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A B S T R A C T   

Particulate matter (PM) is defined by the Texas Commission on Environmental Quality (TCEQ) as 
“a mixture of solid particles and liquid droplets found in the air”. These particles vary widely in 
size. Those particles that are less than 2.5 μm in aerodynamic diameter are known as Particulate 
Matter 2.5 or PM2.5. Urban haze pollution represented by PM2.5 is becoming serious, so air 
pollution monitoring is very important. However, due to high cost, the number of air monitoring 
stations is limited. Our work focuses on integrating multi-source heterogeneous data of Nan-
chang, China, which includes Taxi track, human mobility, Road networks, Points of Interest 
(POIs), Meteorology (e.g., temperature, dew point, humidity, wind speed, wind direction, at-
mospheric pressure, weather activity, weather conditions) and PM2.5 forecast data of air moni-
toring stations. This research presents an innovative approach to air quality prediction by 
integrating the above data sets from various sources and utilizing diverse architectures in Nan-
chang City, China. So for that, semi-supervised learning techniques will be used, namely 
collaborative training algorithm Co-Training (Co-T), who further adjusting algorithm Tri-Training 
(Tri-T). The objective is to accurately estimate haze pollution by integrating and using these 
multi-source heterogeneous data. We achieved this for the first time by employing a semi- 
supervised co-training strategy to accurately estimate pollution levels after applying the U-air 
system to environmental data. In particular, the algorithm of U-Air system is reproduced on these 
highly diverse heterogeneous data of Nanchang City, and the semi-supervised learning Co-T and 
Tri-T are used to conduct more detailed urban haze pollution prediction. Compared with Co-T, 
which train time classifier (TC) and subspace classifier (SC) respectively from the separated 
spatio-temporal perspective, the Tri-T is more accurate with a and faster because of its testing 
accuracy up to 85.62 %. The forecast results also present the potential of the city multi-source 
heterogeneous data and the effectiveness of the semi-supervised learning. We hope that this 
synthesis will motivate atmospheric environmental officials, scientists, and environmentalists in 
China to explore machine learning technology for controlling the discharge of pollutants and 
environmental management.   

1. Introduction 

In the 21st century, China’s economy has been developing continuously and rapidly, whose the process of industrialization and 
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urbanization has been significantly accelerated. However, the extensive economic development mode, large-scale construction and the 
increase of energy consumption have caused many social and environmental problems, one of which attracts particular attention is the 
urban air pollution [1,2]. Among them, the haze pollution with fine Particulate Matter or PM2.5 as the main pollutant is becoming more 
and more serious. The coverage of haze weather continues to expand, resulting in the increasing pressure of urban atmospheric 
environment, which seriously restricts the sustainable development of China’s economy and damages people’s health [3,4]. In view of 
this, the Chinese government has invested a lot of resources to establish more than 1500 air pollution monitoring stations to 
dynamically record and release air pollutants in real time since 2012. However, it is not surprising that the number of air monitoring 
stations is small due to extremely high upkeep costs and land & manpower costs. There are only 9 stations in Nanchang City, about 
44km2/station, which are far from satisfying in air monitoring. Therefore, how to give more accurate air quality prediction without 
increasing the number of stations has become one of the long-term goals of environmentalists. 

