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Subpathway-CorSP: Identification 
of metabolic subpathways via 
integrating expression correlations 
and topological features between 
metabolites and genes of interest 
within pathways
Chenchen Feng1,*, Jian Zhang1,*, Xuecang Li1,*, Bo Ai1, Junwei Han2, Qiuyu Wang3, 
Taiming Wei4, Yong Xu5, Meng Li1, Shang Li2, Chao Song6 & Chunquan Li1

Metabolic pathway analysis is a popular strategy for comprehensively researching metabolites and 
genes of interest associated with specific diseases. However, the traditional pathway identification 
methods do not accurately consider the combined effect of these interesting molecules and neglects 
expression correlations or topological features embedded in the pathways. In this study, we propose 
a powerful method, Subpathway-CorSP, for identifying metabolic subpathway regions. This method 
improved on original pathway identification methods by using a subpathway identification strategy and 
emphasizing expression correlations between metabolites and genes of interest based on topological 
features within the metabolic pathways. We analyzed a prostate cancer data set and its metastatic 
sub-group data set with detailed comparison of Subpathway-CorSP with four traditional pathway 
identification methods. Subpathway-CorSP was able to identify multiple subpathway regions whose 
entire corresponding pathways were not detected by traditional pathway identification methods. 
Further evidences indicated that Subpathway-CorSP provided a robust and efficient way of reliably 
recalling cancer-related subpathways and locating novel subpathways by the combined effect of 
metabolites and genes. This was a novel subpathway strategy based on systematically considering 
expression correlations and topological features between metabolites and genes of interest within 
given pathways.

Metabolic dysfunction is a primary cause of many complex diseases that have become prevalent in humans 
such as prostate cancer, breast cancer and cardiovascular disease1–3. In recent years, various ‘omics’ technolo-
gies including genomic, transcriptomics, proteomics and metabolomics have grown. These technologies are 
concerned with comprehensive analysis of metabolites and genes associated with specific diseases. Metabolic 
pathway analysis has become a successful strategy for understanding large amounts of molecules generated by 
these ‘omics’ technologies. Methods such as overrepresentation approach and gene set enrichment analysis have 
been developed and widely applied to identify pathways4–13. However, most of these methods use gene informa-
tion only and not the combined effect of metabolite and gene analysis4,10–15. Because metabolic pathways involve 
both metabolites and genes, their dysfunction is closely related to pathogenesis of complex diseases16–18. Thus, 
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integrative pathway analysis of both metabolites and genes would help in interpreting metabolic function and its 
underlying biological significance. Recently, a metabolic pathway analysis method, IMPaLA, was proposed by 
Kamburov et al. to identify pathways16. This method integrated the enrichment significance of pathways based 
on overrepresentation approach, which was calculated by multiplying the P-values of metabolites and genes, to 
improve pathway identification performance. However, IMPaLA did not use expression correlations or topology 
embedded in the pathways, regarding pathways as simple gene sets. Metabolites or genes in a pathway do not 
always show the same topological importance. Therefore, simply considering the statistical features might not 
comprehensively reflect the superiority of pathway analysis. Moreover, metabolic pathways are often too large 
to interpret the relevant biological phenomena accurately. Key subpathway regions of the entire corresponding 
pathway may be more useful for reflecting the relevant biological importance19. Many studies have confirmed 
that abnormal subpathway regions of metabolic pathways were likely to result in human complex diseases15,20,21.

In our previous study, we developed an analytical method called Subpathway-GM to identify biologically 
meaningful metabolic subpathways. We analyzed lenient distance similarities of important nodes within meta-
bolic pathways to locate key subpathway regions19. The results demonstrated that subpathway identification strat-
egy along with pathway topology was able to identify disease-related subpathway regions successfully and reliably. 
However, Subpathway-GM did not fully consider expression correlation information of metabolites and genes 
within the pathways. Metabolic pathways are the classical focus in systems biology for studying the dynamic 
changes of metabolites and genes in a given biological context22. In metabolic pathways, genes and families of 
enzymes control cellular metabolic phenotypes through the totality of small-molecule metabolites. The biological 
variation of metabolite concentrations reflects tiny homeostatic adjustments that maintain the metabolome in a 
steady state23. In chemical reactions, enzymes catalyze reactions at different efficiencies and rates. The chemical 
processes controlled by enzymes involve metabolites as substrates, intermediates or end-products. Important con-
centration changes of some enzymes can lead to important changes in metabolite concentrations24. In addition, 
metabolite concentration changes in cells could also be controlled by intrinsic genetic alterations. Perturbations 
of metabolite concentrations indirectly affect the expression of genes encoding enzymes, and expression changes 
of these genes reflect the topology of the pathway25. In summary, the molecules within the metabolic pathways, 
including metabolites and genes, influence each other through expression levels or molecular concentrations. 
The demonstration of the expression correlations in biological systems has opened a new window on metabolic 
research, allowing monitoring of the effects of cellular perturbations on metabolic pathways26. Therefore, even 
though specifying the differential expression of metabolites or genes is currently possible, discussing the correla-
tion between expression changes in genes encoding enzymes and changes in metabolite concentrations is pivotal 
for a more comprehensive picture of metabolic pathways27. In conclusion, we propose that expression correlations 
of metabolites and genes should be considered to locate key metabolic subpathway regions related to the under-
lying biological phenomena of complex human diseases. Knowing these correlations would provide significantly 
more information about metabolic system.

