convergence check during refinement. R.m.s.d. versus step
number is shown on the left. Two enlargements are provided on the
right. Top enlargement: early refinement steps. Bottom enlargement: all
refinement steps but enlarged tightly in r.m.s.d. to show small changes
over time.



the number of images, while the number of nonzero values

increases on the order of k0.95 to k1.01 (Table 7). The savings in

memory by using sparse matrices is concurrent with a decrease

in run time as a function of the number of images, from order

k2.45 for LevMar to k1.13 for sparse-matrix LevMar.

To clearly show the convergence behavior of LBFGS, we

removed the termination condition where refinement stops if

the r.m.s.d.s cease changing within a certain threshold and ran

the refinements for 10 000 steps (Fig. 4e). LBFGS with

curvatures still terminated early owing to round-off checks in

the LBFGS minimizer, but the same final r.m.s.d. was reached

by both LBFGS engines. LBFGS took over 6000 steps to reach

the r.m.s.d. that LBFGS with curvatures reached in less than

500 steps.

5. Advanced refinement: a second detector

The DIALS refinement platform is highly flexible and

configurable, being capable of refining experimental geometry

from many crystals and detectors, even if the diffraction

pattern is spread across more than one detector simulta-

neously. As an example, we refined the metrology of the back

CSPAD using thermolysin patterns (Table 1) recorded on both

the front and back detectors. The front detector, located either

130 or 105 mm from the crystal position, has a central aperture

that, while designed to transmit the nondiffracting beam, also

permits low-angle Bragg reflections to be recorded on the

back detector approximately 2.5 m from the sample (Fig. 5a,

top). A detector in this position is not typically used in XFEL

experiments, but we can cite two possible roles. Firstly, one can

record the fine detail of low-resolution reflections. As the large

crystal-to-detector distance spreads the reflections out over

many pixels, we can potentially analyse the spot shape and

mosaic character of the crystals. Secondly, we used the back

CSPAD in Duyvesteyn et al. (2018) to examine bacteriophage

phiX174, a crystalline viral condensate with a large unit cell

(�500 Å) that diffracted to poor resolution (�50 Å), to the

point where diffraction was only seen on the back detector.

An analysis of the Bragg spots revealed the space group and

approximate unit-cell dimensions, given a histogram of the

reciprocal-space reflection distances. Both these use cases can

benefit from an accurate detector metrology; therefore, with

thermolysin as a standard, we used crystal orientations from

lattices recorded on the front detector to index reflections on

the back detector from the same crystal and then refined the

back detector panels using these indexed reflections.

To perform this, we manually positioned the quadrants to

best-fit powder patterns recorded on the back detector, as the

diffraction was too sparse to obtain a good fit by rotational

autocorrelation. We then performed spot-finding on the back

detector images for all X-ray events in runs 11–22 that had

been successfully indexed on the front detector, and then

indexed these back detector reflections using the crystal

models derived from the front detector lattices. This yielded

12 313 images where it was possible to index at least one

reflection on the back detector. We then performed per-image

r.m.s.d. filtering, removing images with an r.m.s.d. over 1.5

times the inter-quartile range (Tukey’s rule of thumb; Tukey,

1977), leaving 9893 images. Per-image r.m.s.d. filtering mainly

removed images with false spots found along streaks produced

by jet diffraction, which were visible as a long spike on a

varying radial axis.

Next, we refined the back detector geometry against this

data set using the hierarchical protocol. We fixed the crystal

models, which had been refined against front detector data, as

we only had a few reflections per image on the back detector.

Table 8 shows the r.m.s.d., which improves with each succes-

sive hierarchical level of metrology refinement. Focusing on

the common set only, the r.m.s.d. decreased from 740.5 to

361.3 mm during metrology refinement, or slightly over three

pixels. Owing to the large sample-to-detector distance, these

reflections cover many more pixels on the back detector (the

mean number of pixels per reflection on the front detector for

these 9893 images is 3.5, but on the back detector it is 22.8),

yielding an r.m.s.d. on the same fractional order of accuracy as

for the front detector refinement (about half a pixel).