In actual study, people have found that there are various factors affecting haze pollution, such as traffic, meteorology, industrial 
and human activities, which may affect the air quality in a large or small scale [5]. Actually, the complex causes and the forecast 
provided by air monitoring stations in small volume for which have brought great challenges to the real-time monitoring of air quality 
in most situations [6,7]. For haze pollution, its main components are constantly changing. In particular, the development of industrial 
technology has resulted in the particulate sediments, such as PM2.5, PM10, O3, SO2, NO2 and CO, which produced by busy human 
activities and traffic flows in cities become the main force of haze pollution [8]. The methods of haze pollution prediction are mainly 
divided into two categories: model simulation and data-driven techniques. However, these models, such as GWR [9,10], PS-FCM [11], 
WRF [12] and AOD [2,13,14] require many parameters, which are difficult to obtain and hard to satisfy practical demand. As for 
data-driven techniques, they are also further classified into traditional numerical and machine learning methods. Typical methods of 
the former are spatial interpolation and Land Use Regression (LUR) model. Actual cases, such as Sampson et al. (2013) successfully 
predicted PM2.5 at a fine spatial scale across the U.S. using regionalized Ordinary Kriging method [15]. Furthermore, Hasenfratz et al. 
(2015) utilized both time-series and simulation models to estimate vehicle contributions to pollutant levels near roadways [16]. 
However, spatial interpolation only consider limited geographical factors, and cannot cope with the complicated and nonlinear air 
quality estimation problem. And LUR model can describe the temporal and spatial changes of air quality, but it is complex and there is 
no standard construction method. Therefore, while LUR has been extensively used to capture the spatial distribution of air pollution, 
regional background and nonlinear relationships can be challenging to capture using linear approaches [17]. 

With the development of smart devices and cloud computing, more and more public data may be collected from various sources and 
analyzed in an unprecedented way [18]. Especially, Urban Big Data (UBD) is a natural data source, and many researchers naturally 
turn to machine learning, which has recently been used in the forecast air quality. Such as Deep Brief Network (DBN), Recurrent Neural 
Network (RNN), Random Forest (RF), Particle Swarm-based Fuzzy C-Means (PS-FCM) model, Online Recurrent Extreme Learning 
Machine (OR-ELM) technique and other machine learning methods applied to timely prevention of haze pollution [11,13,17,19–21]. 
For the same pollutants, many of the above works have presented that the performance of machine learning is superior to that of 
traditional numerical methods. At the same time, it is also proved that the latter could benefit from understanding how explanatory 
variables were expressed in machine learning models [20]. Furthermore, UBD has made great efforts in all aspects related to smart 
cities, such as taxi flow prediction [17–24], urban function division [25], traffic route planning [26], etc. Duo to different sources and 
structures, multi-source fusion technology of how to integrate and utilize these data is an important content for big data research. Jiang 
et al. (2018) made an attempt for semi-supervised urban air quality prediction based on multi-source heterogeneous data, whose 
prediction results also showed its potential and effectiveness of the semi-supervised learning [27]. Actually, integrating these relevant 
yet heterogeneous models can provide complementary predictive powers by combining the expertise of heterogeneous data. Moreover, 
they are used to address data sparsity issues about single infrastructures [28]. 

In addition, the machine learning framework naturally fits air quality prediction problem with a small amount of stations and UBD, 
especially semi-supervised learning. What’s more, the most typical one is the Urban Air (U-Air) system developed by Zheng et al. 
(2013) of Microsoft Research Asia (MSRA) based on the joint training framework in 2013 [29]. Specifically, the framework uses a large 
number of unlabeled data related to air quality for assistance, which can obtain a prediction accuracy more than of 80 %. Essentially, 
the algorithm is to enable different learners to learn from each other via iterative methods based on a large number of unlabeled 
samples and a small number of labeled samples. However, the results of two classifiers obtained by the Co-T framework are always 
inconsistent, which brings difficulties to the practical application of U-Air system; actually, this embodies the Black-Box nature [30]. 

Rapid economic development and the sharp increasement of the population and vehicle puts forward new requirements to Nan-
chang’s environmental protection. In the meantime, these aspects also present challenges to environmental monitoring technologies 
[31,32]. In view of this, we motivate and design an urban haze pollution prediction of semi-supervised learning different from the 
traditional prediction model based on single source and structure data in this paper. It establishes a unified prediction system based on 
multi-source heterogeneous data combined with specific algorithms. In the forecasting process, we implement five heterogeneous data 
based on track data of 10792 taxis, 24809 human mobility, 31-day meteorology, a 2470-road network and POIs including 110 in-
tersections, 1495 bus stops and 243 gas stations in Nanchang City. The U-Air algorithm is reproduced on these highly diverse het-
erogeneous data of Nanchang City, and a comparative study between Co-T and Tri-T based on MLP and SVM through training TC and 
SC is carried out to verify and compare their prediction accuracy and training speed. The experimental simulation shows that Tri-T has 
higher accuracy and faster training. This work provides new insights into the data limits facing cities in terms of the predictive control 
strategy of haze pollution. The research significance lies in that it can integrate the characteristics of various data and make com-
plement of various data for maximum PM2.5 prediction accuracy, so as to provide the most accurate pollution warning for the public. 
The aim of the thesis is to provide a reference for people’s healthy travel and social activities, and improve people’s living standard. 
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2. Data source and feature extraction 