In this study, we proposed a powerful method called Subpathway-CorSP to identify metabolic subpathway 
regions by integrating expression correlations and topological features of metabolites and genes of interest within 
pathways. Importantly, we improved on original pathway identification methods by using subpathway identifica-
tion strategy and emphasizing expression correlations between metabolites and genes of interest based on topo-
logical features within the metabolic pathways. First, we integrated differentially expressed (DE) metabolites, DE 
genes, as well as metabolites and genes with high expression correlation related to the study condition (prostate 
cancer) into the corresponding compound and enzyme nodes (nodes of interest) within reconstructed metabolic 
pathway graphs. Then, we considered expression correlations between metabolites and genes of interest based on 
topological features to locate key metabolic subpathway regions whose internal structures were highly correlated 
for expression. Finally, we used hypergeometric test to evaluate the enrichment significance of these subpathway 
regions. Subpathway-CorSP was applied to a prostate cancer data set and its metastatic sub-group data set. We 
demonstrated that the method was able to identify multiple disease-related subpathway regions robustly and 
efficiently.

Results
We applied Subpathway-CorSP to the identification of prostate cancer-related metabolic subpathways. The 
schematic overview of Subpathway-CorSP is in Fig. 1. To demonstrate that Subpathway-CorSP would identify 
meaningful metabolic subpathways, we compared Subpathway-CorSP with other methods at the system level. 
Four methods were used to identify pathways for the same data set: Pathway-G, Pathway-M, IMPaLA and 
Subpathway-GM. These methods are commonly used for pathway identification and have been included in many 
pathway analysis tools4,8,9,16. Pathway-G uses only DE genes to identify entire pathways via hypergeometric test4. 
Similar to Pathway-G, Pathway-M uses only DE metabolites7–9. IMPaLA integrates DE metabolites and DE genes 
to identify entire pathways via hypergeometric test, without considering pathway structure or a subpathway iden-
tification strategy16. Subpathway-GM integrated DE metabolites and genes to identify metabolic subpathways, 
considering their positions and cascade regions within the given pathway, but without expression correlation 
information19.

Subpathway-CorSP identified meaningful metabolic subpathways. We identified 48 DE metab-
olites by Wilcoxon rank-sum test (P <  0.05) and 1182 DE genes by SAM method (FDR <  0.001) between benign 
prostate samples (Benign) and prostate cancer samples (PCA+  Mets). Meanwhile, we identified 40 metab-
olites and 5581 genes with high expression correlation using Pearson correlation coefficient (Pcc) > 0.8. We 
obtained 63 metabolites and 5846 genes of interest by combining a union set of the above metabolites and genes 
(Table 1). With these nodes of interest, Subpathway-CorSP located 92 potential metabolic subpathways with s =  5 
from all metabolic pathways (Supplementary Data set S1). We set the parameter s =  5, similar to the previous 
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Figure 1. Schematic overview of Subpathway-CorSP. (i) Map metabolites and genes of interest to graphs 
of metabolic pathways after graph-based reconstruction of metabolic pathways. (ii) Develop subpathway 
identification algorithm and locate metabolic subpathways within pathways according to nodes of interest. (iii) 
Evaluate the statistical significance of metabolic subpathway regions.

DE 
Metabolites

DE 
Genes

Metabolites 
of Pcc > 0.8

Genes of 
Pcc > 0.8

Metabolites 
of interest

Genes of 
interest

Metabolites and 
Genes of interest

Benign vs. Cancer 48 1182 40 5581 63 5846 5909

PCA vs. Mets 44 1475 59 8738 74 8765 8839

Table 1.  The number of metabolites and genes used in Subpathway-CorSP.
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Subpathway-GM method19. This type of subpathway (s ≥  5) has been reported to be associated with cancer in 
some studies and is considered to represent a pathway19. In contrast, a small-scale node set (s <  5) was a scatter 
node set lacking sufficiently biological significance.

With a statistical significance level of 0.05, Subpathway-CorSP identified 20 significant metabolic subpath-
ways. These subpathways also corresponded to 20 entire metabolic pathways (Fig. 2A). Of these pathways, 18 
(90%) were well reported to be associated with cancer (Table 2). Many pathways identified by Subpathway-CorSP 
were undetected by Pathway-G, Pathway-M, IMPaLA or Subpathway-GM. Pathway-G located 62 entire meta-
bolic pathways, but did not find any significant pathways at the 5% significance level (Supplementary Data set S1). 
Thus, all the significant pathways identified by Subpathway-CorSP were not identified by Pathway-G (Fig. 2A). 
Pathway-M located 42 potential metabolic pathways and identified 13 significant pathways at the 5% significance 
level (Supplementary Data set S1). However, Subpathway-CorSP identified an additional 15 (75%) not identified 
by Pathway-M (Fig. 2A). The limited abilities could also be seen in IMPaLA and Subpathway-GM. IMPaLA 
found 15 significant pathways (P <  0.05) from 32 potential metabolic pathways (Supplementary Data set S1). 
However, 70% of the 20 significant pathways identified by Subpathway-CorSP were not considered significant 
by IMPaLA (Fig. 2A). Subpathway-GM identified 29 significant subpathways with a cut-off value of P <  0.05 
(Supplementary Data set S1). These subpathways corresponded to 28 entire pathways, 13 of which were identified 
by Subpathway-CorSP. Of the 20 significant pathways identified by Subpathway-CorSP, 45% were not considered 
significant by Subpathway-GM (Fig. 2A).

Subpathway-CorSP tended to locate key subpathway regions that mainly considered expression correlation 
information. Therefore, we tested if the significant subpathways identified showed clearly higher expression cor-
relations. We obtained all Pcc values of metabolite/gene pairs within 20 significant subpathways and calculated 
those within any single metabolic pathway. The average Pcc value for the 20 significant subpathways was signifi-
cantly higher than for the corresponding 20 entire pathways (P =  2.861e-06, Wilcoxon rank-sum test) (Fig. 2B). 
The average Pcc value for the 20 significant subpathways was also significantly higher than for all the metabolic 
pathways (P =  1.271e-05, Wilcoxon rank-sum test) (Fig. 2B). These results demonstrated that Subpathway-CorSP 
improved subpathway identification by emphasizing expression correlations between metabolites and genes of 
interest.

