
Federated learning-based AI approaches in smart healthcare:
concepts, taxonomies, challenges and open issues

Anichur Rahman1,2 • Md. Sazzad Hossain2 • Ghulam Muhammad3 • Dipanjali Kundu1 •

Tanoy Debnath2 • Muaz Rahman1 • Md. Saikat Islam Khan2 • Prayag Tiwari4 • Shahab S. Band5

Received: 2 February 2022 / Revised: 10 May 2022 / Accepted: 17 June 2022
� The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Federated Learning (FL), Artificial Intelligence (AI), and Explainable Artificial Intelligence (XAI) are the most trending

and exciting technology in the intelligent healthcare field. Traditionally, the healthcare system works based on centralized

agents sharing their raw data. Therefore, huge vulnerabilities and challenges are still existing in this system. However,

integrating with AI, the system would be multiple agent collaborators who are capable of communicating with their desired

host efficiently. Again, FL is another interesting feature, which works decentralized manner; it maintains the communi-

cation based on a model in the preferred system without transferring the raw data. The combination of FL, AI, and XAI

techniques can be capable of minimizing several limitations and challenges in the healthcare system. This paper presents a

complete analysis of FL using AI for smart healthcare applications. Initially, we discuss contemporary concepts of

emerging technologies such as FL, AI, XAI, and the healthcare system. We integrate and classify the FL-AI with

healthcare technologies in different domains. Further, we address the existing problems, including security, privacy,

stability, and reliability in the healthcare field. In addition, we guide the readers to solving strategies of healthcare using FL

and AI. Finally, we address extensive research areas as well as future potential prospects regarding FL-based AI research in

the healthcare management system.
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1 Introduction

The Internet-of-Medical-Things (IoMT) revolution brought

comprehensive changes in the way medical facilities

operate by uplifting the quality of services [1]. IoMT

devices with the ability to sense and transmit health

updates of an individual, are extensively used to gather

healthcare data. This information is then processed using

artificial intelligence [2] to materialize a variety of

healthcare applications which includes distant monitoring

of patient and prognosis of diseases. Deep Learning (DL)

approaches, for example, have shown potential in

biomedical image analysis for earlier identification of acute

illnesses by managing enormous volumes of relevant data

to improve healthcare efficiency [3]. Dong et al. [4] sug-

gested a detailed analysis based on blockchain-based FL to

discuss the issue of privacy concerns using datasets to

identify the current state of this problem. The study sug-

gested that blockchain-based FL has developed signifi-

cantly over the last five years, and the technology is now

being applied to the fields of IoT and smart healthcare

applications, such as recording patient health data, medical

image analysis, to study data related to analysis of cancer

related illness, and relevant economic data. Smart health-

care systems have typically focused on centralized AI

capabilities stored in the cloud for learning and data ana-

lytics [5–7]. Due to raw data transfer, this centralized

approach is inefficient in terms of communication latency

and cannot achieve high network scalability. More

specifically in e-healthcare, personal data are subjected to

regulations like the Health Insurance Portability and

Accountability Act of the United States (HIPPA) [8].

Furthermore, a centralized AI system may be considered

unacceptable in future healthcare systems, and instead must

be disseminated throughout a large-scale IoMT network.

As a result, switching to distributed AI approaches at the

network edge for scalable and privacy-preserving intelli-

gent healthcare applications is critical.

Federated Learning, a new distributed interactive AI

concept, is especially promising for smart healthcare since

it allows numerous clients (such as Hospitals) to participate

on AI training whilst maintaining data privacy. As a result,

the authors investigated the application of FL in smart

healthcare extensively [9]. To begin, we will discuss cur-

rent breakthroughs in FL, as well as the reasons and pre-

requisites for adopting FL in smart healthcare. The authors

have presented a state-of-the-art overview of FL’s devel-

oping applications in major healthcare areas such as

COVID-19 detection, medical data recording, distant

monitoring of patients, and biomedical image analysis. In a

recent research, FL was recommended for usage in a

number of IoT actions, including e-healthcare and intelli-

gent transportation system, among others. FL, for instance,

has made e-health services more accessible by allowing

machine learning (ML) modeling despite the absence of

health data [10]. Health data owners, such as hospitals, can

avoid exchanging healthcare information by employing FL.

Rather, healthcare personnel can locally train the model

and then share the parameters to the accumulator for data

compilation. Federated Learning has presented itself as a

viable method for implementing economic, innovative

healthcare systems while ensuring privacy [11–15]. FL

allows training of AI models through averaging of local

updates from numerous healthcare facilities and smart

devices, such as IoMT, despite the lack of local data.

On the other hand, AI has been used in a wide range of

disciplines, which includes the IoT, machine vision, natural

language processing, and robotics, as a result of fast

spreading of AI technologies. More specifically, research-

ers have attempted to use AI to boost scientific analysis and

analyse potential remedies, hence improving the overall

efficacy of the healthcare industry [16, 17]. The advantages

that AI can bring to medicine have been predicted for

decades. The role of AI in biomedical engineering has even

been reviewed [18]. AI and its applications in healthcare

have recently made considerable strides [19]. Medical

facilities with an attempt towards becoming further indi-

vidualized, with a predictive instinct, preventative mea-

sures, and participatory behavior, can approach AI to assist

in this endeavor. Determined from the achievements so far,

we predict that AI will pursue further evolution and grow

as a powerful device for future healthcare.

Many studies have been undertaken to study FL based

AI related issues, including healthcare, as a result of recent

advancements in the field. The publications in [9], for

example, provide the basic FL idea and its supporting

protocols, as well as the technical hurdles of FL design and

implementation. [20] covers the security and privacy

challenges in FL systems, as well as potential methods for

assessing harmful threats in FL networks. The authors of

[21] investigates issues in FL base AI implementation like

as communication expenses, resource distribution, and

security concerns. In [22] researchers looks at the junction

of FL-AI and the IoT by providing a review of technical

challenges in FL schemes which includes sparsification,

security, and extensibility, as well as a concise analysis of

FL-based AI technologies in IoT [23]. Furthermore, in [24]

the authors provided a review of FL applications in

industrial IoT, with an emphasis on the features and basics

of FL, with little mention of FL use in healthcare. Another

research [25] focuses on the technological challenges and

needs of adopting FL-based AI approaches in the future of

digital health. The most recent advancements in FL, for
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instance FL aware of resources, safe and reliable FL, the

potential of privacy-boosted FL, stimulus-aware FL, and

tailored FL has yet to be extensively investigated.

Despite these attempts, as far as we know, no estab-

lished research provides complete overview of FL-based

AI uses in the sphere of smart healthcare. Furthermore, the

available literature lacks a comprehensive taxonomy of

FL’s use in new healthcare applications. These disadvan-

tages motivated the authors to carry out an in-depth

examination regarding the usage of FL-based AI tech-

niques in the healthcare realm. We investigate the most

updated FL-AI concepts in smart healthcare. Following

that, we give a splitting analysis regarding the novel FL-

based AI applications in smart healthcare, including Elec-

tronic Healthcare Records (EHR) management, distant

monitoring of health, biomedical image analytics, and

identification of COVID-19 traits [89]. Poll results are also

shared so that readers may have a better grasp of how FL

can be employed in smart healthcare. Our research intends

to give a bibliometric analysis of characteristics such as

authors, nations, citations, and keywords to help academics

and practitioners plan future research. Finally, future pro-

spects and research problems in FL-smart healthcare are

discussed. Also, we will suggest and analyze a dominating

framework of variables in this topic.

1.1 Major contributions and organization
of the survey

This work discusses different leading technologies–FL, AI,

XAI, and intelligent healthcare. In detail, we share a state-

of-the-art analysis about their concepts, taxonomies &

motivations, addressing issues and solutions and further

applications. We also describe some integration’s of these

technologies to better support applications in various areas.

To this end, the survey’s main contributions are outlined

here:

– We provide a cutting edge outline on FL-based AI in

the area of healthcare, initially with basic concepts

regarding FL, AI key concepts, XAI features, and a

detailed discussion of smart healthcare efficiency.

– We present the lately advanced FL-AI taxonomies and

emerging AI-FL integration’s and motivations applica-

ble to intelligent healthcare applications.

– We address some technical challenges in the existing

system and then directly solve the issues using vast

technologies–including FL, AI, and XAI in the health-

care applications.

– Finally, we analyse the issues of different applications

and direct further research towards FL-AI in innovative

healthcare areas.

This study is the only potential and informative survey that

integrates all the considered technologies to the best of our

knowledge. Some of the notations are listed in Table 1. The

rest of this survey is organized as follows: Section 2 rep-

resents a conceptual overview regarding FL, AI, and

e-healthcare individually. Sections 3 offers the motivations

behind the FL-AI-healthcare, FL-healthcare, and AI-

healthcare integration’s, also providing taxonomies of

these components. Further, the addressing different issues

and solutions of these issues have been presented in Sect. 4.

After that, Sect. 5 focuses on the current research

Table 1 List of common abbreviations with description

Keys Description

AI Artificial Intelligence

AUC Area Under the ROC Curve

BC Blockchain

COVID-19 Coronavirus Disease 2019

DT Decision Tree

DoS Denial of Service

DL Deep Learning

EHR Electronic Health Records

FL Federated Learning

HCU Healthcare Control Unit

HM Healthcare Management

HPW Healthcare Provider’s Wallet

IoMT Internet of Medical Things

IoT Internet of Things

IIoT Industrial Internet of Things

IP Internet Protocol

KNN K-nearest Neighbors

LPU Local Processing Unit

LR Logistic Regression

ML Machine Learning

M2M Machine to Machine

P2P Peer to Peer

PCA Patient Centric Agent

PDA Personal Digital Assistants

PM Patient Management

QoS Quality of Services

SC Smart Contact

SDP Sensor Data Provider

SH Smart Healthcare

SVM Support Vector Machine

WIoT Wireless Internet of Things

WSN Wireless Sensor Networks

XAI Explainable Artificial Intelligence
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Table 2 Related surveys/works regarding FL, AI and Healthcare. The works are grouped based on the related technology and reported in

chronological order within each group

Related works Year Technology Main focus

Rey et al. [26] 2021 FL N-BaIoT, modeling of network traffic of several IoT devices infected by virus attacks, has been

employed to assess the proposed algorithm.

Li et al. [27] 2021 A case study that can assist the design of a Federated Learning System, including aspects and research

perspectives.

Rahman et al.

[28]

2021 Issues related to the design of a Federated Learning based system.

Zhang et al. [29] 2021 Survey on FL based application areas.

Pham et al. [24] 2021 Integration of FL and IIoT.

Nguyen et al. [9] 2021 Integration of FL and Blockchain technology for intelligent and secured system.

Khan et al. [22] 2021 Recent advancements include advancements in the security and privacy era. The difficulties and

taxonomy of FL were then examined.

Kulkarni et al.

[30]

2020 Methods of personalization for FL approaches.

Lim et al. [21] 2020 The use of FL in mobile edge networks, as well as their challenges and future directions.

Jigan et al. [31] 2020 Opportunities of Federated Learning for smart city infrastructures.

Shen et al. [32] 2020 Federated Learning for data security and privacy perspective.

Chen et al. [33] 2020 Explored the convergence time of Federated Learning when deployed across a real-world wireless

network.

Shlezinger et al.

[34]

2020 Attempted to tackle emerging challenges using tools from quantization theory.

Chen et al. [35] 2020 Issue to train FL model for a wireless network is detailed.

Wrabel et al.

[36]

2021 AI & XAI The use of AI algorithms to track targets using radar.

Wu et al. [37] 2021 AI for visualization of data.

Markus et al.

[38]

2021 Explainable AI for the field of the health care system to create a trustworthy system.

Korica et al. [39] 2021 Opportunities, Gaps and Challenges and a Novel Way to Look at the Problem Space in healthcare.

Chakrobartty

et al. [40]

2021 A systematic review of the methods and techniques of explainable AI within the medical domain.

Riboni et al. [41] 2021 Explainable AI in Pervasive Healthcare: Open Challenges and Research Directions.

Duell et al. [42] 2021 A Comparison of Explanations Given by Explainable Artificial Intelligence Methods on Analysing

Electronic Health Records.

Coppola et al.

[43]

2021 Utilizing AI technologies in the radiology department to reduce error rates and studying radiologist

attitudes regarding AI adaption.

Hansen et al.

[44]

2021 AI for IIoT (Small and Medium SMEs).

Dhuri et al. [45] 2020 Made an academy to an intelligent place.

Laird et al. [46] 2020 Highlights various applications and opportunities of SM multimodal data, latest advancements, current

challenges, and future directions for the crisis informatics.