Fig. 5(b) shows the composite maximum of the images

collected from runs 11–22 after metrology refinement, indi-

cating the Miller indices of each powder ring. The average

signal from these reflections is well correlated with the

calculated intensities from PDB entry 4ow3 from Hattne et al.

(2014) (Fig. 5c). This indicates that the refined metrology

would be sufficiently accurate to integrate data from these

images. Notably, a 001 ring is present, even though 001 is

systematically absent in space group P6122. We speculate that

this arises from surface effects in small microcrystals with a

high surface area to volume ratio. In any case there is some

type of disorder that breaks the perfect 61 screw symmetry of

the crystal.
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Table 7
LevMar memory and run time.

Order of growth of memory requirements and run time of LevMar and sparse
LevMar techniques as a function of the number of images. The exponent and
coefficient of determination (R2) of a power-function fit to the data is shown
for the LevMar and sparse LevMar run times from Fig. 4(a) and for each of the
plots in Fig. 4(d). The R2 value gives a measure of the fit of the power function
given the exponent.

Exponent R2 (%)

Normal matrix square size 1.89 99.9
Normal matrix nonzeros 1.01 100.0
Cholesky factor nonzeros 0.95 100.0
LevMar time 2.45 98.5
Sparse LevMar time 1.13 98.6

Table 8
R.m.s.d. of reflections on the back detector.

Each row shows the overall and common-set r.m.s.d.s after refining at the
listed hierarchy level.

Step
No. of
reflections

R.m.s.d., overall
(mm)

R.m.s.d., common
set (mm)

Initial 11381 926.4 740.5
Level 0 (detector) 10820 797.9 683.0
Level 1 (quadrants) 10546 630.1 496.4
Level 2 (sensors) 9896 361.3 361.3
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Figure 5
Back detector refinement. (a) Top: experimental setup. High-angle diffracted X-rays are recorded on the front CSPAD, while low-angle Bragg reflections
are recorded on the back detector, approximately 2.5 m from the crystal. Bottom: �xy plots for hierarchical mode refinement of the back detector,
showing �xy initially and after refining the detector, quadrants and sensors, colored as in Fig. 3. Regions with no diffraction were shadowed by
equipment in the beam path. (b) Maximum composite of runs 11–22, showing refined sensor positions. Rays extending radially from the beam center
arise from diffraction from the liquid jet. Rings are numbered according to their Miller indices. Rings 001, 002 and 003 are systematic absences in space
group P6122; 564 reflections were indexed for 001, but for 002 and 003 fewer than ten each were found (dashed lines). Only one reflection from 113 was
observed (solid red line). Enlarged views of 001 and 003 are shown on the lower right. Reflections are listed in a table on the right along with their
resolution and the multiplicity of observation. (c) Correlation of calculated intensities from PDB entry 4ow3 with average intensities from reflections
indexed on the back CSPAD. Intensities from the back CSPAD are unscaled and otherwise uncorrected. Nonsystematically absent reflections with at
least 20 observations are shown, and they have a CC of 65.7% with the intensities calculated from the reference structure.



6. Ensemble refinement and crystal isomorphism

Having optimized the detector models (x3), we now focus on

the improvement of the crystal model, which consists of the

crystal orientation and the unit-cell parameters. It has been

widely observed in serial crystallography that within the

ensemble of crystals merged together into a single data set, the

unit-cell parameters exhibit an unusually broad distribution,

far beyond that experienced in single-crystal work. Fig. 6(a),

illustrates, for example, that the a axis of Cry3a in space group

C2221 apparently varies from 116 to 120 Å (blue trace). This

result was calculated by evaluating 1000 Cry3a patterns from

run 4. Beginning with the previously refined front detector

model determined from our thermolysin data, we indexed

each Cry3a crystal lattice and refined the crystal parameters

(unit cell and orientation) using traditional nonlinear least-

squares refinement so as to best fit the reflections on each

individual image. After refinement, 33 images with high

r.m.s.d. were removed, giving a final data set consisting of 967

patterns.