We noticed that up to eight pathways identified by Subpathway-CorSP were simultaneously not detected 
by Pathway-G, Pathway-M, IMPaLA and Subpathway-GM (Table 2). These pathways either had no significant 
P-values or were not found by Pathway-G, Pathway-M, IMPaLA and Subpathway-GM. We focused on three of 
the eight additional pathways that contained both metabolites and genes of interest.

The most significant subpathway (path:00561_1) of the three additional subpathways was in glycerolipid 
metabolism pathway (Fig. 3). Subpathway-CorSP yielded a P-value of 0.00464, but was not considered significant 
by Pathway-G, Pathway-M, IMPaLA or Subpathway-GM (P >  0.1). Glycerolipids usually refer to esters generated 
by esterification of glycerols and fatty acids, including saturated fatty acids and unsaturated fatty acids, which are 
important in killing tumor cells, inducing cell apoptosis and enhancing cellular and humoral immunity28. Thirty 
years ago, glycerolipids were investigated biochemically as novel cellular signaling entities. These biomolecules 
occupy signaling nodes critical to a number of physiological and pathological processes29. Glycerol-based lipids 
have prominent functions in human physiology and complex diseases from fat storage and metabolic disorders to 

Figure 2. Identification of metabolic subpathways associated with prostate cancer. (A) Plots of pathway 
significance (–log10 P-value) in Subpathway-CorSP, Pathway-G, Pathway-M, IMPaLA and Subpathway-GM. 
Subpathway-CorSP identified 20 significant metabolic subpathways, corresponding to 20 entire pathways. Plus 
sign, pathway was identified by the corresponding method at the 5% significance level. Bold labels, additional 
pathways identified only by Subpathway-CorSP. (B) Boxplot of average Pcc value for the 20 significant 
subpathways, the corresponding 20 entire pathways and all metabolic pathways. Average Pcc value for the 20 
significant subpathways was significantly higher than for the corresponding 20 entire pathways (P =  2.861e-06) 
and significantly higher than for all metabolic pathways (P =  1.271e-05).
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survival pathways in cancers30. Moreover, the key region (Fig. 4A) where glycerol is converted to triacylglycerol by 
glycerol kinase, acyltransferase, acylglycerol kinase and other enzymes is closely related to cellular proliferation, 
carcinogenesis and cancer survival and mortality risk31. Lipases in this subpathway region effectively affect pros-
tate cancer cell survival and invasion in vitro and reduce prostate tumor growth32. Compound and enzyme nodes 
mapped by metabolites and genes of interest were closely located in the core subpathway region of the glycerolipid 
metabolism pathway. The average Pcc value for the glycerolipid metabolism subpathway was significantly higher 
than for the corresponding entire pathway (Supplementary Table S1). This result indicated that high expression 
correlations could help locate important subpathway regions and explain biological phenomena.

The second significant subpathway (path: 00270_2) belonged to a cysteine and methionine metabolism 
pathway and had a P-value of 0.0153 (Fig. 4B). The corresponding pathway was not considered significant by 
Pathway-G (P =  0.129), and was not found by Pathway-M, IMPaLA and Subpathway-GM. In this pathway, 
methionine metabolites, including cystathionine and cysteine, significantly increased the ability to predict 
aggressive prostate cancer33. Furthermore, methionine metabolism involves mechanisms for sarcosine forma-
tion, and sarcosine is a potential key metabolic intermediary of prostate cancer cell invasion and aggressivity18. 
Cystathionine is at the center of the cysteine and methionine metabolism pathway. From a biological point 
of view, the center of the pathway where nodes of interest locate displays important information. In addition 
to cystathionine, closely connected enzymes encoded by genes of interest include adenosylhomocysteinase, 
methyltransferase and methylthioadenosine phosphorylase, which form an approximately circular subpath-
way region. This subpathway had significantly higher average Pcc value than the corresponding entire pathway 
(Supplementary Table S1), demonstrating the importance of expression correlations in subpathway identification. 
Serine, which is converted by galactitol to cystathionine, is also a core metabolite in glycine, serine and threonine 
metabolism (Fig. 4B). Glycine, serine and threonine metabolism was the most significant metabolic subpathway 
(a P-value of 0.00024) identified by Subpathway-CorSP and is reported to be highly associated with metastatic 
prostate cancer18. In conclusion, Subpathway-CorSP identified prostate cancer-related subpathways and tended 
to locate key regions effectively, using both expression correlations and topological features between nodes of 
interest within the metabolic pathways.

Subpathway ID PathwayName
Subpathway-

CorSP Pathway-G Pathway-M IMPaLA
Subpathway-

GM Possible relation to the cancer Reference (PMID)

path:00260_1 Glycine, serine and threonine 
metabolism 0.00024269 0.52409080 0.16216414 0.08498874 0.00017964 De novo Purine synthesis 19063642; 15229480

path:00563_1# Glycosylphosphatidylinositol 
(GPI)-anchor biosynthesis 0.00096023 0.39629916 1 1 1 Suppress invasion of prostate 

and breast cancer cells 16822939

path:00510_4# N-Glycan biosynthesis 0.00137850 0.11717815 1 1 1 Efficient detection of prostate 
cancer 18701493; 25154914

path:00562_1 Inositol phosphate metabolism 0.00339828 0.19556203 0.44168527 0.08637687 0.00760810
Membrane receptor signaling 
cascades and anti-cancer 
activity