Zhang et al. [47] 2020 Assists radiologists and physicians in performing a quick diagnosis, especially when the health system

is overloaded.

Cubric et al. [48] 2020 This review covered AI adoption across various business sectors–healthcare, information technology,

energy, agriculture.

Rasheed et al.

[49]

2020 Leveraging the techniques of artificial intelligence in order to predict the infection rate as well as the

mortality rate to assist the health workers.

Tung et al. [50] 2020 AI model for the development of the quality of the river water.

Wu et al. [51] 2020 Enhancement of security of IoT by utilizing the methods of IoT.

Zhou et al. [52] 2020 Collaboration of AI and database system.

Mohanta et al.

[53]

2020 Issues and solutions towards IoT security using ML, AI and blockchain methods.

Hossain et al.

[54]

2020 Explainable AI and Mass Surveillance System-Based Healthcare Framework to Combat COVID-I9

Like Pandemics.
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Table 2 (continued)

Related works Year Technology Main focus

Amann et al.

[55]

2020 A comprehensive assessment of the role of explainability in medical AI and makes an ethical

evaluation.

Pawar et al. [56] 2020 XAI is discussed as a technique that can used in the analysis and diagnosis of health data by AI-based

systems.

Alshqaqi et al.

[57]

2022 Healthcare Opportunities of IoT for healthcare industry.

Kashani et al.

[58]

2021 This study aims to identify, compare systematically, and classify existing investigations taxonomically

in the Healthcare IoT (HIoT) systems.

Kaye et al. [59] 2021 The economic impact of COVID-19 pandemic on health care facilities and systems: international

perspectives.

Jaiswal et al.

[60]

2021 Healthcare system by leveraging IoT associated issues, applications and threats.

Li et al. [61] 2021 ML methods for the health care data analysis.

Murthy et al.

[62]

2021 Patient monitoring system by leveraging IoT methods.

Muhammad

et al. [1]

2021 IoMT and related issues, types, challenges and possibilities.

Jabeen et al. [63] 2021 IoMT security in WBAN.

Philip et al. [64] 2021 Application of DL in the sphere of IoMT.

Chew et al. [65] 2020 Studied medical personnel to find the relation between psychological results and physical patterns.

Greenberge et al.

[66]

2020 Managing mental health challenges faced by healthcare workers during the Covid-19 pandemic.

Amin et al. [67] 2020 The improvement of edge computing environments for the healthcare system is identified.

Hathaliya et al.

[68]

2020 Security and related concerns in present healthcare 4.0 system.

Qadri et al. [69] 2020 Future healthcare systems as seen through the lens of recently developed technologies.

Alemdar et al.

[70]

2010 Minimizes the complex healthcare system for nurses and assists the critically ill and elderly to lead an

independent life.

Zhu et al. [71] 2021 FL-AI-XAI The transition from FL to federated neural architecture have been discussed in this work.

Yang et al. [72] 2021 Explained several privacy preserved solutions using FL and machine learning or artificial intelligence

techniques.

Truong et al.

[73]

2021 Privacy ensuring methods in Federated Learning.

Zeng et al. [74] 2021 A detailed survey of FL motivational strategies.

Guberovic et al.

[75]

2021 Federated Learning for intelligent system.

Tonellotto et al.

[76]

2021 Recurrent NN model for FL for prediction of time series.

Xianjia et al.

[77]

2021 Federated Learning for robotics and AI.

Ghassemi et al.

[78]

2021 An overview of current explainability techniques and highlight how various failure cases can cause

problems for decision making for individual patients.

Shaban et al.

[79]

2021 Explainability and Interpretability: Keys to Deep Medicine.

Raunak et al.

[80]

2021 From real-time systems to human-in-the-loop fault detection, the articles here have looked into AI

explanation from varying perspectives and for multiple groups of audience.

Deshpande et al.

[81]

2021 A Brief Bibliometric Survey of Explainable AI in Medical Field.

Giuste et al. [82] 2021 The use of Explainable Artificial Intelligence (XAI) during the pandemic and how it’s use could

overcome barriers to real-world success.

Xu et al. [83] 2021 FL-

Healthcare

Provides great promise to connect the fragmented healthcare data sources with privacy preservation.

Jatain et al. [84] 2021 Aimed to reveal the technological foundation called blockchain and its usability in healthcare services.
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challenges and future directions of the study. Finally, we

conclude the survey in Sect. 6.

2 FL, AI, and healthcare: state-of-the-art

This segment presents advanced concepts regarding Fed-

erated Learning, artificial intelligence, and e-healthcare

properly. In FL segments include various aspects of

developments, the necessity of FL, different features of FL

in 2.1. Further, we introduce AI technology and cover the

parameters of various characteristics and usefulness in 2.2.

We discuss diverse concepts and issues of healthcare

technology in 2.3. We also present the related works

regarding Federated Learning, Artificial Intelligence,

Explainable Artificial Intelligence (XAI), and Healthcare in

the Table 2.

2.1 Fundamentals of federated learning

Federated Learning is essentially a machine learning (ML)

algorithm which allows for collective learning of a dis-

tributed model while preserving the data composed on their

devices. FL that has been shown in Fig. 1, it allows for

equipping ML models with decentralized data and at the

same time protects user confidential data by design. FL as a

shared ML model is gaining increased popularity in situa-

tions where user’s data privacy is vital [90]. In FL, local

data is used to train clients using a distributed approach.

The scenario involves training decentralized clients or

nodes using local data and sharing system parameters.

Accumulation of system or model parameters creates a

global model using a server [72]. In practice, the user does

not need to share their private data using FL. Rather, users

drill the network locally and share the model to a central

body known as the server. However, it is essential in FL for

each user to effectually and feasibly transmit it’s learned

model through the server. The server in FL aggregates the

local data into a global network through an iterative pro-

cess [91]. Fig. 1 represents the training process of the

federated machine learning. Following are the steps used in

this figure.

• Every device will have a local copy of our centralized

machine learning application, which users will be able

to access whenever they need it.

Table 2 (continued)

Related works Year Technology Main focus

Nguyen et al. [9] 2021 Improved healthcare through coordination of hospitals to execute AI training in the absence of shared

local data.

Zhang et al. [29] 2021 Characteristics, challenges and application area of FL.

Blanco et al.

[85]

2021 Survey on addressing security concerns using Federated Learning.

Rieke et al. [25] 2020 Discussed threats and potential remedies by leveraging FL in the healthcare sector.

Lim et al. [86] 2020 FL for intelligent healthcare system for contract design.

Grama et al. [87] 2020 Aggregation process for healthcare system to preserve privacy.

Sharma et al.

[88]

2020 Intending to address the totality of Federated Learning with a complete vulnerability assessment.

Fig. 1 Federated Learning and its Training Process
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• The model will now gradually learn and train itself

based on the data provided by the user, allowing it to

become smarter over time.

• The devices then send the training results from the local

copy of the machine learning program back to the

central server.

• The same thing happens when you run the program on

many devices, each of which has a local copy of it. The

results will be compiled in a centralized server, but no

user data will be included this time.

• The centralized cloud server now uses the pooled

training data to update its centralized machine learning

model, which is considerably superior to the prior

version.

• Users update the program with the better model

produced from their data while the development team

upgrades the model to a newer version.

The FL is a distributed processing system built on AI,

Blockchain, and machine learning algorithms at its core.

The terms distributed machine learning and federated

machine learning are not interchangeable. In Federated

Learning, the information supplied to the server by each

participant resembles no original data, rather a trained sub-

model. Simultaneously, Federated Learning permits asyn-

chronous transmission, which reduces requirements for

communication purposes [92]. On this foundation, the

federated machine learning formula may be revised as

follows:

arg min
w

Lðx; y;wÞ ¼
X

k

pkLkðx; y;wÞ ð1Þ

where, k denotes number of clients, pk is the weight value

of the kth client, and the decentralized multiuser

F1,F2,....,Fk) scenario is used for Federated Learning. The

current user’s dataset (D1,D1,....,Dk) is available to each

client user.

2.1.1 FL: Key design aspects

For constructing intelligent and privacy-enhanced IoT

systems, the notion of Federated Learning has recently

been presented. The major steps in the FL-smart healthcare

process are as follows:

– Initialization of system and client selection: The

aggregation mainframe chooses an analytic task, such

as automated biomedical imaging or detection of any

motion, as well as further needs like objective catego-

rization, and learning parameters and rates. Further-

more, the endpoint chooses a number of users to engage

in FL method.

– Local Training and Updates: As soon as the dataset of

learning users has been identified, the network delivers

an preliminary model to the clients, together with an

initial global gradient, to start the distributed training.

Each user teaches a local model adopting its personal

data and estimates its model update. The scenario is

such as, after configuring the training, the server creates

a novel model, i.e., w0
G, and sends it to the users to

begin distributed training. Employing its own data Dk,

each client k drills a local model and assesses an update

wk by mitigating a loss function F wkð Þ:
w�

k ¼ arg minF wkð Þ; k 2 K ð2Þ

For various FL algorithms, the loss function might be

different [93]. The loss function F of a linear regres-

sion Federated Learning model may be described as:

F wkð Þ ¼ 1
2
xTi wk � yi
� �2

with a set of input output

pairings xi; yif gKi¼1. Then, for aggregate, each client k

transmits its estimated update wk to the server.

– Aggregation and Download of Models: Following the

gathering of all updates from the specified clients, the

server uses an aggregation mechanism to combine

them. For example, in Google’s Federated Averaging

(FedAvg) technique [94], where the gradient parame-

ters of local models are averaged element-wise with

weights proportionate to the sizes of the client datasets,

we may employ the model averaging strategy. The

server then generates a new version of the global model

and broadcasts it to all clients as the foundation for

future local model updates in the next learning round. A

real scenario is, the server combines all model changes

from local clients and calculates a new version of the

global model as follows:

wG ¼ 1P
k2K Dkj j

XK

k¼1

Dkj jwk ð3Þ

by figuring out how to solve the following optimization

problem:

ðP1Þ : min
w2K

1

K

XK

k¼1

F wkð Þ ð4Þ

subject to (C1): w1= w2=...=wK=wG The accuracy of

the FL method, for example, the accuracy of an FL-

based object classification task [35], is reflected by the

loss function F . Furthermore, the constraint (C1)

assures that after each training round, all users and

central server have identical training model for Feder-

ated Learning problem. Following the model’s deriva-

tion, the server transmits the new global update wG to

all users, allowing them to optimize their trained

models in the subsequent training round. The iteration

of the process proceeds until the loss function congre-

gates or the requisite precision is attained.
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Federated Learning method can be deployed to deliver

numerous appealing benefits to develop smart healthcare

based on the revolutionary operating idea, as mentioned

below:

– Enhancement of Data Privacy: In FL, local data are not

required for training. This is used to train other machine

learning algorithms by combining numerous local

datasets and not transferring data. Local Machine

Learning (ML) models are trained on local heteroge-

neous datasets during training. The model parameters

are shared between these local data centers on a regular

basis. Many models encrypt these parameters before

sending them. Data samples from the local area are not

shared. This increases data security and protection. In

addition, a shared global model is created. As a result,

risk of personal data being leaked to an external source

is reduced, and privacy is ensured. FL offers security

features which creates an excellent alternative for

designing smart and secured IoT devices, especially

in light of increasingly severe data privacy protection

regulations such as the General Data Protection Reg-

ulation (GDPR) [95, 96].

– A Reasonable Balance of Accuracy and Utility: FL is

capable of providing a suitable balance between

precision and usefulness, as well as privacy enhance-

ment, as compared to traditional centralized learning.

Furthermore, FL training keeps the model generaliz-

ability while sacrificing nominal accuracy. As a result

of FL’s distributed learning characteristic, the smart

healthcare system’s scalability may be improved.

– Health Data Training at a Low Cost: FL can assist to

mitigate communication expenses, such as data lag and

power transmission, associated with transfer of raw data

by avoiding the offloading of large data volumes to the

server [97]. Because model gradients are typically

much smaller than their actual datasets, FL can be

deployed to mitigate communication expenses, such as

delay and power dispatch associated with communica-

tion of local data. As a result, FL saves a significant

amount of network bandwidth and reduces the risk of

network congestion in large healthcare networks.