It is critical to understand whether the apparent spread in

unit-cell parameters represents true physical variation or

simply an inability to measure the cell accurately. Indeed, if

crystal cell lengths truly vary on the order of 3%, for example

owing to differing hydration conditions (Russi et al., 2011), it

would challenge our ability to merge the diffraction patterns,

since the structure-factor intensities from such a plastic

ensemble would have too much variation to be usefully

merged (Crick & Magdoff, 1956). We hypothesized instead

that our widely distributed unit-cell measurements are a

consequence of collecting data in still shots. In contrast to

goniometer-based rotation experiments, where the reciprocal

lattice is well sampled in all directions, still shots only sample

reciprocal space to a limited depth along the direction of the

incident beam. Therefore, if the a axis of an orthorhombic

crystal is oriented along the beam, the a parameter should

have a greater uncertainty than the b or c parameters. We

chose an orthorhombic crystal form (Cry3a) to clearly test this

supposition. Fig. 6(b) supports the hypothesis, showing that

measurements of cell axes aligned with the beam have a much

greater variation than cell axes oriented orthogonal to the

beam (blue distributions).

We next asked whether it was possible to correct the biased

distribution of unit cells with either of two protocols. In the

first protocol, which did not provide a solution, we re-refined

the unit-cell and orientation parameters, and also allowed the

detector position (sample-to-detector distance and xy trans-

lation in the detector plane) to vary independently for each

image. The resulting distributions are plotted in green (Fig. 6

and Supplementary Table S1). The unit-cell lengths were

generally shorter, suggesting that the refined detector distance

provides a better model (the sample-to-detector distance

decreased from 111.00 mm to an average of 109.70 �

0.64 mm). However, the artificially wide variation in unit-cell

lengths did not improve; rather, it worsened slightly for cell

axes oriented orthogonally to the beam. Unfortunately, we

believe that this is the method that has been used historically

for most serial crystallography work to date; at least, it is the

approach taken by our program cctbx.xfel until this investi-

gation.

In the second protocol, we sought to allow the detector to

refine to its optimal position, but without allowing the detector

model complete independence for every image. To this end,

we performed joint refinement in which a single detector

model was simultaneously refined against the ensemble of all

crystal models in the data set. No explicit restraints were

placed on the unit-cell parameters. The results (Fig. 6, red

models) exhibit a similar decrease in unit-cell lengths (with

concurrent shortening of the detector distance to 109.82 mm),
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Figure 6
(a) Unit-cell histograms of 967 Cry3a lattices. The distribution of a, b and
c axis lengths is shown. Blue: lattices were indexed and refined separately
with no refinement of a detector model. Green: the same crystals after the
refinement of 967 crystal models and 967 separate detector models. Red:
the same except that the 967 crystal models were refined against a single
detector model. (b) The cell-axis lengths from (a) were binned according
to the angle of the axis with the beam vector. Bin widths are chosen such
that the solid angle subtended within each bin is the same (a basis vector
making an angle � with the beam will be in bin i satisfying the condition
cos�1[1 � (i/6)] � � < cos�1{1 � [(i + 1)/6]}, 0 � i � 5). The mean basis
vector length for the a, b and c axes is plotted as a line, with one point for
each bin at the bin center. The standard deviation among the values is
shaded above and below the line. Colors are as in (a). The crystals rotated
on average 0.25 and 0.23� during refinement using multiple or single
detector models, respectively. The difference between the final models for
multiple and single detector models was 0.04�.



but now the unit-cell standard deviations become much tighter

than in the starting model. At least in this serial crystallo-

graphy case, the apparent non-isomorphism of crystals seems

to be an accuracy issue, which can be corrected by the joint

refinement of the crystal ensemble against a single detector

model, a new protocol that is enabled by the sparse-algebra

LevMar technique outlined above.

