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The transformation of a single fertilised egg into an adult human consisting of tens of trillions
of highly diverse cell types is a marvel of biology. The expansion is largely achieved by cell
duplication through the process of mitosis. Mitosis is essential for normal growth,
development, and tissue repair and is one of the most tightly regulated biological
processes studied. This regulation is designed to ensure accurate segregation of
chromosomes into each new daughter cell since errors in this process can lead to
genetic imbalances, aneuploidy, that can lead to diseases including cancer.
Understanding how mitosis operates and the molecular mechanisms that ensure its
fidelity are therefore not only of significant intellectual value but provide unique insights into
disease pathology. The purpose of this review is to revisit historical evidence that mitosis
can be influenced by the ubiquitous second messenger calcium and to discuss this in the
context of new findings revealing exciting new information about its role in cell division.
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INTRODUCTION

Since the discovery of the cyclins and their involvement in the cell-cycle, the study of mitosis
regulation has focused on coordinated patterns of protein synthesis, phosphorylation, de-
phosphorylation, and degradation (Johnson and Walker, 1999; Nurse, 2002; McIntosh, 2016).
Study of cyclin biology has demonstrated their pivotal importance during the cell cycle and mitotic
cell division and, as noted by Whitaker and Larman (Whitaker and Larman, 2001), this system, in
principle, does not require secondary messengers. However, cell signalling is often more complex
than initially appears and for over 50 years, calcium biology researchers have suspected this
multifunctional ion plays an important part in the control of mitosis (Perris and Whitfield,
1967; Luckasen et al., 1974; Berridge, 1975).

Plant and Animal Cells
These ideas were founded on early studies employing model plant (Saunders and Hepler, 1982;
Hepler and Callaham, 1987; Hepler, 1994) and animal systems (Poenie et al., 1985; Silver, 1990;
Whitaker, 2006a; B. Silver, 1989; Silver, 1986; Silver, 1996) where mitotic calcium signals were
observed with chemical dyes (Poenie et al., 1985) or protein-based sensors of calcium such as
aequorin (Keating et al., 1994). Model systems were chosen for their experimental tractability and
robustness. They are often large cells and therefore easy to manipulate (microinjection, dye loading,
pharmacological intervention), with minimal perturbation to the mitotic apparatus (Sluder et al.,
1998; Sluder, 2016). Such studies provided consistent and promising results to link calcium with
mitosis and highlighted significant correlations between calcium signals and mitotic landmarks such
as nuclear envelope breakdown (NEB) (Poenie et al., 1985; Browne et al., 1996) and the metaphase→
anaphase transition (Poenie et al., 1985; Hepler and Callaham, 1987) (when the spindle retracts and
pulls sister chromatids towards opposite poles of what will become each new cell). Various studies
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elaborated on these experimental approaches to disrupt mitotic
calcium signals through the introduction (microinjection and
later, by use of cell-permeant AM esterified variants) of calcium
buffers such as BAPTA and showed that this inhibited mitosis
progression (Miller et al., 1993). This inhibition could be relieved
by addition of excess free calcium, completing the circle, and
demonstrating a fundamental role for calcium in cell division
(Steinhardt and Alderton, 1988; Groigno and Whitaker, 1998).
Further evidence that strengthened a role for calcium during
mitosis came from related work where inositol 1,4,5
trisphosphate (IP3) signalling was observed (Ciapa et al., 1994)
and then manipulated with drugs such as heparin or introduction
of antibodies directed towards the parent lipid,
phosphatidylinositol 4,5 bisphosphate. These approaches were
intended to suppress endoplasmic reticulum (ER) calcium release
mediated by IP3 receptors (IP3Rs) and they altered the kinetics of
mitosis (Han et al., 1992; Ciapa et al., 1994). Conversely, elevation
of cytoplasmic IP3 prematurely activated mitosis in sea urchin
eggs (Whitaker and Irvine, 1984; Twigg et al., 1988). These
findings indicated an important role for calcium during
mitosis and highlighted the ER as the likely calcium store.
They were also consistent with independently derived
biochemical properties of key structures such as the mitotic
spindle, that is, its disassembly in response to calcium, leading
to the logical speculation that one major target of calcium during
mitosis are spindle microtubules. A simple interpretation of these
data would be that disruption of calcium signalling in cells, the
source of which could be the ER (based on IP3 related
experiments), prevents mitosis progression through a
mechanism whereby the spindle is stabilised and cannot
retract as normal. Exactly how calcium is thought to modify
microtubules along with more recent data in this specific area of
research will be discussed in greater detail later.