2.1.2 Why needed FL?

The ever growing number of IoT resources together with

relevant applications means the requirement of processing

large amount of data [98, 99]. The availability of big data

analytics and computation methods such as machine

learning and deep learning has enabled users to achieve

effective data management. Artificial Intelligence appli-

cations is being successfully deployed to counter the issues

related to optimized resource management, efficient

selection of antenna in wireless systems and several other

areas of communication networks. The traditional AI

models usually necessitates the users to share individual

information to a master network for learning purposes. A

key concern with such techniques is the privacy of users

sensitive information. FL is highly effective in areas where

decision making is based on substantial data scattered over

a wide range of training nodes at the same time addressing

privacy and security concern [100]. Machine learning

models are developed using data collected from several

sources to allow for prediction. Regardless, as a result of

bandwidth issues, security and storage facility, raw data

transmission to a centralized location becomes unrealistic.

FL acts a distributed learning model to ensure optimal

learning, efficient utilization of collected raw data and

transmission to a centralized place. FL also plays a sig-

nificant role in advancement of smart cities as detailed by

authors in [101]. Policy makers in urban smart cities can

utilize FL to transmit the sensitive information gathered

from IoT devices for effective management of priority

assets. The framework in FL allows the users to access data

without gaining personal information regarding other cli-

ents. Eventually, the updated global model constructed by

the server is distributed to all clients [21]. The clients then

download the new updated global model and utilize cloud

distribution to understand interference on their individual

devices.

2.1.3 Different features of FL

Federated Learning approach is a concept introduced by

google to allow on-device learning and security of sensitive

data [93]. FL has the benefit of distributed data processing

and improved privacy factors. FL is suggested as means of

training a ML model in [91] which does not require

accumulation of all user’s data sample. In [26], authors

have investigated the deployment of FL to detect malware

in IoT devices. Researchers in [34] detailed the advantages

of coupling vector quantization with FL to generate an

efficient decentralized training model. Federated Learning

also offers a platform to allow distributed analysis in the

industrial IoT sector [102]. The issues of executing FL over

a wireless network is studied by authors in [35]. Another

key feature of FL is the ability of the server to organize the

training model and analyze the contribution of every par-

ticipant [103]. FL is also being applied to the Industrial

Internet of Things (IIoT) by researchers to develop efficient

and robust models while preserving sensitive data. Several

other features of FL include its application in healthcare

and medicine sectors as discussed in [12, 83]. Electronic

healthcare records from multiple data sources (several

hospitals) require joint data access and uploading of data to

a single database.
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However, due to reasons such as privacy concerns of

each institution, it is quite challenging to materialize such

expectations without guaranteeing security issues. FL is a

highly effective method to gather EHR data from hospitals

to provide a knowledge-sharing platform without the need

of sharing personal data, all while preserving the privacy

[104, 105]. FL in healthcare is used to detect similarity in

the patient in [106] and is used for predictive modeling as

detailed in [107, 108]. Authors in [109] converted elec-

tronic health records data into readable phenotypes by

using a tensor factorization model to analyze data in an FL

framework. A Federated Learning framework to analyze

brain structural relationships for diseases is studied in

[110]. Researchers in [111] used FL based predictive

modeling on EHR data to analyze the advantages of early

treatment of patients. In [112], FL was deployed towards a

predictive analysis to estimate prolonged stay period of

patients and in-hospital mortality across a number of

medical facilities. Two-stage federated Natural Language

Processing (NLP) to detect patients and phenotyping from

EHR data for obesity and comorbidities from several

medical facilities is studied in [113]. Novel Federated

Learning framework for smart wearables for activity

recognition and data aggregation is studied in [114, 115].

Model-centric, cross-device, horizontal, cross-silo, vertical,

data-centric, reinforcement, and other types of Federated

Learning exist. The three primary forms of Federated

Learning are–horizontal FL, vertical FL, and federated

transfer learning. Horizontal FL uses data with the similar

trait space across all devices, suggesting that Client A and

Client B are using the same features. To train a global

model, vertical Federated Learning incorporates multiple

datasets from distinct feature areas. Finally, federated

transfer learning is vertical Federated Learning that uses a

pre-trained model that has been learnt on a comparable

dataset to tackle a different challenge. Assume the global

model is MFED after an assignment is completed, and

associated learning model is MSUM after data aggregation.

In general, the global model MFED remains operational

owing to parameter exchange and aggregation operations.

Throughout the whole learning process of the global

model’s output, there will be a loss of accuracy. The per-

formance of MFED falls short of that of the aggregate model

MSUM . After stating the output of the global model MFED on

test set as VFED, and the output of the aggregate model

MSUM on the test set as VSUM , to quantify this difference.

The model’s loss accuracy [116] is defined as:

VFED � VSUMj j\d ð5Þ

where delta is a positive integer. However, because the

primary criterion of FL is privacy protection, the aggre-

gation model MSUM cannot be realized in practice.

2.2 Artificial intelligence concepts

2.2.1 AI–features

Smart devices with measuring sensors are on the rise [117].

All these devices mean an exponential amount of generated

datasets with an intense opportunity to learn from intelli-

gent systems. With the increased level of data, a system has

the potential to increase its accuracy. Artificial Intelligence

can be termed as the simulative approach by computers in a

way such that it can be considered as intelligent by

humans. There are several features of AI, including

knowledge-gathering, problem-solving abilities, predict-

ing, learning, and implementing with the capability to

reason, manipulate and move. AI enables the ability to

detect the fault and evaluate without the presence of an

expert. An AI system has the ability to solve complex

problems in an automated and accelerated manner. It has

been generally used to optimize conventional technologies

involving data-driven strategies. AI has subclasses such as

machine learning, neural networks, and deep learning. ML

is essentially an operation of artificial intelligence that

permits a machine to train and grow without being pre-

programmed based on experience.

– Supervised Learning: This type of machine learning

employs labeled samples and applies what it has

learned in the past to a fresh dataset. This will

necessitate knowing the algorithm’s outputs and having

the information required to train the model labeled with

the accurate reactions. The algorithm correlates its

actual performance to the correct output depending

upon these responses, and if erroneous, it trains from

these response and improves its effectiveness [118].

– Unsupervised Learning: Such a method of learning is

used with information that was not labeled previously.

No correlations among input and output for the model.

This particular type of learning is more complex and

utilized less as compared to supervised learning. When

opposed to supervised learning, unsupervised learning

allows the user to accomplish more complex processing

tasks. These algorithms include–clustering, anomaly

detection, neural networks, etc [118].

– Semi-supervised Learning: This type of learning lies in

between supervised and unsupervised learning. This

method of training is deployed in the event of a

combined issue which requires both supervised and

unsupervised learning. Data with labels are used in

supervised learning, while data without labels are used

in unsupervised learning, but data with and without

labels is used in semi-supervised learning. The model

will learn from tagged data and then apply its knowl-

edge and patterns to unlabeled data [118].
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– Reinforcement Learning: In order to teach the algo-

rithm, this method of learning deployed a performance -

based compensation technique. The trained model will

be compensated for accurate output and condemned for

erroneous performance in this method of learning, so it

will be trained to optimise result and at the same time

minimize consequence. The primary goal of health-

related AI applications is to investigate correlations

between treatment or preventative strategies and patient

outcomes [119]. Diagnoses of disease, to create proto-

col for treatment, innovation in developing medicine

and potential cure, and monitoring of patient are fields

in healthcare where AI is used. Even though AI’s usage

in healthcare is steadily rising, it is now focused on a

few ailments, like cancer categorization, nervous sys-

tem disease, and cardiovascular disease.

2.2.2 How does AI works?

AI can gather information from several sources and per-

form a task, solve critical problems or make a decision

without any human instructions [120]. AI can potentially

replace humans by working in wide-scale activities in the

realm of industry, retail, finance, and healthcare with

considerable impacts on system performance and effi-

ciency [121] that depicted in Fig. 5. The most common AI

applications in healthcare may be split into 4 groups.

Among these groups, the first three classes are meant to

sort large data effectively and enable rapid passage towards

data to deal with challenges in healthcare facilities. These

applications includes contents like assistance for the

elderly and physically disabled, natural language process-

ing methods, and basic research.

– Artificial Intelligence for Living Assistance: In order to

assist aged and physically disabled individual, auto-

mated systems coupled with intelligent robots can

significantly elevate standard of life. Recently, [122]

released an outline of intelligent home with capabilities

for patients with loss of autonomy, as well as smart

models developed on sensory devices over wireless

networks, data collection, and AI. NNs may be trained

to detect human facial expressions as commands using

certain image-processing processes. Furthermore, facial

expression analysis-based human-machine interfaces

(HMIs) enable persons with impairments to operate

wheelchairs and robot support devices without the need

to use a console or relevant sensors [123]. In, smart

communication architecture (SCA), solutions for Ambi-

ent Aided Living (AAL) were created to permit AI to

interpret data from various communication networks.

Sensors capture information about the surroundings and

individual activity in this scenario, which is

subsequently evaluated via cloud computing or edge

intelligence [124].

– AI in biomedical information processing: Natural

language processing (NLP) used for medical applica-

tions has progressed significantly. Biological question

answering (BioQA) aims to discover swift and correct

responses to queries by users from a massive database.

As such, NLP systems can be predicted to seek replies

that are resourceful [125]. Initially, biological queries

must be divided into several categories to achieve

relevant information from reactions. For accuracy over

90%, ML can be categorize biological queries into 4

main kinds [126]. Then, using a smart biomedical

document gathering process, parts of the details con-

taining biomedical queries may be efficiently retrieved.

AI has the ability to perform these work as accurately

as an expert assessor to enhance efficiency and

accuracy.

– AI in bio-medicine: AI offers untapped potential as a

strong tool in biological research [127], in addition to

acting as a eDoctor for illness diagnosis, management,

and prognosis. AI has the potential to boost reviewing

and indexing of research papers in biological research

and development works throughout the world. More-

over, through a semantic graph-based AI technique,

researchers may effectively accomplish the complex

work of outlining the literature on a specific topic [128].

Furthermore, for a significantly large research article,

AI can equip biomedical researchers with searching and

ranking of literature. This allows researchers to enhance

scientific conception, which are critical aspects in the

area of biomedical research.

2.2.3 Explainable AI (XAI) concepts and features

XAI refers to approaches and techniques for using artificial

intelligence in such a way that the solution’s outcomes are

understandable by humans. It contrasts with the ‘‘black

box’’ concept in machine learning, when even the designers

are unable to explain why an AI made a particular decision.

XAI could be an example of the social right to explanation

in action. Even if there is no legal right or regulatory

obligation, XAI can improve a product or service’s user

experience by assisting end-users in trusting that the AI is

making good decisions.

The goal of XAI in this manner is to explain what has

been done, what is being done now, and what will be done

next, as well as to reveal the knowledge on which the

actions are based. These features allow you to (i) evaluate

what you already know, (ii) dispute what you already

know, and (iii) produce new assumptions.
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Properties of XAI: Transparency, Interoperability, and

Explainability all work as an interface between human and

AI systems. They consist of AI systems that are both

accurate and understandable by humans [129]. Although

the semantic implications of these phrases are identical,

they confer distinct levels of AI that are acceptable to

humans. For further information, the ontology and taxon-

omy of XAI can be seen here at a high level:

– Transparent Model: K-nearest neighbors (kNN), deci-

sion trees, rule-based learning, Bayesian networks, and

are examples of typical transparent models. Although

transparency as a feature does not guarantee thet a

model will be easily explainable, the decisions made by

these models are frequently transparent. [130]

– Opaque Model: Random forest, neural networks, Sup-

port Vector Machine (SVMs), and other opaque models

are common. These models are not transparent, despite

the fact that they frequently reach excellent accuracy.

[131]

– Model-agnostic: XAI techniques that are model-agnos-

tic are created with the goal of being widely applicable.

As a result, they must be flexible enough to operate

purely on the basis of matching a model’s input to its

outputs rather than relying on the model’s intrinsic

architecture. [132]

– Model specific: Model-specific XAI techniques fre-

quently take advantage of prior knowledge of a

particular model and try to bring transparency to a

specific type of one or more models.

– Explanation by simplification: We can identify alter-

natives to the original models that explain the predic-

tion we’re interested in by simplifying a model via

approximation. For example, we can build a linear

model or a decision tree around a model’s predictions,

then use the resulting model to explain the more

sophisticated one.

– Explanation by feature relevance: This is analogous to

the concept of simplicity. After all possible combina-

tions have been explored, this form of XAI technique

seeks to evaluate a feature based on its average

expected marginal contribution to the model’s choice.

– Visual explanation: This type of XAI strategy is built

around visualization. As a result, the data visualization

approaches can be used to interpret the prediction or

judgment made based on the input data.

– Local explanation: Local explanations replicate the

model in a small area, usually around a single instance

of interest, and provide information about how the

model works when it encounters inputs comparable to

the one we’re interested in describing.