7. Time-dependent ensemble refinement of the entire
experiment

From x6, it is clear that serial crystallography data sets can be

acutely sensitive to experimental geometry, to the point that a

nonphysical standard deviation of the crystal-to-detector

distance of only 0.64 mm produces a noticeable and deleter-

ious effect on the lattice parameters. Other literature results

have also highlighted the need for precise distance determi-

nation, including a paper by Nass et al. (2016) that presents

data where optimal unit-cell distributions and data-quality

metrics can only be obtained by accounting for a series of

distance shifts spanning 0.62 mm that occurred over a period

of 3 days. Indeed, data-modeling software serves a decisive

role in cases where it is not feasible to experimentally measure

precise sample-to-detector distances. Our L785 thermolysin

study provides one such example: the detector position is

known from motor encoders, but the sample position can

readily change depending on how the electrokinetic sample

injector (Sierra et al., 2012) is inserted and the flow char-

acteristics of the liquid jet at any given point in time.

To investigate the possibility of a time dependence in the

sample-to-detector distance parameter in our experiment, we

split the data chronologically into runs. We then further sub-

divided each run into a series of chronological batches each

containing �3000–4500 images. For each batch, we performed

joint refinement of a single detector model (freely refining the

overall distance and the xy shift in the detector plane) against

the ensemble of all crystal models in the batch. We then

recomputed the mosaic estimates for each crystal (Sauter et

al., 2014), used these models to predict Bragg reflections, and

integrated the Bragg intensities.

Fig. 7(a) shows the resulting batchwise distance determi-

nations. Baseline distance values are also indicated. For the

first group (runs 11–22), the baseline is the direct result of

metrology refinement from expanding-mode refinement

(x3.6), 129.97 mm, based on the 3000 best-diffracting images.

We see that time-dependent ensemble refinement produces

slightly larger distance estimates, averaging 130.00� 0.01 mm.

The cause of this increase is unknown, but we speculate that it

could result from the time-dependent batches having fewer

reflections in the detector corners compared with the analysis

performed in x3.6 using a subsample of images with the most

reflections in the corners. (As mentioned previously, a slight

systematic radial misprediction of reflections may cause

geometry refinement to be slightly resolution-dependent.) For

runs 26–29, the baseline distance of 104.97 mm was produced

by subtracting the motor-encoder offset (25 mm) for these

runs from the calibrated distance in x3.6. It is clear that

the distance values for runs 26–29 differ substantially

(0.1–0.3 mm) from the baseline, and moreover that there is a

0.2 mm variability over the 36 min period, changing even

within the duration of a single run.3 We assume that the

research papers

890 Brewster et al. � Application of DIALS to serial crystallography data Acta Cryst. (2018). D74, 877–894

Figure 7
Time-dependent ensemble refinement and integration results. All lattices
from two groups of data on the front detector (collected at distances of
130 and 105 mm) were separated chronologically into runs and then
subdivided chronologically into batches of 3000–4500 images. The
detector position and crystal models were refined for each batch
separately and the data were then integrated. (a) Refined detector
distances for each batch plotted versus run number. Black line: starting
detector distance before refinement. The change in detector distance
needed to effect a one-pixel radial shift for a reflection at 2.2 Å is shown
as a vertical gray bar. (b) Percent change in signal strength hI/�c(I)i [�c(I)
refers to the counting error, or the uncorrected error from integration
summation] after per-run ensemble refinement. The mean resolution-
binned signal after refinement for each batch was divided by the mean
resolution-binned signal before refinement for that batch. Each line
represents one batch. Percent change in signal is reported as a function of
resolution. The numbered circles in (a) group together batches that have
similar refined distances. These group numbers are also used to label the
batches in (b).

3 For runs 11–22 the mean r.m.s.d. for all of the batches after ensemble
refinement was 40.5 mm. For runs 26–29 it was 73.6 mm. Why runs 26–29 have a
larger r.m.s.d. is unknown. We attempted ensemble refinement of each batch
again, but instead of only refining detector distance and xy shift, we also
refined all of the sensor positions (see Table 4, last row). This ensemble
refinement did not further improve the r.m.s.d.s for runs 26–29 (data not
shown).



underlying cause is that the flow direction of the liquid jet

from the electrokinetic injector changed continually over time.