Mammalian Cells
A natural extension of research into the role of calcium during
mitosis was to look for corresponding signals in mammalian cells.
Most of this work, but not all (Swierenga et al., 1976), employed
cultured cell lines, presumably due to: 1) Ease of use and
availability; 2) Technical barriers to culturing and
manipulating primary cells and 3) Cultured cell lines being
transformed, dividing rapidly, therefore well-suited to the
study of mitosis. There are many excellent reviews that cover
the work on mammalian cells, in detail, including those of
Whitaker (Whitaker and Larman, 2001; Whitaker, 2006b),
Hepler (Hepler, 1994), Silver (Silver, 1990; Silver, 1996) and
Santella (Santella, 1998) therefore it will only be summarised
here. Manipulation of calcium levels was shown to impact on
mitosis (Izant, 1983) and calcium signals were observed and
correlated, as for other model systems, with mitotic processes
such as NEB and metaphase→ anaphase transition (Poenie et al.,
1986; Ratan et al., 1986). Frustratingly however there were
studies, often using the same cell lines and sometimes from
the same laboratories, that provided conflicting data (Ratan
et al., 1986; Tombes and Borisy, 1989; Kao et al., 1990). Either
calcium signals were observed but there was no discernible
correlation with mitotic events or calcium signals could not be

reliably detected (Tombes and Borisy, 1989). This confusion led
to the view that, on balance, calcium was involved in mitosis but
that the functionally relevant signals might be spatially restricted
and/or temporally fleeting, rendering them difficult to
reproducibly detect (Tsien and Tsien, 1990; Hepler, 1994).
Sadly, this novel and potentially highly valuable area of
research faded away around 15 years ago having failed to
reach a consensus about the role of calcium during mitosis in
mammalian cells.