Advancement of XAI: Despite the benefits of intelligent

systems, the XAI research initiative raises concerns about

giving them too much power without the ability to explain

the decision-making process that lies beneath such com-

plex systems to domain experts (e.g., doctors, lawyers,

financial experts, etc.) in terms and in a format that they

can understand. This not only aids in comprehending

specific decisions made by such systems but also pushes

researchers to develop more human-like (anthropomorphic)

solutions, as well as encouraging further research and

understanding of the brain as a natural information pro-

cessing phenomena.

Because of the growing relevance of this topic, NIST

published Four Rules of XAI in August 2020, which

describe the following key principles [133] that an AI must

follow in order to be designated a XAI:

– Explanation: According to this principle, an AI system

must provide proof, support, or explanation for each

decision it makes.

– Meaningful: According to this principle, the AI

system’s explanation must be clear and meaningful to

its consumers. Because diverse groups of users may

have varied wants and experiences, the AI system’s

explanation must be fine-tuned to fit each group’s

unique traits and needs.

– Accuracy: this principle states that the AI system’s

explanation must correctly reflect the system’s

processes.

– Knowledge limits: according to this theory, AI systems

must recognize circumstances in which they were not

designed to operate and, as a result, their answers may

not be credible.

2.3 e-Healthcare system

e-healthcare may be characterized as providing constant

healthcare assistance to patients through technical tools and

techniques such as information and communication tech-

nology, cellular technology, medical support, and wireless

facilities [134]. Electronic health records, scientific jour-

nals, and similar archive on the internet, visual, and audio

consultation with doctor, or internet-based process to

connect with medical personal, give feedback to doctors,

transfer test results, and so on are examples of e-health

systems that can revolutionize the healthcare services they

provide. The e-healthcare system may give general support

on a larger scale, such as management assistance, health-

care service delivery, and so on, as well as specialized help,

such as citizen health data [135]. The provision of health

care via the internet and technology is carried out by

combining existing tools and assuring the quality of the

services supplied [136]. The spread of the contagious

coronavirus is an issue that needs immediate attention.

With the advent of new variant of coronavirus, medical
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personnel are facing an enormous challenge to address the

health issues of the infected individual. The complexities

of COVID-19 coupled with scarce resources and rising

healthcare cost has encouraged many to access remote

health management services using computer or similar

devices [137–140]. IoT plays a fundamental act in

achieving automated distant health care services. IoT and

smart devices are used to transfer the health data of a

patient to the cloud server to access health information of

an individual [141]. The IoT and its application for

healthcare management services can be divided into three

steps [142]: i) gain access to the location of a patient or

healthcare staff ii) to identify and authenticate an individ-

ual, and iii) to automate data collection using sensory

devices. Electronic health records (EHR), decision based

support systems, online consulting, and telemedicine are a

wide range of components related to eHealth. Computers

play a vital role to deliver therapeutic session to patients.

EHR data of patients serves as the base for prescriptions

originated using computers, which offer several benefits,

such as linkages to software that emphasizes medication.

Two key features in eHealth have ethical implications for

the handling of EHRs. The first is professional, whereas the

second is technical. The technical issue is promptly

resolved. Assuming that there is a fiduciary physician-pa-

tient connection in eHealth, the ethical obligations for the

treatment of patient data in general and EHRs in particular

that arise from the fiduciary relationship in standard health

care also apply in eHealth [143]. The novel coronavirus

develops pneumonia like symptoms with an individual

suffering from respiratory diseases. The prognosis of a

patient infected with COVID-19 related illness is limited

with high mortality [144, 145]. The implementation of AI

in healthcare sectors [47, 146] have created an urge

amongst researchers to pursue innovative methods to

develop e-healthcare systems. Authors in [47], have

developed an AI based system to differentiate between

pneumonia of a coronavirus infected patient from that of

common pneumonia traits. AI based algorithm is used in

[147] for earlier detection of kidney related illness amongst

diabetic individual. Researchers in [148] utilized AI to

provide specific diagnosis and treatment for patients.

FL-AI is possible to deliver numerous appealing benefits

to promote smart healthcare, as mentioned below, based on

the innovative operational concept:

– Improvements to Data Privacy: Only local updates are

needed by the central network for AI training in the FL-

AI-based smart healthcare system, while raw data is

stored at medical facilities or equipment. This approach

limits the danger of personal user data being leaked to

an external source, ensuring better level of client

security [149].

– A Reasonable Balance of Accuracy and Utility: FL-AI

is capable of providing a suitable balance among

accuracy and usefulness, as well as privacy enhance-

ment, as compared to traditional centralized learning.

Furthermore, FL training keeps the model generaliz-

ability while sacrificing nominal accuracy. As a result

of FL’s distributed learning characteristic, the smart

healthcare system’s scalability may be improved.

– Health Data Training at a Low Cost: FL-AI may assist

decrease communication costs, like latency and trans-

mit power, associated with raw data transfer by evading

the dumping of large data to the central network

because model gradients are often considerably less in

size than their real datasets [97]. As a result, FL saves a

significant amount of network bandwidth and reduces

the risk of network congestion in large healthcare

networks.

e-Health is a broad word that encompasses the integration

of healthcare and technology to serve individuals better and

save healthcare expenditures. Some industrialized nations

that have been adopting health-related activities have

consistently prioritized eHealth [150]. However, imple-

menting eHealth has the potential to enhance the whole

health care system in both developed and developing

nations. eHealth is referred to as an end-to-end method that

may be used in any situation.

3 Taxonomies and motivations
of integrating FL with AI in healthcare
system

In this section, we make a group of unique taxonomy

architectural views based on FL-AI and FL-AI-healthcare

in 3.1. On the other hand, we provide the integration

benefits among the FL, AI, and intelligent healthcare

technologies in 3.2.

3.1 Taxonomies of FL with AI in healthcare

Federated Learning, a distributed collaborative AI model,

is specifically appealing for intelligent healthcare since it

allows different clients (for example, hospitals) to collab-

orate on AI training without the need to share local data. As

a result, we have put together a detailed analysis on FL’s

application in advanced healthcare. To begin, we introduce

the current breakthroughs in FL, as well as the reasons and

prerequisites for adopting FL in smart healthcare [31, 157].

Following that, the latest FL ideas for intelligent healthcare

are reviewed, which includes FL for resource management,

FL aware of security concerns, incentive FL, and tailored

FL. Following that, we present a cutting edge overview of
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FL’s developing applications in major healthcare areas

such as data management, distant health monitoring,

biomedical image analytics, and so on [9, 158, 159].

The proposed taxonomy for Federated Learning (FL)

with Artificial Intelligence (AI) is shown in Fig. 2, and the

taxonomy for FL with AI techniques in healthcare is shown

in Fig. 3. We showed numerous AI and machine learning

algorithms based on learning, reasoning, and discovering in

these taxonomies. We divided the privacy level as well as

the communication architecture. Different FL-based algo-

rithms were also examined. Furthermore, the development

of FL-AI techniques in healthcare, the applications of

Smart technologies in healthcare have been systematically

analyzed, and the security and privacy concerns, as well as

medical issues have been portrayed. In the suggested tax-

onomy, we thoroughly examined the healthcare sector with

the interconnection of FL-AI [4, 83, 160].

3.2 Integrating of FL with AI in healthcare

3.2.1 FL-healthcare integration

The current world is focused on data analytics, particularly

in the medical sector. Healthcare data, including prescrip-

tion information and supplies, patient data, healthcare

professional information, and affiliated organizations

responsible for insurance or other financial-related trans-

actions, has become increasingly important for data anal-

ysis. However, the data on the healthcare sector is

dispersed. They are not in the same format, and the data is

susceptible in nature, as it includes information from the

medical industry. The most sensitive of them are insurance

sector data, which cannot be transmitted from one sector to

another. Without data transfer, processing with traditional

learning and training methodologies is impossible, result-

ing in a significant gap in data analysis.

As a result of the integration of Federated Learning with

healthcare data informatics, the analysis of extremely

sensitive data has become significantly more efficient, this

integration scenario shown in Fig. 4. In this situation, data

is not transported from source to destination in order to

merge or generate a dataset for analysis; rather, the local

client trains their model with their data and connects with

other clients via the server bypassing only the results. As a

result, the data remain secure at their origin, and the net-

work, gains access to the server’s training results. This

integration will benefit both suppliers, such as the organi-

zation in charge of producing and supplying the necessary

equipment to a hospital, and users of the application, such

as the general public. As the linking sectors are vast in this

era, and data production is also vast, it is difficult to

identify malicious users among the thousands of connected

clients; therefore, by leveraging the benefits of FL, the

clients’ data is preserved safely with their own model, and

data leakage is prevented to avoid any malicious data

modification in the system. Moreover, we present the

overview of current analysis based on Federated Learning

in healthcare in Table 3 There are various applications in

Fig. 2 Taxonomies of Federated Learning with AI
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the healthcare sector where FL integration will increase the

overall effectiveness of the process analysis:

– FL can assist to improve the security and privacy of

medical industry data analysis and prediction by

incorporating a data protection system [25, 161, 162] .

– FL has also allowed predictive modelling depending on

several sources, from which physicians can access extra

Fig. 3 FL-AI with Healthcare Overview
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information about the potential threats and advantages

of providing earlier treatment to patients [163].

– Among the many applications of FL-based healthcare

models for prediction, similarity among different

patients is one [164].

– Medicine resistance or therapy against various diseases,

as well as survival rates or explanations, can be

examined with strong privacy towards sensitive data

[165].

– Hospital mortality prediction, duration of stay, or rather

the rate of admission can also be examined using FL-

based models for the proper management of some

critical care units in the hospital while protecting the

privacy of in-hospital data [161, 166].

3.2.2 AI-healthcare integration

As discussed in the preceding section, data from many

sectors have risen considerably in the current context.

Traditional or statistically based prediction for the medical

sector is problematic with the expanding amount of data

because it involves human data collection. There is a sig-

nificant demand for automation throughout the data gath-

ering, processing, and result creation processes. Again, a

system that can receive information from multiple sources

and perform a task, solve crucial problems, or make a

decision without human intervention would be extremely

valuable to the healthcare business. In the world of

healthcare, the word artificial intelligence plays a very

important and critical function in interpreting the human

thinking process through the computer employing many

efficient AI-based algorithms to make the difficult exami-

nation easy for healthcare professionals [167]. That is,

making sensible use of machines that draw key conclusions

based on data fed to them as input. The objective of inte-

grating AI in the healthcare sector is to blend numerous

aspects that may influence a specific decision and produce

a proper evaluation of the result offered by the AI model

using ML or DL. In general, AI models are useful for

making key decisions such as ICU surveillance, mortality

Fig. 4 Federated Learning with Healthcare
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Table 3 Overview of recent works analysis on FL in Healthcare

Ref. Key

Technologies

Techniques Applications Contributions Drawbacks and

Challenges

Chen et al.

[115]

(2020)

Federated

Learning,

homomorphic

encryption

Data aggregation using

FL and smart wearables

Deployment of FL

framework in

smartphones for

activity recognition

and data collection

while maintaining

privacy concerns

Novel framework to

introduce FL with smart

wearable devices for

model training using

transfer of information

Future applications to

study specific diseases

requires attention.

Sharma

et al. [108]

(2019)

Federated

Learning,

predictive

model of in-

hospital

mortality

Distributed training and

privacy-preserving

framework using vital

signs data

To predict in-hospital

mortality while

maintaining data

privacy

Identification of

challenges and

advantages of FL in

healthcare predictive

modelling and

addressing critical

issues related to privacy

and ownership are

addressed

The study requires further

analysis with hyper-

parameters.

Huang et al.

[105]

(2019)

Federated

machine

learning

FL-based machine

learning algorithm and

distributed data

clustering while

maintaining data

privacy

To predict the mortality

and duration of

hospital staying

period using

electronic health

record

Improved efficiency of

decentralized FL

Machine learning for

performing a clinical

task using EHR

The work could be further

extended to perform

prediction for other

clinical tasks for

distributed data over

several institutions.

Silva et al.

[110]

(2019)

Federated

Learning,

ENIGMA

shape tool

Analysis of distributed

biomedical data using

Federated framework

Fl framework to gain

secured access and

meta-analysis of

medical datasets

concealing patient

information

Successful application

towards the study of

subcortical brain

changes in multicentric

cohorts

The proposed framework

requires implementation

on a large scale imaging

genetic datasets.