14608114; 20414202

path:00340_1 Histidine metabolism 0.00396946 0.47151833 0.13647964 0.06435265 0.00289440 Cell proliferation 16203768; 18347416

path:00910_1 Nitrogen metabolism 0.00434048 0.72281060 0.0552906 0.03996463 0.01352617 Enhance anti-cancer activity 23746196; 26174441

path:00561_1# Glycerolipid metabolism 0.00464301 0.93511527 0.38902790 0.36378593 0.29439641 High energy demand and cell 
propagation 18757836; 21802006

path:00601_1 Glycosphingolipid biosynthesis - 
lacto and neolacto series 0.00573235 0.16469429 1 1 0.02863259 Cell adhesion and the growth of 

tumor cells 20428086; 19658179

path:00052_1 Galactose metabolism 0.00657521 0.16469429 0.02167594 0.00356990 1 Toxic to ovarian cells 25586565; 21335998

path:00010_1 Glycolysis/Gluconeogenesis 0.00947690 0.46000521 0.37041772 0.17039408 0.00059735 Energy demand of colorectal 
cancer tissues 19678709; 19063642

path:00030_1 Pentose phosphate pathway 0.00962547 0.05589567 0.01106147 0.00061828 0.00040717 Increase cytotoxicity and 
oxidative stress 25560241; 24861463

path:00270_2# Cysteine and methionine 
metabolism 0.01530709 0.12895515 1 1 1 Prostate cancer cell invasion 

and aggressivity 20718469; 21853037

path:00620_1 Pyruvate metabolism 0.01530709 0.64619119 1 1 0.04290499 Maintain of colon cancer cells 20919825; 18789002

path:00360_1# Phenylalanine metabolism 0.02129967 1 0.23763160 1 1 High metabolic rate in cancer 20919825; 18789002

path:00330_1 Arginine and proline metabolism 0.02749154 0.95093432 0.00182141 0.00173204 2.96E-05 Colon cancer inhibition and 
tumoral energy production 20919825; 19678709

path:00983_4# Drug metabolism-other enzymes 0.02828285 0.78112433 1 1 1 Metabolism of anti-cancer drug 21215737; 21533940

path:00450_1# Selenoamino acid metabolism 0.02872727 0.16469429 1 1 0.07222314
As inhibitors of 
histonedeacetylase in human 
prostate cancer cells

19584079; 15041072

path:00670_1# One carbon pool by folate 0.02897254 0.25510731 1 1 1 —

path:00770_1 Pantothenate and CoA 
biosynthesis 0.03578242 0.21421764 0.00686790 0.00147122 1 —

path:00480_1 Glutathione metabolism 0.04742966 0.93864190 0.01768909 0.01660372 0.00389595 Impact resistance of cancer cells 26056813; 25144624

Table 2.  The significant subpathways identified by Subpathway-CorSP using prostate cancer data set 
(P < 0.05). Subpathways with # symbol are uniquely identified by Subpathway-CorSP.
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The third significant subpathway (path:00360_1) belonged to a phenylalanine metabolism pathway 
(Supplementary Figure S1). Subpathway-CorSP analysis yielded a P-value of 0.0213 for this subpathway. The cor-
responding pathway was not considered significant by Pathway-M (P =  0.238), and was not found by Pathway-G, 
IMPaLA and Subpathway-GM. This subpathway was not at the core region of the corresponding pathway, but 
is reported to be highly associated with cancer (Table 2). Two metabolites of interest in this subpathway, phe-
nylalanine and tyrosine, are novel potential biomarkers for bladder cancer. These potential biomarkers have 
diagnostic value and indicate the risk of cancer recurrence34. Other research shows that selective tyrosine and 
phenylalanine restriction target mitochondria to induce apoptosis of DU145 and PC3 prostate cancer cells35. An 
enzyme encoded by a gene of interest, aromatic-L-amino-acid decarboxylase, is related to substance dependence 
of human cancers and functions as a macrophage migration inhibitory factor36. The other enzyme encoded by a 
gene of interest, primary-amine oxidase, is expressed in mammals and involved in processes such as leukocyte 
trafficking and glucose metabolism37. These two enzymes might be possible therapeutic targets for cancer treat-
ment. The other methods tended to not detect this kind of pathway because of the low ratio of metabolites and 
genes of interest involved. However, from the view of expression correlation, these nodes of interest in the pheny-
lalanine metabolism subpathway had significantly higher average Pcc value than the entire corresponding path-
way (Supplementary Table S1). Thus, Subpathway-CorSP effectively detected biologically meaningful pathways 
via emphasizing expression correlations between metabolites and genes of interest within metabolic pathways.

Stability analysis and parameter analysis of Subpathway-CorSP. To validate the stability and reli-
ability of the significant metabolic subpathways, stability analysis was performed. We extracted part of original 
samples as new data sets, and then identified new significant metabolic subpathways. We tested the number of 

Figure 3. Glycerolipid metabolism pathway with metabolites and genes of interest annotated. Nodes near 
*symbol, key metabolism subpathway region (path:00561_1) identified by Subpathway-CorSP. Red node labels 
and borders, enzymes (rectangular nodes) mapped by genes of interest. Red node borders, metabolites (circle 
nodes) mapped by metabolites of interest.
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Figure 4. Significant subpathway regions identified by Subpathway-CorSP. (A) Plot of key glycerolipid 
metabolism subpathway (path:00561_1, P =  0.00464). (B) Plot of key cysteine and methionine metabolism 
subpathway (path:00270_2, P =  0.0153). This subpathway had a common metabolite (serine) with glycine, 
serine and threonine metabolism subpathway, which was the most significant metabolic subpathway 
(path:00260_1, P =  0.00024). Blue ellipse, metabolites; red circle, genes. Nodes with yellow edge, metabolites 
and genes of interest in the pathway.
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original significant subpathways that were recalled. The more recalled subpathways, the more stable the sub-
pathways that were identified. The steps were: First, keeping the metabolites and genes invariant, we simulta-
neously chose 75% of the benign prostate samples (Benign) and 75% of the prostate cancer samples (PCA+  
Mets) without replacement from both the metabolomic profile and the matched gene expression profile. This 
yielded a training data set containing 12 benign prostate samples and 18 prostate cancer samples. Second, with 
the training data set, we performed Subpathway-CorSP strategy again and identified new significant metabolic 
subpathways. Third, the recalled number of original significant subpathways was counted, and the training exper-
iment repeated 80 times. At least 12 and at most 18 significant subpathways were recalled (Fig. 5A). The recall 
rate was about 63.16–94.74%, and the average recall rate was up to 79.55%, although only 75% of the samples 
were used (Supplementary Table S2). Thus, we considered the significant metabolic subpathways identified by 
Subpathway-CorSP stable and reliable.