RECENT RESULTS

In the intervening period, many advances have been made in
relevant areas of cell biology including microscopy, molecular
biology, and calcium imaging. Perhaps one of the most useful
innovations to have appeared in calcium signalling has been the
development of a range of genetically encoded calcium indicators
(GECIs). Pioneered in the laboratory of Roger Tsien, who
developed the first cameleon FRET sensor calcium probes
(Heim and Tsien, 1996; Miyawaki et al., 1997), but who, more
importantly, forged the concept of constructing fluorescent
calcium sensors using known properties of calcium binding
proteins like calmodulin (CaM). This has since inspired others
to develop non-FRET based sensors that have revolutionised the
fields of calcium imaging in live cell systems (Akerboom et al.,
2012; Akerboom et al., 2013; Chen et al., 2013; Yang et al., 2018).
Taking an idea mentioned in a review article by Tsien, that the
nature of mitotic calcium signals may make them difficult to
capture reproducibly (Tsien and Tsien, 1990), and by applying
next generation GECIs (developed as a result of his pioneering
work into conceptualising these probes) mitotic calcium has been
re-examined (Helassa et al., 2019). The idea of this work was to
restrict the GECI to a unique cellular location (useful if the
mitotic calcium signal is spatially constrained) and to use a probe
with appropriate affinity (for detection of sub-micromolar
magnitude signals) and calcium binding kinetics (so that
transient calcium signals would be effectively reported). The
chosen reporter, GCaMP6s (Chen et al., 2013), was targeted
through fusion of the coding sequence to the cytoskeletal
protein actin. Actin was selected as the targeting protein with
the primary goal of identifying calcium signals at the contractile
actin ring (Miller, 2011), the dense actin network that constricts
the centre of the dividing cell during anaphase in readiness for
cytokinesis. The probe failed to report contractile ring actin
calcium but, unexpectedly, did detect two persistent calcium
signals located at the spindle poles during metaphase and
anaphase, which were subsequently identified, through
colocalization, as the centrosomes of the dividing cell. This is
interesting as historical studies reported calcium signals in the
vicinity of the spindle poles however these observations were
never confirmed, quantified, correlated, or investigated further
(Silver, 1996). This calcium signal is functionally important as its
removal with a focally activated calcium chelator inhibited
mitosis progression. It is also noteworthy as recent research
has highlighted centrosomes nucleate actin in mitotic cells
possibly to control spindle microtubule dynamics (Farina
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et al., 2016; Farina et al., 2019). It seems plausible that these
observations could be linked, and an exciting avenue of future
investigation will be to understand how centrosomal calcium is
generated and maintained and what downstream process(es) it
controls. This work also observed, using transmission electron
microscopy (TEM), ER close to centrosomes in mitotic cells,
consistent with the historical studies examining IP3 signalling
during mitosis as discussed above. A second recent study has also
examined calcium and mitosis with specific focus on the role of
IP3Rs in the orientation of the mitotic spindle (Lagos-Cabré et al.,
2020). This work showed that the IP3R3 receptor subtype was
required for correct spindle geometry, but that mitosis completed
normally even when all IP3Rs were knocked-out or replaced by
mutants, defective in gating calcium. It is known that cells lacking
IP3Rs can successfully complete mitosis (Ando et al., 2018) and
this latest paper indicates that calcium and IP3Rs have a relatively
restricted role to play in ensuring the correct orientation of the
spindle. This conservative effect on mitosis overall is at odds with
the work on centrosomal calcium where suppression of the
calcium signal blocked mitosis progression. This leads to the
interesting possibility that the ER is not the only source of mitotic
calcium and that additional mechanism(s) for generating mitosis
specific calcium signals exist. Mitochondria have recently been
reported to play a key role in cell division by providing ATP for
the high-energy demands that this process requires. Energy
production during mitosis is stimulated by a mitochondrial
specific calcium signal that occurs globally during metaphase
(Zhao et al., 2019) however it remains to be seen if mitochondrial
calcium can influence non-mitochondrial mitosis specific
processes. Indeed, from this report and a more recent, detailed
characterisation of mitochondrial dynamics during mitosis
(Moore et al., 2021), there is no obvious correlation between
mitochondrial localisation and the spindle poles/mitotic spindles.
Actin cables that are involved in the motion of mitochondria
during mitosis (Moore et al., 2021) are excluded from the polar
regions and therefore mitochondrial calcium signals would
seemingly have to act ‘at a distance’ as it is unlikely, due to
physical exclusion from the poles, that they could interact closely
with factors controlling spindle organisation. Super-resolution
confocal microscopy (SRCM) could be an interesting way to
observe if a population of mitochondria do interact with the
spindles through specific calcium signals or if a mitochondrial
sub-population is able to access the polar regions through and
alternative mechanism.

FIGURE 1 | Reported and suspected sites of focal calcium signals
during cell division in mammalian cells. A series of cartoons of a stylised
mammalian cell as it progresses through mitosis. (A) During prometaphase,
the nuclear envelope breaks down in response to a specific calcium
signal (pink spheres); (B)Duringmetaphase and into anaphase a focal calcium
signal appears at both centrosomes of the dividing cell consistent with the
dynamic movement of Annexin 11 from the nucleus to the spindle poles; (C)

(Continued )