Boughorbel

et al. [111]

(2019)

Federated

framework,

Base Neural

Network

RETAIN

Training of the recurrent

neural network model of

hospital data in FL

environment, data

interpretation using

RETAIN

EHR data analysis to

predict the preterm

birth

To analyze the potential

threats and benefits of

earlier treatment of

hospitalized patient

Application on larger

dataset and designation

of rejection criterion

needs to be addressed.

Pfohl et al.

[112]

(2019)

Federated

averaging,

differentially

private

stochastic

gradient

descent

Federated averaging

technique towards

distributed optimization

Use of e-ICU

collaborative research

datasets to gain

insight towards an

extended period of

stay and in-hospital

mortality

To present a comparison

of efficacy between FL

and centralized and

local setting

The method used needs

comparison with other

approaches to

understand its efficacy.

Liu et al.

[113]

(2019)

Federated

natural

language

processing

NLP technologies and

phenotyping for

increased efficiency of

reviewing clinical data

To study patient

representation and

EHR data for

individuals with

obesity and

comorbidities from

several hospitals

To facilitate a learning

healthcare system to

extract critical

information for

research, and improved

diagnosis

The algorithm

performance matrices

requires further

comparison with results

achieved from other

relevant datasets.

Lee et al.

[106]

(2018)

Federated

Learning,

MIMIC-III

database,

homomorphic

encryption

Novel algorithm to learn

context-specific codes

Similarity index for

patients across

several institutions

Patient identification

using unique Hash

codes

The work did not represent

temporal effect, optimal

parameter determination

for decay factor and

projection dimension is

not considered, real-life

application for ICD code

requires attention.
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prediction, proper usage of hospital resources, drug

inspection and reaction, and so on. By using the AI method

and the vast amount of data created by the healthcare

industry, such as the EHR, the remedy and conclusion may

be formed efficiently for future reference of the doctors or

clinicians [168]. In addition, we present the overview of

recent work analysis based on Artificial Intelligence in

healthcare in Table 4.

Recently, explainable AI (XAI) has been gaining pop-

ularity in cyber-physical systems such as smart healthcare.

Cancer identification from MRI pictures is a critical

problem in the medical field. However, with an effective

cancer detection process, the chance of survival may

increase because the cure is achievable at an early stage of

cancer. With sophisticated XAI, the reason for the diag-

nosis of a certain cancer is apparent and visible to the

system’s user [169]. The XAI intends to reveal the internal

mathematical calculations used to solve the black box

known as the AI. Thus, by using this method during the

diagnosis phase, clinicians can benefit from the use of XAI

technologies [170]. There are several sectors where AI is

integrated with healthcare like–

– The agent-based AI can interact with humans and

provide comfort based on the needs of the patients. This

can be useful when the patient is elderly and requires

close monitoring and care. Patients with chronic

diseases, in particular, require frequent monitoring of

certain tests such as heart rate, blood sugar levels, and

so on. All of this is simply obtained with the AI-based

agent [171].

– Another significant responsibility in the medical field is

assessing medication effects and forecasting how a drug

will affect a human being. One essential method in this

scenario is the combination of AI with computer-based

medication creation and analysis [172, 173].

The benefits of AI integration in the healthcare sector are

enormous which is shown in Fig. 5. Though it has various

concerns, such as control over AI-based devices, it must be

handled with extreme caution or it can be destructive to a

nation. In this regard, the security of these systems must be

powerful enough to withstand any form of intruder attack

or to take appropriate steps to raise the alarm when any

inappropriate data tampering occurs in the system.

3.2.3 FL-AI integration

The system with autonomous control is incorporating more

and more real-time data aggregation as new technologies

evolve. Intelligent systems were elevated to a new level

owing to the ML and DL models. The data produced by

each IoT sensor has increased exponentially with the IoT-

based system, and the cloud storage system has made data

storage easier in many ways. However, collecting data and

feeding it to a model with advanced DL to develop an AI-

based model is a very important and delicate operation. If

data is altered from source to destination by an attacker, the

forecast will be inaccurate, and because this method deals

with highly sensitive data, the security of the data will be

compromised. In the above scenario, there are a variety of

methods for ensuring data security, one of which is FL

integration. It produces a model and transmits a replica of

the model to each local client instead of transferring data

from the local machine to the central server. With their

own local data, the client trains the model and transfers the

new parameters or weight to the central server. During the

whole process, no data must be exchanged; only the result

must be transferred from clients to the central network. At

Table 3 (continued)

Ref. Key

Technologies

Techniques Applications Contributions Drawbacks and

Challenges

Brisimi

et al. [107]

(2018)

Federated

database,

predictive

modelling for

heart disease

Federated Learning

framework with

iterative cluster primal-

dual splitting (cPDS)

algorithm for analyzing

large scale sparse

support vector machine

issue in a distributed

manner

To ensure data privacy

and allow

collaboration between

multiple entities

without exchanging

sensitive user data

Faster convergence with

limited communication,

to gain insight to key

features necessary to

predict hospitalization

Real-time measurement

considering time-varying

graphs for cPDS analysis

is not taken into account.

Kim et al.

[109]

(2017)

Federated

Learning

framework,

data analysis

Federated Tensor

factorization model to

convert EHR data into

phenotypes

Data analysis in an FL

environment by

converting e-medical

dataset into

computational

phenotyping

Secured data exchange

using real medical

datasets while

maintaining security

concern

The research was limited

to small scale dataset.
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Table 4 Overview of recent works analysis on AI in Healthcare

Ref. Key

Technologies

Techniques Applications Contributions Drawbacks and challenges

Sarker et al.

[151]

(2021)

AI, Robotics,

Autonomous

mechanism

AI dependent system

for detecting

COVID-19 using

chest X-ray images

Quick verdict of COVID-

19 detection using

X-ray.

Assist healthcare

professionals to take

decision fast and provide

results within short

period of time

Handling sensitive data is

difficult, and protecting it

from hackers necessitates

greater caution.

Saheb et al.

[152]

(2021)

AI, Robotics

and ethics

Analysis (Cluster-

based) of ethical

difficulties in the

merging of AI with

healthcare

To detect deficits in

existing survey to create

an efficient and ethical

AI-based model for

tackling problems in the

healthcare sector.

Identification of gaps in

current academic papers

in the sense of ethical

sides.

The investigation of these

types of ethical dilemmas

requires the participation

of professionals from

several sectors, such as

healthcare professionals,

lawyers, and engineers

with a background in

computer science.

Kumar

et al.

[153]

FL, AI, Deep

learning

Deep learning and FL

based model to

detect COVID-19

To mitigate the problem

of scarcity and

reliability of testing kits

primary diagnosis of

COVID -19 from pre-

trained model.

Proposed a system that

aggregates information

from several sources and

drills a global DL model

with the help of FL based

on blockchain.

The sample collection and

gaining popularity of the

system is challenging.

Cavasotto

et al.

[154]

(2021)

AI, DL, ML The use of powerful

AI-based algorithms

for pharmaceutical

research

Discovery of new drugs

from the analysis of the

biomedical patterns

leveraging advanced AI

based methods.

Drug discovery and

analysis of drugs on

human

Data in this scenario is

particularly sensitive, and

combining data from

many sources is

problematic because the

data might be

manipulated along the

route, resulting in

erroneous conclusions.

Hildebrand

et al.

[155]

(2021)

AI, DL, ML machine learning and

AI for analyzing the

MSI for cancer

patient

Prediction of

immunotherapy

response

Detection of Microsatellite

Instability for patients

with Colorectal cancer

Collecting samples from

many sources and

assembling them in a

single location required

extreme vigilance in

order to keep them safe

from intruder attack.

Zhang et al.

[47]

(2020)

AI, Computed

Tomography

database,

python scikit-

learn library

Using AI framework

to analyze CT

images of

coronavirus infected

patients

Quick diagnosis to

differentiate between

common pneumonia

from coronavirus related

pneumonia in

overburdened healthcare

facilities

To detect a critically ill

patient with COVID

positive traits

Improved accuracy with

larger datasets for a long

period is required.

Romero

et al.

[148]

(2020)

AI framework AI-based Clinical

decision support

system

To achieve an improved

level of glucose control

in patients with diabetes

To conduct a survey about

the experience with AI-

based system in medical

facilities

The proposed system

requires improvement in

terms of providing

recommendation to

patients.

Rong et al.

[156]

(2020)

Artificial

intelligence,

ML

algorithm,

Wearable

device,

Digital signal

processor

Patient monitoring

using ML algorithm.

Use of sensory

device to generate

electrical

stimulation when

necessary

Assist patients with

disabled sensation to

notify regarding the

need to empty bladder or

abnormal urinary

bladder control

To develop an effective

monitoring device to

measure the volume and

pressure of the urinary

tract and send necessary

feedback

Result validation using

clinical trials remains

unattended.
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the server, the local training outcomes are averaged, and

the revised weights are then relayed back to all clients

connected to the server. There is no need to transfer data

because the raw data is kept in the local area, and thus data

security may be assured. The integration benefits of FL and

AI covers a huge area. For example;

– FL-based mechanism aggregation at the edge may be

beneficial because the volumes of information gained

from nodes are quite high in rate using such approaches

[174].

– Device heterogeneity can be preserved in a safe data

training and evaluation environment [175].

– The FL with AI is more powerful thanks to its raw data

protection method and local and global privacy levels

[176].

– Integration of an FL-based AI model can result in a

more energy-efficient solution [177, 178].

4 Addressing and defending challenges
on FL with AI in healthcare system

This section is the most strong side compared to the other

survey. However, firstly, we discuss the existing problems

and issues–security, privacy, reliability, confidentiality,

Table 4 (continued)

Ref. Key

Technologies

Techniques Applications Contributions Drawbacks and challenges

Ravizza

et al.

[147]

(2019)

AI, Roche/IBM

algorithm,

IBM

Explorys

database

Health and medical

supported key

features selection

with data-driven

strategy

Early prediction of severe

kidney diseases for

diabetic patients

Comparison of algorithms

extracted from real-world

data

The work requires

additional testing with the

larger dataset.

Kim et al.

[109]

(2017)

Federated

Learning

framework,

data analysis

Federated Tensor

factorization model

to convert EHR data

into phenotypes

Data analysis in an FL

environment by

converting e-medical

data set into

computational

phenotype

Secured data exchange

using real medical

datasets while

maintaining security

concern

The research was limited to

small scale dataset.

Fig. 5 Use case of Artificial

Intelligence in Healthcare

System
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scalability, etc. in 4.1. In addition, we present the different

solutions strategies that have been shown in Fig. 6 based on

the proposed techniques–FL, AI, healthcare in 4.2. Fur-

thermore, we summarize the overview of Federated

Learning with AI in Healthcare as well as the key appli-

cations area, challenges, and solution in Table 5.

4.1 Existing challenges in healthcare system

4.1.1 Security and privacy concern

The current healthcare system relies on the internet to

transfer data and other sensitive information. The Internet

of Medical Things, or IoMT, is this term. It has drawn

significant attention in the twenty-first century since it can

carry information from one portion to another in a concise

period of time and at a very low cost. However, along with

the benefits, there are also drawbacks. One of the most

serious topics is security, and privacy [197]. This type of

healthcare solution includes data transfer, mobile applica-

tion usage, telemedicine, and accessing the information of

the healthcare remotely. In the IoT-based healthcare sys-

tem, several attacks can hamper the total loss of the system.

Preference, side-channel attack [198], data duplication

using the tag, physical hampering of the sensor devices, or

sensor tracking are some of the attacks that may cause

issues in the perception layer [199]. Then, some attacks

from the intruder can access the information sent from the

hardware system by directly attacking at the decryption

point or by weakening the authentication procedure such as

Eavesdropping attack, reply attack, MITM attack, rouge

attack, DoS attack, DDoS attack and these type of attack

causes to hamper the network layer of the IoMT [200].

4.1.2 Reliability problem

Following the aforementioned security concerns, the cur-

rent healthcare system’s reliability has also become a

source of concern. By embracing session hijacking in the

existing smart healthcare system, an attacker can take

control of the session as well as the data being transferred

in that session, potentially causing a major problem for the

entire system. The intruder can then gain access to the IoT

network using a side script. When a faulty SQL code is

injected into the database, it can jeopardize the system’s

vital information [201]. Packet interception can also impact

the loss of information which is in the form of identity

while a user tries to authenticate or log in. An intruder can

encrypt the personal data of a healthcare system user via a

ransomware assault. As a result, these attack possibilities

Fig. 6 Challenges and Solution Scenarios of Federated Learning
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Table 5 Overview of Federated Learning with AI in Healthcare Research covered with key applications area, challenges, and solution

Works Applications fields Addressing challenges Proposed solution

Xu et al.