We expected that correctly accounting for our time-varying

sample-to-detector distance would lead to improved Bragg

spot predictions, as well as improvements in the data quality

similar to those seen by Nass et al. (2016). As a data-quality

metric (Fig. 7b) we chose the signal strength, hI/�c(I)i, where I

is the integrated intensity of a measurement, �c(I) is the

uncertainty in the measurement attributable to photon-

counting statistics (Leslie, 2006) and hi represents the mean

over all measurements of all Miller indices. For each batch, we

compared the resolution-binned hI/�c(I)i averages with the

Bragg spots predicted from either the batchwise or the base-

line distance values. Each line represents the resolution-

dependent percent change in signal strength for a single batch.

Runs 11–22 (distance 130 mm) exhibit a modest increase in

signal of around 2–3%. However, runs 26–29 (distance

105 mm), especially runs 28–29, exhibit an appreciable

increase in signal strength, up to 25% higher at mid-resolution

for the last two batches, where the sample position moved

55 mm mid-run. Thus, time-dependent, batchwise ensemble

refinement appears to offer the possibility of detecting and

correcting changes in the experimental model on timescales

not previously understood to present a challenge for data

quality.

8. Merging and error models

Table 9 shows a comparison between the originally published

thermolysin structure (PDB entry 4tnl) and the data repro-

cessed in this work, modeled using the expanding-mode

metrology in x3.6. Data were scaled and merged using four

alternate protocols differing in the use of post-refinement

(Sauter, 2015), the use of time-dependent ensemble refine-

ment of the detector distance (x7) and the choice of error

model used to adjust the estimated errors of the integrated,

merged intensities. Supplementary Tables S2–S5 give detailed

statistics for the four resulting data sets.

Critically, interpreting signal quality is highly dependent on

the error model, i.e. how the uncertainties in the measured

reflection intensities are treated. During integration, we

determine a baseline estimate of the error from photon-

counting statistics (Leslie, 2006), referred to above as �c(I),

with this being the only source of uncertainty that is readily

quantified. Other sources of error from detector calibration,

partiality correction, crystal orientation and cell dimensions,

among many others, are much more difficult to estimate and

therefore propagate. However, because the errors from

counting statistics derived from integration represent only a

small part of the overall experimental uncertainty, it is

imperative to inflate the error determined from counting

statistics to better represent the error seen in the sample.

One such treatment, Ha14, was proposed in Hattne et al.

(2014). In that work, we considered the distribution of all

intensity measurements produced on a single serial crystallo-

graphy still shot. Familiar principles would lead us to believe

that the measurements would form an exponentially

decreasing distribution, as originally discussed by Wilson

(1949). However, since most (if not all) spots on a still shot are

partials, and since the degree of partiality is not known a

priori, the prediction of still-shot spots puts us in a difficult

position. In order to predict all of the diffracted Bragg spots,

research papers

Acta Cryst. (2018). D74, 877–894 Brewster et al. � Application of DIALS to serial crystallography data 891

Table 9
Summary of statistics for post-refinement and merging of thermolysin data.

The original processing results from Kern et al. (2014) are compared with the processing in this work. Four merging protocols are presented, differing in whether
post-refinement was applied, whether time-dependent ensemble refinement was applied and in the error model used. Values in parentheses are for the highest
resolution bin.

Data set Kern et al. (2014) 1 2 3 4

Post-refinement No Yes No Yes Yes
Time-dependent ensemble refinement No Yes Yes No Yes
Error model Ha14 Ev11 Ev11 Ev11 Ha14
Measurement time (min) 107 107 107 107 107
Shots 757546 757546 757546 757546 757546
Lattices indexed and integrated 125800 166250 166250 166250 166250
Lattices merged 120408 164585 164612 165954 164556
Resolution range (Å) 34.27–1.80 (1.86–1.80) 34.27–1.80 (1.86–1.80) 34.27–1.80 (1.86–1.80) 34.27–1.80 (1.86–1.80) 34.27–1.80 (1.86–1.80)
Space group P6122 P6122 P6122 P6122 P6122
a, b, c (Å) 93.0, 93.0, 130.4 93.2, 93.2, 130.8 93.2, 93.2, 130.8 93.2, 93.2, 130.6 93.2, 93.2, 130.8
Multiplicity 1468 (15) 1178 (500) 1548 (783) 1132 (449) 1178 (500)
Completeness (%) 99.7 (98.6) 100.0 (100.0) 100.0 (100.0) 100.0 (100.0) 100.0 (100.0)
hI/�(I)i† 71.7 (4.1) 32.4 (10.3) 32.3 (8.0) 28.1 (8.6) 311.3 (30.2)
CC1/2 (%) 97.8 (21.2) 100.0 (85.6) 99.6 (81.9) 99.9 (81.1) 99.8 (69.1)
Anomalous difference map peak heights‡ (�)