The data set used in this paper is collected from Nanchang City, which are various from source or format. Among them, all these 
data in the area where the air monitoring station is located are learned as labeled samples, and other data in the area without the air 
monitoring station except the stations data are unlabeled samples. 

2.1. District partition 

This study was conducted in the mid-subtropical zone in Nanchang City (115◦27′-116◦35′E, 28◦09′-29◦11′N). As the capital of 
Jiangxi Province of China, Nanchang City is in the process of rapid urbanization. With the popularity of the car, the air pollution 
problems caused by traditional car should not be ignored. The experiment in this paper will be carried out on its central urban area of 
Nanchang City (28◦36′-28◦44′N, 115◦42′-115◦58′E). According to the longitude of 0.02′and latitude of 0.01′ interval, it is divided into 
64 grid cells of size 32.6 × 18.5 m as shown in Fig. 1. In the Fig. 1, 9 red areas have built air quality monitoring stations, so the collected 
samples from these areas are labeled, and the unlabeled samples are from the other 55 areas. Therefore, there are 3888 labeled and 
23760 unlabeled samples. In such cases, if done successfully, this survey would greatly improve the performance of learning by 
avoiding much expensive data-labeling efforts [29]. 

7-Petrochemical station (Suburb); 22-Xianghu station (Xihu District); 41-Wushu School station (Wanli District); 45-Construction 
Engineering School station (New Town District); 46-Provincial Foreign Affairs Office station (Old Town District); 47-Provincial sta-
tion (Qingshanhu District); 48-Jingdong Town Government station (High-tech Development Zone); 55-Forestry Company station 
(Changbei Investment Company Industrial Park); 60-Institute of Economic Forestry station (Economic& Technology Development 
Zone). 

2.2. The data of air monitoring stations 

There are six types of air pollutants by Nanchang air monitoring stations in this paper, namely PM2.5, PM10, O3, SO2, NO2 and CO, 
which were obtained from Jiangxi Provincial Environmental Monitoring Center Station, China. The increase in atmospheric pollution 
dominated PM2.5 has become one of the most serious environmental hazards worldwide [10,33], o only the concentration of PM2.5 
(namely ρ(PM2.5)) is predicted in this work. The concentration limit of daily average PM2.5 and their respective corresponding AQI are 
displayed in Table 1. This paper has hourly collected the PM2.5 data of Nanchang City in July 2022, which marked the AQI level is 
excellent and medium, accounting for the vast majority in July alone. In other words, there rarely appears in the value of AQI or the 
daily average PM2.5 smaller than 100 or 75 μg/m3, respectively. 

2.3. Traffic flow and their features Ft 

With the rapid development of cities and increase in automobile ownership, traffic has become one of the main sources of PM2.5 
pollution [33]. Traffic flow data mainly refers to the data generated by moving process of vehicles. In this study, the track data of 
10792 taxis is used to describe Ft in Nanchang City in July 2022, which are collected by Python to climb the Baidu map and Amap. 