[83]

EHR, prediction mortality,

Biomedical

- Statistical Review of several present solution leveraging

Federated Learning.

- System

- Privacy issues

Brisimi

et al.

[107]

Heart disease related learning

mechanism

- Sparse SVM issue Proposed an architecture cPDS that can

differentiate the mentality of patient those who

wanted to be hospitalized and those who don’t.

- Issue of raw data exchange

Passerat

et al.

[179]

Privacy preserved audit section - Privacy issue Blockchain and Federated Learning-based

solution to preserve privacy in the network

without knowing the identities.

- Data access policy issue

- Security issue

Silva et al.

[180]

Federated Learning method for

brain image data

- There is no FL based production ready

approach

A software base client and central module for

learning process for the real-world scenario.

Chen et al.

[115]

FL based healthcare system for

Parkinson’s disease

- User data aggregation from different

sources is difficult

A system capable to provide precise and

individualized healthcare whilst also

maintaining data privacy and security,

according to wearable activity detection trials

and a genuine Parkinson’s.

- Cloud system may fail in case of

personalization

Wu et al.

[181]

In house health monitoring

system

- Increasing rate of elderly people A technique based on FL and CNN for

monitoring elderly patients with chronic

diseases who are unable to walk about

regularly.

- Independent living style of people above

60 years

Choudhury

et al.

[182]

Prediction of medication

responses

- Healthcare data sensitive in nature A model to predict the effect of drug reaction in

human.

Lack of existing work on real world

scenario.

Ma et al.

[183]

Healthcare Informative, Data

Distributive

- Data distributed across multiple edge

nodes

Provide necessary design changes towards

flexibility of hybrid electronics which can join

the quality performing electrical attributes of

traditional electronics with the capability of

stretching.

Pershad

et al.

[184]

Patient-physician relationships,

Technology, Public health

- Social media platform Twitter for

spreading healthcare information include

significant amount of misleading

information

Examined the practice of using Twitter in

delivering quality healthcare and information

on medicine and particularly search the

potential of Twitter to share data on treatments

and research to improve care.

- Difficult to verify plausibility of source

Kim et al.

[185]

Machine learning, Federated

Learning, blockchain

- Complex architecture Analyzed a latency model of FL dependent on

blockchain and represent the optimal block

generation rate by taking into account

communication and computing delay.

Miotto

et al.

[186]

Deep learning, healthcare,

biomedical informatics,

genomics EHR

- Complex, high dimensional,

heterogeneous biomedical data

Suggested development of comprehensive and

purposeful explicable scheme to reduce the gap

between DL models and human understanding

ability.

- Difficult to gain knowledge from

complex data.
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Table 5 (continued)

Works Applications fields Addressing challenges Proposed solution

Wiens et al.

[187]

Machine Learning, Healthcare - Privacy issue Present special considerations for those

healthcare epidemiologists who want to use/

apply ML.

- Data transformation of infectious disease

Kumar

et al.

[153]

Data Sharing while preserving

security, DL, FL, Blockchain

- Shortage of test kit of COVID-19 Proposed a novel architecture to gather relevant

data from several sources and teaches a global

DL model using FL based on blockchain.

- Quick spread of the virus

-Issues to differentiate between negative

and positive cases of COVID-19

Nguyen

et al. [9]

FL, Blockchain, Edge

Computing, IoT.

- Volume of data To increase the security features and accessibility

of implementing FL, Blockchain for realizing

decentralized learning through FL without

requiring central network.

- Privacy of data

Holbl et al.

[188]

Blockchain, Consensus,

Distributed systems,

Healthcare Informative

- Encryption method To realise the potential of blockchain technology

and to focus on the obstacles and possible

contributions of blockchain based research in

healthcare industry.

- Complex framework

Pokhrel

et al.

[189]

Vehicle Machine Learning,

Federated Learning,

Blockchain.

- Complex framework Proposed a FL method based on blockchain

algorithm for security-aware and effective

communication in vehicles, in which ML model

updates are shared and authenticated in a

decentralized manner.

- Privacy of data

Mcghin

et al.

[190]

Blockchain, Healthcare

Industry, Authentication, IoT,

Wireless, Vulnerabilities

- Research gap in the area of blockchain

based solutions.

A significant quantity of research methods are

detailed in this research.

Lu et al.

[191]

Data Sharing, Permissioned

Blockchain, Federated

Learning, Privacy-preserved

Industrial IoT

- Data leakage Proposed a blockchain based secured data

sharing method for several users. Formulated

the data sharing problem into a ML issue by

introducing FL equipped with security features.

- Data privacy and security

Greenberg

et al. [66]

Healthcare, Machine Learning - Unprecendented sutuation Management of obstacles faced by medical

personal mentally during coronavirus pandemic

situation.

- Difficult to take decision and work under

extreme pressures

Kaye et al.

[59]

Healthcare, Medical

Informative.

- ICU crisis in the time of need Analysis of impact of coronavirus pandemic on

the financial situation of healthcare facilities

Alemdar

et al. [70]

Healthcare, HIOT. - Different format of data in the healthcare

sector

Minimizes the complex healthcare system for

healthcare officials and assists the disabled and

aged to lead an autonomous life.

- Data security and privacy.

Xi et al.

[192]

Healthcare, Federate Learning - Problem with data having different

feature

An adequate backdoor detection process based on

FL by carrying out comprehensive analysis

over two ML objectives to display that the

methods achieve high precision and well

protected from multi-attacker’s settings.

Long et al.

[193]

Healthcare, Federate Learning,

Bio-informative.

- Data with different feature Analysis on FL to permit the enhancement of an

open health ecosystem with the help of AI.

Current obstacles and potential remedies for FL

are discussed.
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raise a question of trustworthiness. For instance, when

intruders are capable of encrypting compassionate infor-

mation from a system, the question of whether the system

is reliable or safe to transfer data through remains open

[202].

4.1.3 Confidentiality issues

Existing healthcare solutions necessitate the relocation and

merging of data from multiple nodes to provide a long-term

solution. However, because the data being moved is very

sensitive, this data migration creates a confidentiality

concern [203]. Another issue in IoT-based systems is

heterogeneity. Because the sensors are from diverse ven-

dors, the system’s anonymity isn’t always guaranteed.

Furthermore, securing data security while transferring

susceptible data from one node to another remains a dif-

ficult task [204]. However, in order to produce information,

the data must travel from one end to the other. The transit

of data or sensitive information causes security breaches,

which, in turn, causes a confidentiality problem in an

IoMT-based system [205].

4.1.4 Scalability problem

In today’s healthcare systems, a huge number of inbound

and outbound networks must be managed. As a result, there

is a problem with supporting a large number of high-speed

wireless systems without causing system speed degradation

[206]. However, with the current growing number of net-

worked devices, ensuring speed, quality, and cheap cost at

the same time is becoming increasingly difficult. With the

growth in data traffic, the network’s bandwidth is once

again challenged [207]. Furthermore, the network’s archi-

tecture has scalability challenges due to its hybrid nature,

including several providers’ devices. Another challenging

task is to manage several devices remotely and without any

loss in time or management. Because in this type of

framework, there is a need to integrate devices along with

their data and information coming from different aspects

[208].

Table 5 (continued)

Works Applications fields Addressing challenges Proposed solution

- Data security and privacy

Yu et al.

[16]

AI, Healthcare, Federate

Learning.

- Complex model Outlining of current developments in AI

technologies and applications in healthcare

sector, identification of potential challenges for

future developments for AI in healthcare.

Summarized the impact of AI in healthcare

from economic, legal and social perspective.

- Data leakage

- Ethical issue.

Esteva

et al.

[194]

AI, Healthcare, Federate

Learning, Computer Vision,

NLP.

- Difficult to train the NLP model A thorough analysis of computer vision on

biomedical image analytics, and description of

the use of NLP in areas such as EHR data.

- Require massive data to build efficient

model

- Data collection

Xu et al.

[195]

Federate Learning, AI, Medical

Data.

- Data security Provided a descriptive solution regarding the

privacy preservation of patients with

depression, implementation of FL to analyze

and diagnose depression.

- Data Leakage

- Ethical issue regarding data sharing

Lu et al.

[196]

Healthcare, Federate Learning,

Distributive learning.

- Communication cost and delay A detailed analysis to improve the

communication efficiency using distributed FL

over a graph, wherein the algorithm enacts

local updates for multiple iterations to permit

communications among several nodes.

- Networking issues

- Interruption in the communication setup
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4.2 Solving the existing challenges using FL
with AI in the healthcare system

4.2.1 Role of FL

To execute learning tasks in something like a decentralized

environment, where one central server controls the global

learning procedure and numerous devices train local

models with their own data [21] is the process known as the

Federated Learning process. FL can be used in a variety of

settings, including healthcare and education. Models based

on machine learning logic necessitate a huge quantity of

information to train the model from various parts of the

system, such as hospital data in the healthcare sector. The

healthcare industry handles a lot of sensitive data that, if

tampered with, could bring the entire system down. In this

case, FL devised a privacy-preserving approach that does

not require the transfer of sensitive data from the source,

instead of training local models with their own data and

then sharing results with the global network [209]. As a

result, this strategy can protect the privacy of patient

information by using an iterative process in which model

parameters are constantly exchanged and modified, but raw

data is not disclosed. As a result, to preserve the security

and privacy of the hospital system, FL provides a privacy-

preserving method while also providing the benefits of

machine learning models to solve numerous difficulties

related to healthcare systems [193, 210].

4.2.2 Role of FL with AI

The new breed of AI is called Federated Learning, and it is

based on a decentralized training and learning mechanism.

A new AI model architecture that can be spread over a

large number of devices without knowing personal user

data. This technique assures user privacy and data security

because it does not access raw data [21]. The demand for

user privacy has evolved in tandem with the advent of

artificial intelligence. The FL, which sits at the intersection

of AI-cloud and AI-user equipment, plays a key role in

bringing the UE and cloud together to create a significantly

more secure and robust system than earlier architectures.

Again, due to FL’s properties, imbalanced and non-IID

information can be handled appropriately, ensuring that the

AI system’s performance is not limited and that a large

device in multiple contexts may be trained with their local

data and local model without difficulty [211].

4.2.3 Role of FL with XAI in healthcare

Although AI in a federated context can address the concerns

described previously, deep learning has an explainability

difficulty. Because deep learning algorithms are typically

black-box models, there is no acceptable explanation for a

given prediction. Deep learning in healthcare is limited due

to this ambiguity. Explainability is vital in healthcare since

we need to explain why a given prediction for sample input

is made to persuade a clinical healthcare practitioner and a

patient. Humans can understand and describe how an AI

system reached a decision using Explainable Artificial

Intelligence (XAI) [212]. Artificial intelligence approaches

such as deep learning with the integration of FL have

recently played a revolutionary role in healthcare, particu-

larly in terms of diagnosis and surgery. In these fields, these

strategies have been proven to be beneficial. Some deep-

learning-based diagnosis jobs are even more accurate than

human medical specialists. The deep learning model’s

black-box character, on the other hand, hinders its explain-

ability and practical application in medicine.

Amoroso et al. provided an XAI framework for breast

cancer therapeutics in their paper [213]. The experiment

findings showed that the framework could outline an

essential clinical feature for the patient and design onco-

logical medicines using the clustering and dimension

reduction method. Dindorf et al. proposed an explainable

disease in a spinal posture-dependent classifier [214]. EI-

Sappagh et al. suggested an RF model for detecting Alz-

heimer’s disease (AD) progression and diagnosis in [215].

The fuzzy rule-based system could also generate natural

language forms to assist patients and physicians in com-

prehending the AI model. Peng et al. established an XAI

framework to help doctors predict the prognosis of hep-

atitis patients in [216]. In this work, the authors compare

intrinsic XAI approaches like logistic regression (LR),

decision tree (DT), and kNN to complicated models like

SVM, XGBoost, and RF. The authors also used the SHAP,

LIME, and partial dependence plots (PDPs) post-hoc

approaches. Sarp et al. proposed a CNN-based model for

chronic wound categorization in [170], after which they

used the XAI approach LIME to explain the CNN-based

model. Rucco et al. introduced an XAI program to diag-

nose glioblastoma in [217], which combined topological

and textural characteristics. Table 6 presents overviews of

different datasets used in FL, AI, XAI, and Healthcare.