Zn2+ 18.1 74.0 42.6 69.3 44.6
Ca2+ 1 4.7 17.1 10.7 15.9 9.7
Ca2+ 2 4.0 12.0 7.2 12.3 7.4
Ca2+ 3 3.3 15.3 9.9 13.3 9.8
Ca2+ 4 2.4 16.1 10.6 14.8 10.5
Average Ca2+ 3.6 15.1 9.6 14.1 9.4

† This is the mean intensity over either �Ha14(I) or �Ev11(I) (see text for details). ‡ A second zinc site, as shown in Uervirojnangkoorn et al. (2015), is observable in our data as well but
was not modeled in this work.



we need to slightly overmodel the mosaic parameters (Sauter

et al., 2014). As a consequence, many of the predicted reflec-

tions will not contain any photons, and the process of inte-

gration simply produces noise, which has a Gaussian

distribution rather than an exponential one. A recent paper

(Sharma et al., 2017) shows this explicitly. In the Ha14

approach, we look at the distribution of the quantity I/�c(I)

over all measurements on the image. The negative values of

I/�c(I) are assumed to form the lower half of a Gaussian

distribution (with a mean of zero) for which we determine the

standard deviation �neg. With the assumption that the negative

measurements represent the background noise level, we

therefore use �neg as a constant, dimensionless multiplicative

factor to inflate the photon-counting uncertainty, giving a new

uncertainty estimate for each measurement,

�Ha14ðIÞ ¼ �neg � �cðIÞ: ð8Þ

Separately, we have adapted the error model employed by

SCALA (Evans, 2006, 2011), Ev11. This model expresses the

uncertainty in terms of three refined parameters: SdFac (a

multiplicative factor), SdB (a factor proportional to reflection

intensity) and SdAdd (a factor proportional to intensity

squared), as formulated in the following:

�Ev11ðIhlÞ ¼ SdFac½�2
c ðIhlÞ þ SdBhIhi þ ðSdAddhIhiÞ

2
	
1=2; ð9Þ

where Ihl is a single reflection measurement of Miller index h,

�c
2(Ihl) is the error in that measurement from integration

summation, hIhi is the mean of all measurements of h and

�Ev11(Ihl) is the corrected error in a single reflection

measurement as treated by Evans (2011).

Comparing Ha14 and Ev11, these two models produce very

different error estimates of the error when propagated to the

merged intensities. It is likely that Ha14 substantially under-

estimates the error in the data, producing overall I/�Ha14(I)

estimates of �300. The overall I/�Ev11(I) estimates of �30 are

more reasonable based on what is known generally about

error in crystallographic experiments (Diederichs, 2010). Ha14

was never intended as a final description of the error model;

however, Ev11, while giving reasonable numerical error

ranges, does not account for the propagation of errors from

partiality corrections that are inherently needed for serial

crystallography stills.

9. Discussion

DIALS provides a general representation of complex

experimental geometry that we have shown here to be suitable

for serial crystallography. We demonstrated this by refining

the metrology of the CSPAD detector at LCLS using a ther-

molysin data set. Firstly, we used a rotational autocorrelation

approach to position the quadrant locations using a virtual

powder pattern. We then treated all 32 CSPAD sensors as

independent panels using an expanding approach to

metrology refinement, first refining the inner tiles and then

progressively adding tiles in increasing resolution shells. After

refining the metrology, we show a large improvement of the

r.m.s.d. of the observed versus predicted spot locations (from

157.9 to 60.1 mm, or about half a pixel given the CSPAD pixel

size of 110 mm). We observed a further improvement after

reindexing the images using the new metrology and re-refining

in cycles until convergence (giving a final r.m.s.d. of 50.1 mm

after two cycles).