This study focused on identifying key metabolic subpathways by integrating expression correlations and topo-
logical features between nodes of interest within pathways. When two nodes of interest had higher Pcc value and 
smaller shortest path, they had larger CorSP score, which represented their close connection in a pathway. Thus, 
these two nodes tended to be added to one node set (that was a subpathway), and other nodes at their shortest 
path were added to the same node set simultaneously. Based on this theory, Subpathway-CorSP identified key 
subpathway regions in entire metabolic pathways. To set an appropriate threshold, m, for the identification of 
effective subpathways, we computed CorSP scores for each two nodes of interest in all metabolic pathways. We set 
m, by experience, to represent the score for 70% CorSP scores passing threshold m for all 150 metabolic pathways 
(Fig. 5B). The threshold m indicated the minimum permitted correlation extent at the shortest path between two 
nodes of interest in the pathway. A larger m value indicated that only nodes with higher expression correlations 
could be added to the same node set. The identified subpathways thus formed a smaller scale than a smaller m. 
Thus, we identified subpathways closely associated with metabolites and genes of interest. In contrast, decreasing 
m usually increased the number of other nodes except for nodes of interest within subpathways; it also increased 
the scale of the subpathways. Thus, we identified as many metabolites and genes associated with nodes of interest 
as possible.

Subpathway-CorSP provided biologically informative models for metastatic prostate cancer.  
To evaluate the specific pathological features of metastatic prostate cancer and further demonstrate the use of 
Subpathway-CorSP, we identified metastatic prostate cancer-related metabolic subpathways. Considering differ-
ent types of samples that were mixed into a single dataset, we used 12 localized prostate cancer samples (PCA) and 
12 metastatic prostate cancer samples (Mets) to identify metabolites and genes of interest. Thus, 74 metabolites 
and 8765 genes of interest associated with metastatic prostate cancer were obtained (Table 1). Subpathway-CorSP 
analysis of this sub-group data set detected 103 potential subpathways from all metabolic pathways. Of these, 
14 that corresponded to 14 entire pathways were identified at the 5% significance level (Supplementary Data 
set S1). These pathways were all associated with cancer in the literature (Table 3). Of these pathways, identi-
fied by Subpathway-CorSP, 13 were not identified by Pathway-G, 9 by Pathway-M, 8 by IMPaLA and 10 by 
Subpathway-GM; 5 pathways were simultaneously not detected by the four methods (Table 3).

Special metabolic pathways only significantly associated with metastatic prostate cancer included purine 
metabolism (path:00230), the beta-alanine metabolism pathway (path:00410), pyrimidine metabolism 
(path:00240), the glycosphingolipid biosynthesis-globo series (path:00603) and the riboflavin metabolism path-
way (path:00740). In these significant subpathways, nodes of interest showed denser expression correlations than 
the entire corresponding pathways. To the best of our knowledge, these pathways are not directly related to met-
astatic prostate cancer. However, the significant subpathway (path:00410_2) identified by Subpathway-CorSP 

Figure 5. Stability analysis and parameter analysis of Subpathway-CorSP. (A) Histogram of stability 
analysis for Subpathway-CorSP. Horizontal axis, 80 training experiments; vertical axis, number of significant 
subpathways identified in corresponding training experiments. Blue, number of recalled original significant 
subpathways; purple, number of non-recalled original significant subpathways. (B) Cumulative distribution 
curve of CorSP scores. Arrow, score for 70% CorSP scores passing threshold m for all 150 metabolic pathways.
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captured a key region of beta-alanine and uracil conversion in the beta-alanine metabolism pathway (Fig. 6). 
Beta-alanine is a naturally occurring beta-amino acid found in vitamin B5 (pantothenic acid). Some research 
shows that the isomers of sarcosine, α -alanine and β -alanine, increase significantly as prostate cancer progresses 
to metastasis and are optimized as a group of potential prostate cancer biomarkers38. A metabolite of interest, 
uracil, is an effective and well tolerated regimen for hormone-refractory prostate cancer. Combinated with teg-
afur, uracil is effective in treating patients with prostate cancer39. The enzymes coded by genes of interest such 
as dihydropyrimidine dehydrogenase (NADP+ ) and dihydropyrimidinase, together with metabolites of interest 
such as beta-alanine, uracil and dihydrouracil, form a closely connected subpathway with high average Pcc value. 
Another significant drug metabolism subpathway (path:00983_4) may be also indirectly related to metastatic 
prostate cancer. In prostate cancer, chemotherapy drugs prompt the secretion of WNT16B by surrounding fibro-
blast cells, which activate cellular survival Wnt pathways in prostate cancer cells40. Metastasis of prostate cancer 
to bone increases morbidity. Several classes of drugs and treatments have been developed to interfere with onco-
genes and oncoproteins known to be involved in the progression of prostate cancer into a more advanced form 
of disease41. Overall, these results suggested that specific metabolic subpathways that may be associated with 
metastatic prostate cancer were found by Subpathway-CorSP.