4.2.4 Analysis of performance metrics

To give a manual describing different binary classification

assessment metrics, we use examples of metrics and

evaluations collected from a number of published papers,

including top AI algorithms used in FL. Note that, we do

not comment on the quality of these studies; rather, we use

them to demonstrate how different measures provide

diverse interpretations of an AI model’s quality. A mixture
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model can be used to explain binary classification prob-

lems, with the overall data distribution modeled as:

pðX; aÞ ¼ apPðXÞ þ ð1 � aÞpNðXÞ ð6Þ

where X represents data samples, pP=N denotes the positive/

negative class distributions, and a the parameter of the

positive class, calculated as a ¼ NP

NPþNN
, with NP=N the total

number of positive/negative class data samples. The four

entries in the confusion matrix are the key parameters for

determining the metrics for a binary classifier which are

discussed below.

M ¼
TP FN

FP TN

� �
ð7Þ

• True Positive (TP): The number of accurately catego-

rized positive samples is referred to as the true positive.

• True Negative (TN): The number of correctly catego-

rized negative samples is known as the true negative.

• False Positive (FP): The number of samples incorrectly

categorized as positive is known as the false positive

rate.

Table 6 Overviews of Different Datasets used in FL, AI, XAI, and Healthcare

Works & Year Data Sets Used Application area

Data Sets Discussion FL AI XAI Healthcare

Raza et al.

[218] (2022)

Arrhythmia database from Massachusetts Institute of

Technology - Boston’s Beth Israel Hospital (MIT-BIH)

U U U U ECG-based prediction to identify

arrhythmia using clean and

noisy data.

Anand et al.

[219] (2022)

ECG signals from the PTB-XL dataset, which is freely

accessible & arrhythmia dataset

X U U U To assist clinicials for the easy

diagnosis of cardiac arrest

symptoms.

Shukla et al.

[220] (2022)

3DIRCAD datasets X U X U Predicting Liver Cancer.

Kobylinska

et al. [221]

(2022)

Domestic Lung Cancer Database X U U U Accessing risk of lung cancer.

Thomsen et al.

[222] (2022)

Danish Colorectal Cancer Screening database and Statistics

Denmark (Private Data)

X U U U Colorectal cancer screening.

Kerkouche et.

al. [223]

(2021)

Premier healthcare database U U X U To predict mortality rate of

patients.

Flores et. al.

[224] (2021)

Chest xray image from Mass General Brigham U U X U To predict COVID-19 cases from

chest xray analysis.

Jimenez et. al.

[225] (2021)

Hologic, Siemens Dataet U U X U To detect breast cancer or tumor.

Barbiero et al.

[226] (2021)

CUB data set X U U X Method of logical explanation

(Entropy-based).

Rao et al.

[227] (2021)

3MR & Benzene (Single-rationale), Mutagenicity & Liver

(Multiple-rationales) , hERG & CYP450 (Property cliff)

X U U X To predict properties of

molecule.

Vaid et al.

[228] (2020)

Mount Sinai Brooklyn, Mount Sinai Hospital, Mount Sinai

Morningside, Mount Sinai Queens, and Mount Sinai West

Hospital COVID-19 patients data

U X X U Mortality prediction for patients

with COVID-19.

Dang et.al.

[229] (2020)

eICU synergetic Database U X X U To Predict the likelihood of a

patient’s death, particularly in

ICU circumstances.

Vaid et.al.

[228] (2020)

New York City Hospital dataset (COVID-19) U X X U COVID-19 patient mortality

prediction.

McKinney

et al. [230]

(2020)

Northwestern Medicine OPTIMAM database (Licensed) X U X U To detect breast cancer.

Halling-

Brown et al.

[231] (2020)

NIDDK (Diabetes dataset), Dataset from heart study of

Framingham, Wisconsin dataset (breast cancer)

X U X U To predict clinical diseases

(Diabetic, breast cancer).
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• False Negative (FN): The number of samples incor-

rectly categorized as negative is referred to as false

negatives.

The following measures are used to assess the performance

of leading AI algorithms or models used in FL:

• Accuracy (ACC): The ratio of correctly identified

samples to the total number of samples in the evaluation

dataset is the accuracy. This metric is one of the most

often utilized in medical applications of machine

learning. The accuracy ranges from [0, 1], with 1

representing properly predicting all positive and nega-

tive samples and 0 representing successfully predicting

none of the positive or negative samples.

ACC ¼ TP þ TN

TP þ FP þ TN þ FN
ð8Þ

• Area Under the ROC Curve (AUC): AUC is a metric

that combines effectiveness throughout all categoriza-

tion criteria. The AUC indicates the percentage of

correctly categorized positive samples. Rather of mea-

suring absolute values, it assesses how well predictions

are ordered. It assesses the accuracy of the model’s

predictions regardless of the categorization level used.

• Specificity (SPEC): The specificity indicates the per-

centage of correctly categorized negative samples. It’s

measured as the proportion of correctly categorized

negative samples to all negative samples. The speci-

ficity is limited to [0, 1], where 1 denotes flawless

negative class prediction and 0 denotes inaccurate

negative class sample prediction.

SPEC ¼ TN

TN þ FP
ð9Þ

• Sensitivity/Recall (REC): The recall, also known as the

sensitivity or True Positive Rate (TPR), is the ratio

between correctly classified positive samples and all

samples assigned to the positive class, and it is

calculated as the ratio between correctly classified

positive samples and all samples assigned to the

positive class. The recall is limited to [0, 1], with 1

representing perfect positive class prediction and 0

representing inaccurate positive class sample predic-

tion. This statistic is also considered one of the most

significant in healthcare, as it is desirable to overlook as

few good cases as possible, resulting in a high recall.

REC ¼ TP

TP þ FN
ð10Þ

• Precision (PREC): Precision is calculated as the ratio

between correctly identified samples and all samples

assigned to that class, and it indicates the proportion of

recovered samples that are relevant. The precision is

limited to [0, 1], with 1 representing all accurately

predicted samples in the class and 0 representing no

valid predictions in the class.

PREC ¼ TC

TC þ FC
ð11Þ

where C stands for ‘‘class’’ and can be either positive

(P) or negative (N) in binary classification (N).

However in Table 7 the results of several research which

have been discussed throughout this article in terms of

accuracy and AUC have been shown and also depicted

graphically in Fig. 7 and Fig. 8, respectively. In the graph

the X axis represents the studies that achieved the scores

and the Y axis represents the performance score in per-

centage. Inside every bar the data that have been consid-

ered in the work is indicated and on the top of every data

bar the method used have been shown.

5 Open issues and future direction

We cover this section on the additional issues as open

discussion and guide some matters for further discussion in

5.1 and 5.2, respectively. We also present the existing work

analysis of FL-AI with Healthcare based on central idea,

applications, approaches, open issues and further opportu-

nities in the Table 8.

5.1 Open issues

Federated Learning is a continuous process where a model

keeps updating over time. That’s why different challenges

and problems were brought out with further developments.

The issues are open to the researchers so that they could be

solved efficiently within a short time. Since the whole

procedure runs over the internet, privacy and security are

always a major concern in this field, especially when it

comes to competent health care systems. The health-related

data is susceptible compared to the others. In this regard,

people are utilizing various technologies into the health

care systems such as SDN, Blockchain, etc [234, 235].

However, it is an advanced machine learning method that

needs large datasets [233, 236]. A suitable dataset is

essential for such problems. It is not so easy to manage

such datasets for medical cases, which is a demerit for this

field. Also, the datasets are not present at the user end,

where the distributed training would be performed as a

minor update of the global model. Apart from this, the

performance obtained from the health data is not satisfac-

tory because the domain of the information is not the same

and also contains outliers into the data points. Processing

the health data and training machine learning models is
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expensive and time-consuming. Efficient methodologies

are still critical to find out.

However, to upgrade the performances of such systems

in the field of medication, researchers are trying to apply

novel methods and technologies. Increasing the security of

the healthcare systems remains the vital concern of the

personnel. The patient’s personal and sensitive data needs

to be processed to develop smart healthcare systems. To

make them more reasonable and available everywhere, the

Internet of Medical Things is being used. So, the security

could be given utilizing SDN, Blockchain, NFV, etc

[237, 238]. In this era of artificial intelligence, we can use

data augmentation to imitate the existing datasets to pre-

pare more data since Federated Learning requires a vast

Table 7 The Results of Several Research Discussed in this Article in terms of Accuracy and AUC

Works Datasets Methods Accuracy AUC

Chang et al. [232] Pima Indians diabetes Database BlockFL 0.84 NA

Islam et al. [233] Abalone dataset Random forest 0.97 NA

KNN 0.94 NA

Naı̈ve Bayes 0.98 NA

Wine dataset Random Forest 0.99 NA

KNN 0.91 NA

Naı̈ve Bayes 0.98 NA

Vaid et al. [228] MSB Hospital Dataset (NYC) FL(Lasso) NA 0.802

MSH Hospital Dataset (NYC) FL(Lasso) NA 0.773

MSM Hospital Dataset (NYC) FL(Lasso) NA 0.776

MSQ Hospital Dataset (NYC) FL(Lasso) NA 0.693

MSW Hospital Dataset (NYC) FL(Lasso) NA 0.805

MSB Hospital Dataset (NYC) FL with out Noise(MLP) NA 0.827

MSH Hospital Dataset (NYC) FL with out Noise(MLP) NA 0.801

MSM Hospital Dataset (NYC) FL with out Noise(MLP) NA 0.796

MSQ Hospital Dataset (NYC) FL with out Noise(MLP) NA 0.822

MSW Hospital Dataset (NYC) FL with out Noise(MLP) NA 0.834

MSB Hospital Dataset (NYC) FL with Noise(MLP) NA 0.812

MSH Hospital Dataset (NYC) FL with Noise(MLP) NA 0.767

MSM Hospital Dataset (NYC) FL with Noise(MLP) NA 0.785

MSQ Hospital Dataset (NYC) FL with Noise(MLP) NA 0.822

MSW Hospital Dataset (NYC) FL with Noise(MLP) NA 0.83

Flores et al. [224] Hologic FL NA 0.78

GE FL NA 0.65

Siemens FL NA 0.83

Hologic Fed-CL NA 0.8

GE Fed-CL NA 0.63

Siemens Fed-CL NA 0.61

Hologic Fed-Align NA 0.79

GE Fed-Align NA 0.69

Siemens Fed-Align NA 0.85

Hologic Fed-Align-CL NA 0.84

GE Fed-Align-CL NA 0.7

Siemens Fed-Align-CL NA 0.83

Shukla et al. [220] CT scan images from 398 individuals Unet 0.94 NA

Anand et al. [219] PTB-XL of ECG signals ST-CNN-GAP-5 NA 0.934

ECG dataset of arrhythmia patients ST-CNN-GAP-6 0.95 0.99

Rucco et al. [217] The Cancer Imaging Archive (TCIA) VGG16 0.97 0.97

Peng et al. [216] Hepatitis classification dataset from UCI Random Forest 0.919

El-Sappagh et al. [215] Alzheimer’s Disease Real dataset Random Forest 87.76 0.953
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amount of data. More data analysis needs to be performed

to find out an optimal training time and maximum perfor-

mance. The generalization power of the current machine

learning models is not satisfactory when it comes to the

medical sector. Some melioration of CNN could be

designed and tested in this context. The cost analysis for

the models should be performed using some statistical

methods before applying them to the field.

5.2 Future directions

5.2.1 Role of FL in data science

Data generation in all industries is extensive with the

increasing usage of IoT-based methods in the current sys-

tem. This is the data scientist’s current challenge. One of

the most important is to ensure data security, and the

sensors that are associated with the IoT-based mechanism

have less memory. They do, however, generate a massive

amount of data for every nanosecond. As a result, storing

or transferring these data in a short period of time is both

difficult and critical [239]. The benefit of utilizing FL in

this scenario is that the data storing mechanism is avoided

and distributed among multiple clients, and because the

data is trained locally on each client, the security of indi-

vidual data is ensured [240].

5.2.2 AI with blockchain in security

Artificial Intelligence is the most potent agent for any

applications areas. Sometimes AI acts as a communicator

bridge of real-life applications. On the other Blockchain is a

Fig. 7 Results analysis of different research in terms of Accuracy (%)

Fig. 8 Results analysis of different research in terms of AUC (%)
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Table 8 Existing work analysis of FL-AI with Healthcare based on Central Idea, Applications & Approaches, and Open Issues and Further

Opportunities

Authors Approaches Central idea Applications Open issues and further

opportunities

Ma et al.

[183]

Revolutionizing the

transformation of traditional

healthcare to digital

healthcare.

Electronics solution to many

issues in healthcare sector

Healthcare Informative,

Data Distributive.

Provide flexible hybrid

electronics with structural

design routes that can

integrate high-performance

electrical qualities.