Traffic data of Nanchang City include taxi number, time, longitude, latitude and passenger status, etc. The sampling interval of 
trajectory data is from 1 to 30 s. The extracted features from traffic data include the expectation, standard deviation and distribution of 
the taxi speed. To elaborate a bit on that, the expectation can be inferred that the slower the average speed of vehicle, the greater the 
possibility of congestion, the more harmful gases emitted by vehicles in the congested space, and the air quality tends to deteriorate. 
The standard deviation could effectively reflect the difference in the vehicle speed as an aid to expectations. Large variance represents a 
scattered speed distribution, small probability of congestion and better air quality. The distribution is divided into three sections at 20 
km/h and 40 km/h, and the probability that the taxi speed falls in each section is counted. For the convenience of calculation, the 
travel time in this speed range is used instead of the total time. Traffic flow can judge whether the urban road traffic is congested and 

Fig. 1. Distribution of air quality monitoring station in Nanchang.  
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then mitigate it. Notwithstanding, mitigating traffic congestion on urban roads is paramount importance in urban development and 
reduction of energy consumption and air pollution.31. 

2.4. Traffic flow and human mobility features Fh 

Fh can also be extracted from taxi track, that is, human mobility. If a taxi stays at a certain point for a long time, it could be 
considered that human movement has occurred here. In fact, it is a mining of taxi track. Furthermore, if there are many people coming 
and going to some area in a certain period of time, there may be more POIs here. To be more specific, if there are many people coming 
and leaving, there may be a shopping center; otherwise this could be a factory or school here. We can use Fh from taxis track to calculate 
the number of people entering and leaving small areas. In order to simply the calculation, when passengers enter the area (namely, the 
passenger status is indicated by 1), the number of people entering the area plus 1; conversely, the number of departures plus 1. When 
the passenger status is 0 in sympathy with a taxi enters or leaves the area, the flow of people in and out has not changed. 

2.5. Meteorology and their features Fm 

Fm includes temperature, dew point, relative humidity, wind speed, wind direction, atmospheric pressure, weather activity and 
weather conditions, etc. Obviously, high wind speed will lead to easy dispersion of pollutants and low concentration, but high hu-
midity then otherwise. High atmospheric pressure generally benefit from air quality, while the influence of temperature on it was not 
obvious. In particular, the air quality is generally good at high temperature and low humidity, and it is also excellent under the 
condition of high pressure and low temperature. In addition, the influence of adverse meteorological conditions will further intensify 
the accumulation of secondary aerosols and other pollutants and promote the explosive growth of PM2.5/CO values [34]. 

2.6. Road networks and their features Fr 

Urban road networks, one of the crucial infrastructures in cities, facilitate the people’s daily commutes and maintain modern 
society’s ability to function properly [35,36]. Fr can be obtained according to SHP format map. Different roads have a great impact on 
the speed limit and normal driving speed of vehicles. Generally, the vehicles can travel smoothly and at a higher speed on the road with 
high specifications and many lanes. It is not easy to block and generate a large amount of exhaust gas, and so what happens is the 
impact on the environment is small [37]. The road characteristics that could be extracted directly from the road networks include the 
length of roads at all levels and the length of other roads. 

2.7. POIs and their features Fp 

The Points of Interest (POIs) refer to places where there are usually many people, such as school, factory and park [38,39]. These 
POIs belong to the urban open public spaces are the areas where people tend to gather together, which may lead to impact on different 
air quality. For example, parks and schools with better greening can bring positive benefits to air quality, but factories are just the 
opposite. The POIs are classified into three types: intersection, bus stop and gas station, then their number can be counted inside these 
zones. 

Fp comes from Baidu API, which is a developer-friendly platform and provides a series of map services for free. However, the 
statistical process is cumbersome, and the returned results are not consistent every time, so the types of POIs are limited. 

3. Methods 

The learning framework used in this study includes Co-T and Tri-T, both of which belong to semi-supervised learning method based 

Table 1 
The concentration limit of daily average PM2.5 and their corresponding AQI.  

ρ(PM2.5)/μg/m3 AQI AQI level Health effects 

0 < ρ(PM2.5)≤
35 

0 < AQI≤50 Excellent The air quality is satisfactory. There is basically no air pollution. A wide array of people can be normal 
activities 

35 < ρ(PM2.5)≤
75 

50 <
AQI≤100 

Good The air quality is acceptable, but some pollutants may have a weak impact on the health for a handful of 
exceptionally sensitive people. 

75 < ρ(PM2.5)≤
115 

100 <
AQI≤150 

Slight pollution The sensitive people are mildly aggravated. The irritation symptoms appear in healthy people. 