Discussion
Metabolic pathways are important for interpreting metabolic functions of pathways related to specific dis-
eases16–18. Integrative analysis of metabolites and genes based on pathway structure help to locate and evalu-
ate key metabolic subpathways, and provide the opportunity to understand the mechanisms underlying cancer 
pathogenesis. From a biological perspective, dysfunctional genes are closely related to dysfunctional metabolites 
in pathways. Correlation analysis of them might be useful in helping to identify pathways42.

Research has been devoted to pathway analysis based on the idea of correlation. For example, EnrichNet per-
formed a random walk with restart to identify crosstalk between known gene sets and pathway genes under the 
background of gene interaction networks10. The DECO algorithm is proposed to remove bias caused by correla-
tion of expression data in gene-set analysis, and effectively improves the prediction accuracy of key pathways11. 
Wang et al. proposed an extension of the linear combination test, which is used for testing correlations between 

Subpathway ID PathwayName
Subpathway-

CorSP Pathway-G Pathway-M IMPaLA Subpathway-GM
Possible relation 
to the cancer

Reference 
(PMID)

path:00260_1 Glycine, serine and threonine 
metabolism 3.88E-05 0.64728481 0.02756179 0.01784033 1 De novo Purine 

synthesis
19063642; 
15229480

path:00561_1# Glycerolipid metabolism 0.00037304 0.42565344 0.36324046 0.15461455 0.12596684
High energy 
demend and cell 
propagation

18757836; 
21802006

path:00563_1# Glycosylphosphatidylinositol(GPI)-
anchor biosynthesis 0.00057710 0.51188267 1 1 1

Suppress invasion 
of prostate and 
breast cancer cells

16822939

path:00910_1 Nitrogen metabolism 0.00170052 0.06603059 0.29898906 0.01974242 0.02030707 Enhance anti-
cancer activity

23746196; 
26174441

path:00230_1 Purine metabolism 0.00253999 0.12987834 0.00018704 2.43E-05 0.20697902
High DNA/
RNA turnover in 
cancer

19063642

path:00562_1 Inositol phosphate metabolism 0.00904761 0.54447931 0.41370312 0.22525279 0.02864760
Membrane 
receptor signaling 
cascades and anti-
cancer activity

14608114; 
20414202

path:00410_2 beta-Alanine metabolism 0.01083417 0.44423116 0.00070088 0.00031135 1 Inhibit prostate 
cancer metastases

22824219; 
21071389

path:00480_1 Glutathione metabolism 0.01891404 0.66681313 0.01398493 0.00932534 0.01144082 Impact resistance 
of cancer cells

26056813; 
25144624

path:00510_3# N-Glycan biosynthesis 0.02567615 0.22296249 1 1 1 Efficient detection 
of prostate cancer

18701493; 
25154914

path:00983_4# Drug metabolism-other enzymes 0.02567615 0.97396069 1 1 1 Metabolism of 
anti-cancer drug

21215737; 
21533940

path:00240_2 Pyrimidine metabolism 0.02716418 0.22648719 0.00770142 0.00174427 1
Inhibition of 
metastatic 
prostate cancer

25360799; 
25178642

path:00603_1 Glycosphingolipid biosynthesis- 
globo series 0.02722552 0.06424124 1 1 0.00202817

Tumor grade 
diagnosis and 
tumor prognosis

26132161; 
25715344

path:00601_1# Glycosphingolipid biosynthesis- 
lacto and neolacto series 0.03676192 1 1 1 1

Cell adhesion 
and the growth of 
tumor cells

20428086; 
19658179

path:00740_2 Riboflavin metabolism 0.04837857 0.03385502 1 1 1
Increase 
metastatic ability 
of prostate cells

24791272; 
17933458

Table 3.  The significant subpathways identified by Subpathway-CorSP using metastatic prostate cancer 
data set (P < 0.05). Subpathways with # symbol are uniquely identified by Subpathway-CorSP.
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pathways and correlated multiple continuous phenotypes based on gene expression12. Using gene expression 
profiles, Guo et al. illustrated that separate analyses of up- and down- regulated genes identify more pathways13. 
These methods are effective for pathway analysis, but have limitations: First, they focused only on pathway genes, 
overlooking metabolites with vital functions in pathways. Second, they considered either network topology cor-
relation or gene expression correlation, but not the two aspects simultaneously. Third, they predict pathways at 
the entire pathway level, but do not predict corresponding subpathway regions that may be more meaningful for 
reflecting relevant biological importance.

We developed a novel subpathway identification strategy called Subpathway-CorSP that integrated metabolites 
and genes of interest related to a given cancer into metabolic pathways. We identified key metabolic subpathway 
regions by systematically considering expression correlations and topological features between metabolites and 
genes of interest within the pathways. Especially, Subpathway-CorSP was an improvement on Subpathway-GM 
by emphasizing expression correlations between nodes of pathways. For the input data, Subpathway-GM treated 
DE genes and metabolites as interesting gene and metabolite sets. However, in Subpathway-CorSP, we integrated 
DE metabolites, DE genes, as well as metabolites and genes with high expression correlation related to the study 
condition as metabolites and genes of interest. Although the two methods were both based on expression profiles, 
Subpathway-CorSP further considered expression correlation information of metabolites and genes, defining 
metabolites and genes with high Pcc value as important. As a subpathway identification method, Subpathway-GM 
used a lenient distance similarity of signature nodes to locate subpathways. If the shortest path length between 
two signature nodes was shorter than n+ 1, then the two signature nodes and other non-signature nodes were 
added to the same node set. Thus, from a network-structure point of view, Subpathway-GM fully considered top-
ological correlation between nodes within pathways. However, Subpathway-GM did not account for how metab-
olites and genes within the pathways correlated at the level of expression. Subpathway-CorSP further considered 
expression correlations of metabolites and genes based on topological features. When locating subpathways, we 