Pershad

et al.

[184]

Threats regarding the use of

Twitter for healthcare data

include significant amount of

misleading information.

The importance of use of social

media as a source of

information for research,

study and gathering

knowledge.

Understanding between

the patient and

healthcare official,

Technology coupled

with public health

They explored the potential of

Twitter in the sphere of

healthcare and medicine and

particularly aim towards

improve care for the patients.

Kim et al.

[185]

Proposes a blockchained

Federated Learning

(BlockFL).

Enables on-device machine

learning without any

centralized training data or

coordination by utilizing a

consensus mechanism in

blockchain.

On-device machine

learning, Federated

Learning, blockchain,

latency

Analyze a model of blockchain

based FL and characterize the

block generation rate by

taking into account delays in

communication and

consensus.

Miotto

et al.

[186]

Access of information and

technical insights from

complex biomedical

information acts as a critical

issue to revolutionize health

care.

Suggestions towards DL

approaches to be the driving

force for translating large

biomedical information for

uplifting healthcare

Deep learning, health

care, biomedical

informatics,

translational

bioinformatics,

genomics electronic

health records

Suggestion towards

development of meaningful

schemes to close the gap

between DL models and

human understand ability.

Wiens

et al.

[187]

Application of ML to change

patient risk stratification in the

area of medicine, and

particularly for contagious

diseases

ML towards the study of

methods for identification of

patterns in data

Machine Learning,

Healthcare.

Presented distinctive evidence

for healthcare workers

towards the use of ML.

Kumar

et al.

[153]

Propose a data normalization

technique that deals with data

heterogeneity because the data

is acquired from several

hospitals with various types of

Computed Tomography (CT)

scanners.

Issue of diagnosis of

coronavirus due to the scarcity

and reliability issue of testing

kits

COVID-19, Privacy-

Preserved Data Sharing,

Deep Learning,

Federated-Learning,

Blockchain

Proposed an architecture to

gather data from several

sources and drills a global

deep learning model using FL

based on FL.

Nguyen

et al. [9]

Addressed the requirements for

a more patient-centric reach

for healthcare facilities and to

improve the precision of EHR.

Potential application of

blockchain in healthcare

industry

Blockchain, Consensus,

Distributed systems,

Healthcare Informative.

The research focuses towards

the applications of blockchain

in healthcare industry.

Holbl et al.

[188]

A mathematical algorithm to

display the features of

controllable network and

blockchain based FL

parameters to record its effect

on system performance

Application of FL in the realm

of vehicle communication

medium that is effective.

Vehicle Machine

Learning, Federated

Learning, Blockchain.

Proposed an independent

blockchain based FL

architecture for preserving

privacy and implement

effective vehicular

communication networking.

Pokhrel

et al.

[189]

As outlined in this survey paper,

many cryptocurrencies studies

are currently being

investigated.

Scientists in academic and

industrial have begun to

investigate applications aimed

toward healthcare use, based

on the existing blockchain

technology.

Blockchain, Healthcare

Industry,

Authentication, IoT,

Wireless,

Vulnerabilities, Survey.

As this study paper points out,

many healthcare applications

have particular requirements

that are not addressed by

many of the blockchain trials

now being investigated. This

report also discusses a number

of potential research

opportunities.
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provider of distributed ledger for any vulnerable components

[241]. BC also offers a temporary ledger for performing

security and confidentiality parameters efficiently. AI

applications need a secured platform to continue its activities

in the applications environments. BC easily collaborates

with AI and shows their better performance for the desired

system. In the BC environment, AI agents are solely attached

during communications. Combined, they produce a highly

protected environment that can continue their services to the

current and future users incredibly [242, 243].

Table 8 (continued)

Authors Approaches Central idea Applications Open issues and further

opportunities

Mcghin

et al.

[190]

Incorporate Federated Learning

within the blockchain network

consensus process so that the

consensus computing activity

may also be used for federated

training.

Data providers face significant

challenges in sharing their

data through wireless

networks due to security and

privacy concerns (e.g., data

leakage).

Data Sharing,

Permissioned

Blockchain, Federated

Learning, Privacy-

preserved, Industrial

IoT

They start by creating a secure

data sharing architecture for

distributed multiple parties

using blockchain technology.

The data sharing challenge is

thus transformed into a

machine learning problem.

Lu et al.

[191]

Suffer from moral harm or

mental health issues.

The covid-19 outbreak is going

to place healthcare

professionals all across the

world in an unprecedented

scenario, forcing them to

make hard judgments while

working under great pressure.

Healthcare, Machine

Learning.

Handling the symptoms of

depression that healthcare

professionals face during the

covid-19 disease outbreak.

Greenberg

et al. [66]

Factors for Delivering Safe Post

surgical and Critical Care in

the Event of a Medical

Emergency

The difficulties that healthcare

facilities across the world

have encountered are mostly

the result of a lack of

preparedness. COVID-19

highlighted these weaknesses,

leading healthcare

organizations all across the

world to take action.

Healthcare, Medical

Informative.

International Perspectives on

the Economic Impact of the

COVID-19 Pandemic on

Health Care Facilities and

Systems.

Alemdar

et al. [70]

Provide numerous cutting-edge

examples, as well as design

factors such as adaptability,

conventionality, efficiency,

reliability, and productivity, as

well as a full analysis of the

benefits and limitations of

these systems.

With continuous monitoring,

pervasive healthcare systems

give extensive relevant

information and alerting

mechanisms against unusual

circumstances.

Healthcare, HIoT. Reduces the complexity of the

healthcare system for

providers and enables severely

ill and elderly people to live

independently.

Yu et al.

[16]

Optometric physician and

computer engineers are

collaborating to test and

deploy an automated image

categorization system that will

scan millions of diabetic

patients’ retinal pictures.

AI is influencing medical

practice in a positive way.

Thanks to recent

advancements in digitized

data collection, machine

learning, and computing

infrastructure, AI applications

are moving into domains that

were previously thought to be

only the domain of human

expertise.

AI, Healthcare, Federate

Learning.

They explore recent

breakthroughs in AI

technology and their

biomedical applications, as

well as the future challenges

that medical AI systems will

confront, and also the

financial, ethical, and

sociological implications of

AI in healthcare.

Esteva

et al.

[194]

Standardized deep learning

models for genomics are

reviewed, as well as

reinforcement learning in the

context of robotic-assisted

surgery.

Deep learning techniques for

healthcare presented, with a

focus on computer vision,

NLP, reinforcement learning,

and generalized

methodologies.

AI, Healthcare, Federate

Learning, Computer

Vision, NLP.

They explain the applicability

of NLP to fields such as EHR

data, and they explore

computer vision mostly in

terms of medical imaging.
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5.2.3 Controlling robots using FL-AI

In today’s modern technological environment, robots are

used in numerous sectors to relieve humans of many dan-

gerous tasks. Again, AI-based agents have a very efficient

processing capability and can handle heterogeneous data

transactions. Furthermore, with the modern cloud storage

system, effective data and information storage with very

high memory storage in the cloud system is conceivable.

Continuous learning and training are now possible because

of the ability to retrieve data from numerous sources in a

short period of time. In today’s Industry 4.0 era, the

implications of autonomous agents have grown. Robots are

used in a variety of industries, including hospitals, educa-

tional institutions, the military, and even several hotels.

However, because training an agent necessitates the col-

lection of large amounts of data from many sources, it is

vital to provide secure data collection for training. In this

regard, FL is a well-suited solution since the key

demanding task, data transfer, is forbidden in this scenario,

ensuring data privacy while maintaining the autonomy

system’s efficiency [244].

5.2.4 FL with big data analytic

The primary idea behind Big Data is that must-have data

volume, velocity, and variety. The basic job in extensive

data analysis is to collect data from various sources and

generate a dataset with a diversity of data from various

sources. With the development of wireless networking

resources such as 5G or even 6G, as well as IoT and

Industry 4.0, this has become easier. All of these devel-

opments aid in data collection and in a real-time environ-

ment. The industrial sector collects and generates big data

from a variety of sources, including heterogeneous sources.

This technique is difficult because when data flows from

source to destination, it can be manipulated by an intruder

or hacked in the middle, resulting in a violation of critical

user data privacy. FL is a new breed of AI technology in

which the ML models are locally trained using the data of

the local system. Continuous training is ensured by using

the source data, as are the significant data criteria. As a

result, data privacy is also ensured, and there is no need to

transmit sensitive user data from one location to another

[245].

5.2.5 FL with blockchain in industry 5.0 applications

The future IR 5.0 is designed with the primary goal of

connecting smart machines and the general public. The

usage of IoT devices allows for the collection of data even

in remote regions, and with the gathered information,

communication may be established without any additional

effort on the approach is the data collected from the IoT

devices and transferred to the owner. However, the

acquired data is raw and may not be in the suitable format

for the computer to understand the nature of the data. This

is when the ML algorithm’s AI is put to use. The essential

computations are carried out using AI algorithms, and the

resultant analysis is promptly processed using edge com-

puting. But, there is a challenge of protecting sensitive data

from the attack of the intruder. As the transmission of data

from device to device, there is a possibility of attack at the

nodes of the data hub be attacked by intruders. In this case,

FL and blockchain can be a possible solution where the

data of each side is collected, trained, and processed on

each local place, and the result is passed to the server. The

initial parameters then passed through the blocks of the

blockchain technology for secure transmission [246, 247].

5.2.6 Applying FL-blockchain for accessing medical data

An essential issue is examining medical disease or medical

sector data from the healthcare system. However, medical

data is extremely sensitive, and any changes could result in

a massive loss for the entire system. In this case, Federate

learning combined with the blockchain mechanism can

produce a secure yet efficient model for the smart health-

care system that benefits from sophisticated learning and

training algorithms while without transferring sensitive

data to the network. For the secure aggregation, the initial

parameters, number of rounds, and the keys, which is the

public one of all clients, are collected in the secured

blockchain. While an alternate block is generated after the

verification procedure is completed, the parameters are

obtained by the clients or the local models. Thus the

medical data through the blockchain and Federated

Learning security is ensured, and an efficient model can be

assured [232].

5.2.7 FL with healthcare in smartindustrial IoT

With the increasing use of IoT devices, it is being

employed by various industries, including education,

healthcare, data science, data analysis, and so on. In the era

of smart IIoT, the necessary data for analysis, such as MRI

images, test samples of a specific disease, information of a

patient staying in the hospital, or even data of hospital staff

or hospital management, is easily gathered and sent to a

central server for further processing in the healthcare sys-

tem with the help of IoT [248]. However, as these tech-

nologies have advanced, collecting data has become the

main draw for attackers. As a result, while these data are

being sent from source to destination, an attacker can

simply gain access to them and take over the system. In this

regard, FL may be a viable solution because it keeps data
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safe on the local machine while processing tasks are per-

formed at each client. The output is then sent back to the

central server for additional examination using a secure

scenario.

5.2.8 AI-FL in smart healthcare using big data

There is a high demand for standardization throughout the

data collection, processing, and result generation processes.

Again, a platform that can gather information from

numerous sources and perform a task, solve critical prob-

lems, or make a decision without the need for human

participation would be tremendously beneficial to the

healthcare industry. In healthcare, AI performs a vital and

crucial role in understanding the human thinking process

through the computer using various effective AI-based

algorithms to make complex examinations easier for

healthcare professionals [83]. Data aggregation using FL

and smart wearables with AI benefits to create an intelli-

gent and secured system, predicting mortality and length of

hospital stay period using electronic health records where

the FL model assists the secure data collection and building

a brilliant AI model and predicting mortality and length of

hospital stay period using electronic health records where

the FL model helps the secure data collection and building

an intelligent AI model.

6 Conclusion

The recent progress in healthcare has designed a keen

interest in the research community as well as FL to inte-

grate AI in the desired networks. This survey comprehen-

sively mines the immense information regarding emerging

topics–FL, AI, XAI, and e-Healthcare. Moreover, we dis-

cuss in details the cutting edge developments of FL and AI

in intelligent healthcare applications. The FL-AI, FL-

Healthcare, and AI-Healthcare have been incorporated with

each other significantly. Also, we address different issues–

security, privacy, reliability, scalability, and confidentiality

using our mentioned terms. Although we have studied both

FL and AI-XAI techniques for the healthcare system and

categorized them into different types of solutions, however,

healthcare is not limited to only AI and FL techniques.

Still, various problems and challenges that need to be

addressed. The following study analyses the progress of

security, state-of-the-art discussion, benefits of integration,

taxonomies, and open issues have been presented. Addi-

tionally, we have offered several future research guidance

in this regard.
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