115 <
ρ(PM2.5)≤
150 

150 <
AQI≤200 

Moderate 
pollution 

Further aggravate the symptoms of susceptible people, which may affect the heart and respiratory system 
of healthy people. 

150 <
ρ(PM2.5)≤
250 

200 <
AQI≤300 

Heavy 
pollution 

The symptoms of patients with heart disease and lung disease are significantly aggravated, and the 
exercise endurance is reduced. The symptoms are common in healthy people. 

ρ(PM2.5)>250 AQI>300 Serious 
pollution 

The exercise tolerance of healthy people is reduced, with obvious and strong symptoms, and some 
diseases appear in advance.  
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on the difference 0.7. 

3.1. Co-Training (Co-T) 

In 1998, Blum and Mitchell proposed Co-T for Webpage classification, which has attracted wide attention [40]. Many new 
application scenarios and expansion based on the Co-T framework emerge in endlessly [41]. However, the core framework of Co-T has 
never changed. The sample datasets are divided into two parts on the premise of a research problem with two sufficient perspectives; 
then the supervised samples are used to train the initial classifier, which classify the unlabeled samples. Thus, the data with high 
confidence is selected from the classification results as the training set of the classifier, and Reference 26 also did a similar study. The 
team took traffic flow and human activities as important causes of air quality pollution, in which they applied Co-T framework to 
prediction using U-Air method and achieved a breakthrough success. 

There is something should be specify pointed out in the algorithm framework, that is, the TC and SC tend to use a linear -chain 
Conditional Random Field (CRF) [42–44] and a common Multi-Layer Perception (MLP) neural network [45], respectively. MLP neural 
network, for example, its input is the air quality grade of the nearest three monitoring stations from the area, the distance from the area 
to be predicted, and the geographical correlation. Furthermore, the correlation is measured by their correlation coefficient between 
road networks and human POIs. 

The Co-T algorithm framework for air quality prediction is shown in Fig. 2. 

3.2. Tri-Training (Tri-T) 

The Tri-T algorithm was proposed by Zhou and Li (2005) [42]. Unlike Co-T algorithm, there is only need to ensure the difference 
between classifiers without multiple perspectives. It was originally designed to solve the binary classification problem, but not be 
limited to. For an n classification, it can completely expand the number of classifiers to ensure the correctness of majority voting. Due 
to the uniqueness of PM2.5 data, there is no need to expand the number of classifiers, but it should be noted in other applications. 

In the Tri-T algorithm framework, the conditions to be met in the loop are to ensure that the noise brought by the new pseudo 
labeled samples will not degrade the training results, so as to ensure the convergence and robustness of the training process [27]. 

How to learn from unlabeled samples with noise is the most compelling part for Tri-T algorithm. The added noise from the new 
samples will bring negative effects, but it can be eliminated as long as certain conditions are satisfied [46]. That is, for a data set with m 
samples, if 

Fig. 2. Co-T algorithm.  
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m ≥
2

ε(1 − 2η)2 In
(

2N
δ

)

(1)  

where ε, η, N and δ are error rate of classification, sample noise rate, number of classifiers and classification confidence, respectively, 
there will be 

P(d(H,H∗)≥ ε)) ≤ δ (2)  

where H and H* are approximate classified and actual plane respectively, which means that as long as the number of samples is 

enough, H can be infinitely close to H*. The parameter c instead of 2In
(

2N/δ

)

in formula (1) that it will make the equality in the 

previous inequality hold. Moreover, the equation is simply processed to obtain 

u=
c
ε2 = m(1 − 2η)2 (3) 

The Tri-T algorithm framework for air quality prediction is shown in Fig. 3. 
We assume that the pseudo labeled samples selected in the tth and (t-1)th round in the training process are Lt and Lt− 1, respectively, 

namely mt = |Lt| and mt− 1 = |Lt− 1|. It is further assumed that L labeled samples with ηL noise rate of L. For the ith classifier (i = 1,2,3), 
the misclassification rate of the other two classifiers is et in round tth; for mt = |L∪Lt| samples, there will be (ηLL+|Lt|et) misclassified. 
Therefore, the noise rate of the ith classifiers in 