Figure 6. Beta-alanine metabolism pathway with metabolites and genes of interest annotated. Nodes near 
*symbol, key metabolism subpathway region (path:00410_2) identified by Subpathway-CorSP. The region 
contained key region of beta-alanine and uracil conversion. The molecules in this region formed a close-
connected subpathway with high average Pcc value.
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continued to apply lenient distance similarity and further improved it using CorSP score, instead of just the short-
est path length between two nodes of interest. Specifically, for each pathway that contained nodes of interest, we 
computed Pcc and the shortest path between each two nodes of interest, and then computed CorSP score. When 
CorSP score between the two nodes of interest was greater than a given threshold, the nodes and other nodes at 
their shortest path were added to the same node set.

In this study, Subpathway-CorSP was mainly applied to prostate cancer data set. Many pathways correspond-
ing to significant subpathways identified by Subpathway-CorSP were not detected by the traditional pathway 
identification methods Pathway-G, Pathway-M, IMPaLA and Subpathway-GM. The different results were 
mainly attributed to two points. One was the difference in use of the data set. Pathway-G used only DE genes, 
Pathway-M used only DE metabolites. The other difference was that Subpathway-CorSP considered not only 
pathway topology, but also expression correlations between metabolites and genes of interest. Both IMPaLA 
and Subpathway-GM did not use expression correlation information. Our analysis found that the average Pcc 
value for the 20 significant subpathways was significantly higher than for all the metabolic pathways. This result 
showed that significant subpathways identified by Subpathway-CorSP had clearly higher expression correlations. 
These results demonstrated that Subpathway-CorSP improved the identification of subpathways by considering 
expression correlations.

We focused on three of eight pathways identified by Subpathway-CorSP but not the other methods. We found 
they were highly associated with prostate cancer, suggesting that Subpathway-CorSP was able to identify more 
prostate cancer-related metabolic pathways. The stability analysis demonstrated stability and reliability of these 
significant metabolic subpathways. Flexibility could be introduced to this subpathway strategy by varying thresh-
old m, which could be adjusted by users. As threshold m decreased, the number of the other nodes except for 
nodes of interest within subpathways increased, and thus the scale of the subpathways increased. Application of 
Subpathway-CorSP to a metastatic sub-group data set showed that Subpathway-CorSP located potential meta-
static prostate cancer-related metabolic subpathways. The codes for Subpathway-CorSP can be downloaded at 
http://222.170.78.233/Subpathway-CorSP/.

We reported the implementation of a novel subpathway identification strategy to investigate the combined 
effect of metabolites and genes by integration of expression correlations and topological features within the met-
abolic pathways. The method had some limitations. Although KEGG is a popular and widely used pathway data-
base resource, some true interactions might be missed when KEGG is used as the single data source43. To avoid 
biased results towards the single data source, in the future we plan to extend Subpathway-CorSP to a group of 
integrated pathway databases with topology structure, including KEGG43, WikiPathways44 and Reactome45. Based 
on multiple integrated pathway databases, more expression correlation information between nodes of the path-
ways could be obtained, which would further improve the effectiveness of Subpathway-CorSP for subpathway 
identification. In addition, some pathways, especially those from different pathway databases, partly overlap. 
Thus, correlations between nodes of pathways are possible. Although Subpathway-CorSP considered correla-
tions arising from network topology, it did not consider correlations resulting from database design. This is a 
universal challenging situation in current pathway studies. A new strategy of reducing redundancy in pathways 
from integrated pathway databases might be needed. In addition, Subpathway-CorSP used hypergeometric test 
to evaluate pathway significance. This process assumed that pathways were independent of each other and did not 
consider correlations between nodes of pathways. When integrating multiple pathway databases, hypergeometric 
test would not be suitable to estimate the statistical significance of pathways. Thus, a new statistical method might 
need to be used in further research. Subpathway-CorSP has considerable potential for implementation of pathway 
identification associated with other molecules such as microRNAs or the long noncoding RNAs. This resource 
could help in studying interactions between these noncoding RNAs and human pathways and exploring crosstalk 
between pathways, greatly facilitating the understanding of the underlying mechanisms for complex diseases.

Materials and Methods
Data sets. Unbiased metabolomic profile including 16 benign prostate samples adjacent to tumor (Benign), 
12 localized prostate cancer samples (PCA) and 12 metastatic prostate cancer samples (Mets) was from Sreekumar 
et al.18. With high-throughput liquid and gas chromatography-based mass spectrometry, high-throughput pro-
filing of tissues quantitatively detected 626 metabolites, of which 518 were shared by the three diagnostic classes. 
These metabolites required a name-mapping step to standardize compound IDs46. MetaboAnalyst 3.0 (http://
www.metaboanalyst.ca) is a comprehensive tool suite for metabolomic data analysis to convert metabolite 
names to KEGG compound IDs47. It has updated the underlying metabolite library based on the latest version 
of HMDB48. Especially, it has also reimplemented the algorithm to improve the performance of fuzzy string 
matching. Here, we used MetaboAnalyst 3.0 to perform name-mapping by entering 518 metabolite names. The 
database returned two kinds of results: query names in normal white indicated exact matches; query names high-
lighted in red indicated no exact or unique match, with multiple hits possible and users manually selecting the 
correct match if found (http://www.metaboanalyst.ca/ faces/Secure/utils/ConvertView.xhtml). We mapped the 
518 metabolites to 100 metabolites with KEGG compound IDs. Matched gene expression profile data (16 Benign, 
12 PCA and 12 Mets) was downloaded from the GEO database49. The accession number of gene expression profile 
was GSE8511 from platform GPL1708, containing 12,873 genes after processing.