In order for joint parameter refinement to be practical using

thousands of crystal models with a multi-panel detector,

we implemented a nonlinear least-squares approach using

sparse-matrix algorithms to efficiently solve the normal

equations required for computing step sizes. This allows us to

use a single joint target function instead of alternating

between crystal and detector models, as had been performed

previously.

We were also able to use the crystal orientation matrices

from lattices observed on one CSPAD to refine the metrology

of a second CSPAD detector positioned 2.5 m from the

sample-interaction region, demonstrating the general

approach to geometry refinement used by DIALS. We can

combine detectors, refine overall detector distance and panel

positions simultaneously, and handle detectors with any

number of segments in arbitrary orientations.

When joint refinement is applied to the ensemble of all

crystals used for a data set, it has the added benefit of

improving the accuracy of unit-cell length estimation for axes

closely aligned with the beam, which are difficult to measure

from still images. Serial crystallography data sets typically

exhibit a broad distribution of unit-cell parameters derived

from indexing, presumably reflecting several factors, including

an inability to accurately model the detector position, crystal

parameters and beam parameters, as well as true non-

isomorphism among crystals. Ensemble refinement offers a

method for removing several types of modeling uncertainty,

producing a clearer picture of the inherent non-isomorphism

of the crystals, which in the case of our thermolysin data was

very low. We note that worries about non-isomorphism in

serial crystallography have been broadly expressed, and our

results appear to alleviate some of the concern.

Ensuring a correct detector position is vital for maximizing

the number of integrated patterns and correcting for asym-

metry in the unit-cell distributions (Hattne et al., 2014; Nass et

al., 2016). It is expected that the sample position can and will

vary slightly over time during data collection, and even drift

from its original position, as scientists replace the sample,

recalibrate equipment positions or simply bump instruments.

To this end, we tried to correct for systematic changes in

detector position over time by applying a time-dependent

ensemble refinement approach to improving the integrated

data quality across an entire experiment. We batched the data

into granular time intervals and re-refined the detector posi-

tion, crystal models and mosaic estimates within each batch,

using the new models to predict and integrate the Bragg spots.

This gave a slight improvement in signal strength for data

collected at the same time that the detector metrology cali-

bration data were collected (130 mm detector distance). When

the detector was moved to 105 mm, re-refining the detector

position for each batch further improved the integrated signal

strength.
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After metrology refinement, the improved tile positions can

be reused during later data collection by either specifying the

refined geometry file directly in DIALS or converting it to

LCLS geometry format for general users of non-DIALS

software (Brewster et al., 2016). However, changes in detector

position can require tile-position re-refinement. Small,

resolution-dependent systematic errors in spot prediction

(x3.6) can be absorbed by local tile movements, so potentially

users should always re-refine the detector metrology when

moving the detector.

We merged the data using four different protocols. The

best-practice method, as measured by the anomalous peak

height for the Zn atom of 74.0�, included post-refinement,

time-dependent ensemble refinement and the Ev11 error

model. Removing post-refinement, removing time-dependent

ensemble refinement or using the Ha14 error model each

resulted in lower anomalous peak heights (42.6, 69.4 and

44.6�, respectively). We recommend that software users

experiment with these algorithm choices when analyzing

future XFEL data sets. Scripts to do so have been made

available (see x10).

10. Data and software availability

Raw thermolysin data files for experiment L785 are available

from the Coherent X-ray Imaging Data Bank as deposition

81 (http://www.cxidb.org/id-81.html). Jupyter notebooks that

reproduce all seven figures in this work are available at https://

github.com/phyy-nx/dials_refinement_brewster2018. All of

the metrology refinement, integration and merging approa-

ches outlined here are implemented in the software package

DIALS, which is publicly available at https://dials.github.io.

Documentation regarding metrology refinement and XFEL

processing in DIALS is also available in Brewster et al. (2016)

and on the cctbx.xfel wiki page at http://cci.lbl.gov/xfel.
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