Round tth is 

ηt =
ηLL + |Lt |et

|L ∪ Lt |
(4)  

where et is represented by the proportion of pairs in the results of the other two classifiers that are consistent with L classification. Then 
the training sample noise rate of the ith classifiers in the round tth and (t-1)th are respectively 

ut =mt(1-ηt)
2 (5)  

ut-1 =mt-1( 1-2ηt-1)2 (6) 

Due to u is inversely proportional to ε, therefore, the training process of Tri-T should ensure that ut < ut− 1, i. e 

|L∪ Lt |

(

1 − 2
ηLL + |Lt |et

|L ∪ Lt |

)

>
⃒
⃒L∪ Lt− 1

⃒
⃒

(

1 − 2
ηLL +

⃒
⃒Lt− 1

⃒
⃒et− 1

⃒
⃒L ∪ Lt− 1

⃒
⃒

)

(7) 

Fig. 3. Tri-T algorithm.  
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Obviously, if |Lt|>|Lt− 1| and |Lt|et<|Lt− 1|et− 1, the conditions are satisfied. However, in the case of et < et− 1 and |Lt|≫|Lt− 1|, then it 
doesn’t work. At this time, it needs sample Lt, then 

s=
⃒
⃒Lt− 1

⃒
⃒et− 1

et − 1 (8)  

when it is satisfied 

⃒
⃒Lt− 1⃒⃒ >

et

et− 1 − et (9)  

s>|Lt− 1| still holds. 

4. Experiment and results 

First we will carry on different combination of features to test their testing accuracies, such as Fm, Ft + Fh, Fr + Fp, Fm + Ft + Fh and 
Fm + Ft + Fh + Fr + Fp. Their testing accuracies are 68.52, 77.91, 69.78, 78.25 and 79.80, respectively. It is pretty obvious that the 
accuracy is increased via a combination of heterogeneous data features. Then experiment simulation of Co-T and Tri-T will be 
presented. 

4.1. The experimental results of Co-T 

This work uses a frequently-used performance evaluation methods for classifiers to test their accuracy, namely Accuracy [47]. That 
is 

Accuracy=
C
T

(10)  

where C and T are the number of correctly classified samples and the total number of samples predicted by the system respectively. 
The training process of Co-T is illustrated in Fig. 4. TC and SC are trained respectively from the separated spatio-temporal per-

spectives. Their test results and two classifiers trained by cyclic training using Co-T are shown in Table 2. The blue and red lines 
represent the training process of the spatial and temporal classifiers respectively. The best performance point occurs when the number 
of cycles is 13; this is, the model in this point is chosen as well trained classifiers. Compared with separated training and the single use 
of a certain classifier from double perspective, the performance of classification has been significantly improved. 

In Tables 2 and it can also be seen that the training classifying quality of joint use of the same classifier algorithm from dual 
perspectives has not improved much, and the spatial classifier has even regressed. However, the testing performance of the TC has been 
greatly improved via the Co-T training, while the SC’s performance has not regressed in spite of a small improvement. This is because 
the SC with higher accuracy has higher confidence in the pseudo labeled samples selected for TC in the process of joint training, and 
thus would be improved the classification performance of TC. However, the samples selected by TC don’t significantly improve SC. 

Although the TC has made great progress for PM2.5 level prediction with multi-classification, it is not easy to prediction results of 
the two combined classifiers. In the experiment, we found that two results are often different. By multiplying, adding and rounding 
their testing accuracy of two classifiers, the further acquired testing accuracies are similar to that of the SC. The U-Air system is to 
multiply the probability that the two classifiers judges whether the sample belongs to a certain class, and take the class with the largest 
probability as the prediction result. Limited to the experimental conditions, this step cannot be realized in this work. 