Methods
Subpathway-CorSP identified metabolic subpathway regions by integrating expression correlations and topolog-
ical features between metabolites and genes of interest. Metabolic subpathways were identified mainly through: 
(i) mapping metabolites and genes of interest to graphs of metabolic pathways after graph-based reconstruction 
of metabolic pathways; (ii) developing subpathway identification algorithm and locating metabolic subpathways 

http://222.170.78.233/Subpathway-CorSP/.
http://www.metaboanalyst.ca
http://www.metaboanalyst.ca
http://www.metaboanalyst.ca/%20faces/Secure/utils/ConvertView.xhtml
http://222.170.78.233/Subpathway-CorSP/.
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within pathways according to nodes of interest; (iii) evaluating the statistical significance of metabolic subpath-
way regions. The detailed steps are described below.

Map metabolites and genes of interest to graphs of pathways. We constructed a bipartite net-
work to represent metabolic pathways in the KEGG pathway database50,51. We downloaded KGML files (KEGG 
Markup Language, http: //www.genome.jp/kegg/xml/) of KEGG pathways and converted them to list variables in 
R by applying iSubpathwayMiner, an R package developed by our research group20. We removed the map node 
in the corresponding KEGG pathway map and focused on molecules such as compounds and gene products. 
Resulting graphs mainly contained two types of nodes: compounds and enzymes. Edges were mainly constructed 
from reactions. Specially, if a compound participated in a reaction as a substrate or product, an undirected edge 
was used to connect the corresponding compound node to the enzyme node. Thus, substrates of a reaction were 
connected to enzyme nodes and the enzyme nodes were connected to products. Particularly, enzyme nodes used 
KEGG Orthology (KO) identifiers to overcome limitations of enzyme nomenclatures. KO identifiers integrated 
pathway and genome information, which have become a better controlled vocabulary for annotating genes to 
both metabolic and regulatory pathways43. In this way, positional information for metabolites and enzymes was 
extracted efficiently and used via a graph model that retained pathway structure.

Based on gene expression data and metabolomic experimental data, we respectively identified DE metabolites 
and DE genes using Wilcoxon rank-sum test and SAM method, and calculated Pcc for each metabolite-metabolite, 
metabolite-gene and gene-gene pair. We extracted metabolites and genes with Pcc greater than a cutoff such as 
0.8, and regarded them as metabolites and genes with high expression correlation. We defined DE metabolites, 
DE genes, as well as metabolites and genes with high expression correlation as metabolites and genes of interest. 
Metabolites and genes of interest were mapped to corresponding nodes within pathway graphs. Notably, metab-
olites of interest were mapped to corresponding compound (substrate and product) nodes and genes of interest 
were assigned to KO identifiers and matched to enzyme nodes. Mapped nodes within each pathway graph were 
defined as nodes of interest.

Locate subpathways according to nodes of interest. We developed a novel subpathway identification 
strategy to locate metabolic subpathway regions by systematically considering expression correlations and top-
ological features between nodes of interest within given pathways. Specifically, for each pathway that contained 
nodes of interest, we computed Pcc and the shortest path between each two nodes of interest. A CorSPij score was 
computed to evaluate the expressional and topological influence between the ith and jth nodes of interest. CorSPij 
was defined as:

=

β

CorSP e (1)ij

c

d
ij

ij

where, cij is Pcc between node i and node j based on their expression profiles, dij is the shortest path between node 
i and node j in any one pathway, calculated by breadth-first search algorithm, and β  is a parameter set to balance 
the relationship between Pcc and the shortest path. In this study, we set β  =  10.

We located subpathway regions according to CorSP scores between nodes of interest. There are many feasible 
distance measures in the area of computer science52,53. This study, we used the lenient distance similarity devel-
oped by our group19. We verified that the subpathways searched by lenient distance similarity were representative 
of the entire corresponding pathways for both topological centrality and biological interpretation19. We further 
improved lenient distance similarity using CorSP scores, instead of just the shortest path length between two 
nodes of interest. Specifically, if CorSPij between the ith and jth nodes of interest was greater than threshold m, 
the nodes and other nodes at their shortest path were added to the same node set. This process was recurrently 
computed for all nodes of interest. We extracted corresponding subgraphs in pathway graphs according to each 
node set, and defined these subgraphs with node number ≥ s as subpathway regions because subgraphs with small 
scales could not usually form biologically significative subpathways.

Evaluate statistical significance of metabolic subpathways. To evaluate the statistical significance 
of the located subpathways, hypergeometric tests were used, which required the following values: (i) number 
of metabolites and genes of interest submitted for analysis; (ii) number of background metabolites and genes; 
(iii) number of metabolites and genes of interest annotated to each metabolic subpathway; and (iv) number 
of background metabolites and genes annotated to each metabolic subpathway. All metabolites in the Human 
Metabolome Database (HMDB)48 and KEGG Human Pathway43 were used as background metabolites, and all 
human genes in KEGG as background genes. Then, the following formula was used to calculate P-value for the 
enrichment significance of the subpathways:

∑= −




+ 







+ − −
+ −











+
+






=

+ −
t t

x
m m t t

n n x

m m
n n

P 1

(2)
x

r r
m g m g m g

m g

m g

m g

0

1m g

where, mm (mg) was number of metabolites (genes) in the entire metabolome (genome), and nm (ng) was number 
of metabolites (genes) of interest, of which rm (rg) metabolites (genes) involved in the subpathway containing tm 
metabolites (tg genes).

http://www.genome.jp/kegg/xml/
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