4.2. The experimental results of Tri-T 

In this section, we provide a detailed comparison of effects on pure-supervised learning and combined Tri-T. As in Table 3, the 
prediction accuracy of Tri-T based on MLP network is up to 84.28 %, which is 5.02 % higher than that of MLP network with only multi- 

Fig. 4. Training process of Co-T.  
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layer perceptron. However, Tri-T with Libsvm has the same testing accuracy in the linear kernel function. Under the polynomial and 
RBF kernel function, their accuracy decreased from 84.07 % to 83.18 %–83.63 % and 82.76 % respectively. While the initial classifier 
train same samples and kernel functions of classifiers are different from each other, its accuracy is improved by 2.22 % compared with 
83.24 % of the linear kernel function. 

Notice that the division of the training and test set is just the reason why the MLP with pure-supervised learning is better than that 
of spatio-temporal MLP algorithm. In order to divide temporal and spatial perspectives, Co-T algorithm should consider the continuity 
in time, or unable to divide randomly. If the training and the test datasets are uneven, this will induce a worse test effect. 

Table 4 illustrates the performance of Tri-T with three SVM kernel functions and their combination. As a note here, the Tri-T’s joint 
modal and evaluation index are voting majority and testing accuracy separately. For a Tri-T with some kernel SVM, its initial set is from 
labeled training set,; while for Tri-T with different kernel SVM, its initial set is formed with all labeled training set to keep the difference 
using different learning algorithms. It illustrations in Tables 2 and 3 that the testing accuracy of the Tri-Twith MLP network is higher 
than that of pure-supervised learning. After introducing the classifiers’ diversity, some samples with high confidence are indeed found 
from the unsupervised data set, thus we can expand the supervised learning data set and improve the testing accuracy. 

Meanwhile, for the Tri-T combined with SVM, the prediction accuracy gradual increases under some supervised samples training 
the same kernel function, directed training using all labeled samples and all samples training different kernel functions. The reason is 
that the difference brought by the Tri-T is not enough to offset the negative effects with the decrease of sample quantity, when the 
proportion of labeled samples is not high and their dimension is high. However, the different trained kernel SVM by all samples not 
only makes use of all labeled samples, but also introduces the difference among classifiers. Beyond that, it underscores that the training 
speed of the Tri-T is much faster than that of the Co-T. To explain, the Co-T uses cross validation to select samples with high confidence, 
while the Tri-T indirectly solves such problems via collaborative classification of several classifiers. 

5. Conclusion 

In this work, we design and implement semi-supervised urban haze pollution prediction model to effectively integrate heteroge-
neous data based on five multi-source data related to haze pollution. The algorithm of U-Air system is reproduced on these highly 
diverse heterogeneous data of Nanchang City. And the Tri-T was used to solve the problem of urban haze pollution level prediction, 
and achieved good results. The method based on different kernel functions can achieve up to 85.62 % accuracy. Compared with Co-T, 
the Tri-T is easier to realize in haze pollution prediction without worrying about the division of feature sets to ensure double per-
spectives, and the classifier algorithm is much easier to change and its training is much faster. Moreover, the theoretical basis of the Tri- 
T also ensures own robustness. The empirical results show that multi-source heterogeneous data based on different data related to haze 
pollution can provide a different yet complimentary view for the same urban phenomenon. Thus, an effective integration of them 
would boost the model performance. 

However, there are still many difficulties and challenges ahead that (i) some indirectly relevant infrastructure data is difficult to be 
obtained or not detailed enough; (ii) the combination and selection of feature data are not deep enough. In the future, more data need 
to be collected for urban air quality prediction. Moreover, the Tri-T algorithm based on Long Short Term Memory (LSTM) [48,49] and 
the introduction of past time information to assist prediction or the use of Tri-net may make the prediction more accurate [50,51]. 
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Table 2 
Comparison between Co-T and their corresponding algorithms.  

Classifier algorithm CRF MLP 

the testing accuracy under the spatio-temporal separation (%) 55.48 72.18 
the testing accuracy under the spatio-temporal combination (%) 60.32 71.89 
the testing accuracy under the spatio-temporal combination and after the training of Co-T (%) 67.54 73.60 
the algorithm increase (%) 21.32 1.33  
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