FIGURE 1 | Based on the localisation of annexin A2 during mitosis, it is
speculated that there is localised calcium present at the contractile actin ring
(equatorial cortex) of the dividing cell; (D) At telophase, based on the
localisation of Annexin 11 and the functional consequences of disrupting
CaBP7, Sorcin and S100A6 function, it is speculated that there is a focal
calcium signal active at the intercellular bridge/midbody. Green organelles:
mitochondria; yellow stacks in A & D: Golgi complex; yellow spheres in B & C:
Golgi derived vesicles; Red X’s in B: duplicated chromosomes; Black lines in
B, spindle and astral microtubules; Blue spheres: Lysosomes; Red T-shaped
organelles: centrosomes; Purple spheres: cell nuclei; Pink spheres and el-
lipses: localised calcium signals.
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Calcium could also be provided from the extracellular
environment however, a major route to calcium influx into
cells, store operated calcium entry (SOCE), has been shown to
be inhibited during mitosis (Smyth et al., 2009; Smyth and
Putney, 2012; Yu et al., 2019). Evidence has been gathered
from certain mammalian cell types showing that extracellular
calcium is required for mitosis progression (Boynton et al.,
1976; Hazelton et al., 1979; Whitfield et al., 1979; Tombes and
Borisy, 1989) and there are alternative calcium entry channels
including those of the TRP family (Samanta et al., 2018). A
comprehensive analysis of calcium entry from outside the cell
during mitosis has yet to be reported and this represents
another interesting avenue of investigation. A useful probe
in this regard would be a GCaMP anchored to the cytoplasmic
face of the plasma membrane which could report local calcium
entry events during cell division. It would be simple to
construct such a reporter through fusion of the GECI to an
appropriate targeting motif such as the acylation consensus
sequence from LCK protein tyrosine kinase (Kabouridis et al.,
1997). To generate focal calcium signals from an extracellular
source would require selective opening of influx channels in
restricted areas of the membrane. Conceptually, this could be
achieved by localised recruitment of cytoplasmic channel
modulator proteins or through spatial restriction of the
calcium channels in the membrane. This type of event
would perhaps most likely occur where the calcium signal is
required close to the inner leaflet off the membrane otherwise
the calcium would have diffuse some considerable distance to
its target, enhancing the likelihood of off-target effects.
Examining known and hypothesised sites of focal calcium
during mitosis, Figure 1, it is possible to speculate that
contractile ring and intercellular bridge calcium signals
would be suited to control by extracellular calcium sources.
More broadly, the targeting of GECIs to specific subcellular
locations, in the context of this review, those important during
mitosis, represents a novel way to map in detail specific
calcium signalling events during cell division. The proof of
principle for such an approach, reported by our laboratory
(Helassa et al., 2019), opens the doorway to generating an atlas
of cell-cycle specific calcium signals which can then be
functionally investigated to assess their relative
contributions and importance. We can say with some
confidence that calcium plays a role at NEB, metaphase →
anaphase transition and now, at centrosomes throughout
metaphase and into anaphase (Figure 1). It is possible that
other mitosis specific calcium signals exist and the approach of
selectively targeting GECIs will help to test this idea.

Calcium Signals Exist During Mitosis, What
Are the Targets?
Calcium influences mitosis, so what are its molecular targets? The
mitotic spindle has long been known to exhibit a sensitivity to
calcium (Salmon and Segall, 1980; Izant, 1983) and one effect of
disrupting IP3Rs is to cause misorientation of spindles (Lagos-
Cabré et al., 2020) which may be due to inhibition of a key mitotic
calcium signal. Calcium can exert cellular effects by directly

interacting with target proteins or by binding to specific
calcium sensor proteins which then convert the signal into a
biological response (Burgoyne et al., 2019). The ubiquitous
calcium sensor calmodulin accumulates at spindle poles, is
associated with spindle microtubules during mitosis (Yu et al.,
2004) and is required for mitosis progression (Rasmussen and
Means, 1989; Stirling et al., 1996; Török et al., 1998; Li et al.,
1999). It is therefore a strong candidate for mediating mitosis
specific calcium driven events, including spindle behaviour, and
its role in spindle orientation requires further investigation.
Calmodulin is the primordial member of a large family of
evolutionarily linked small EF-hand containing calcium sensor
proteins (Burgoyne et al., 2019). Other members of this family
have now been implicated in mitosis, most recently CaBP7 (also
known as calneuron II, (McCue et al., 2009; McCue et al., 2010;
Neumann et al., 2010; Rajamanoharan et al., 2015)), which,
through its ability to regulate the phosphoinositide 4-kinase
IIIβ enzyme, appears to influence a late stage of mitosis/
cytokinesis (Rajamanoharan et al., 2015). This study revealed
another potentially interesting facet of mitosis regulation
involving lysosome function (Nugues et al., 2018) and which
is linked, through CaBP7, to calcium. Although no direct
evidence implicating lysosomal calcium in mitosis has been
reported to date, a lysosome specific calcium channel, two-
pore channel 2 (TPC2), was also identified in the same high-
throughput screen for proteins essential in mitosis and
cytokinesis which identified CaBP7 (Neumann et al., 2010). It
is well established that lysosomes act as multi-functional calcium
signalling platforms (Lloyd-Evans and Waller-Evans, 2020) and
this represents an exciting avenue of future research. There has
been growing interest in lysosomes as druggable targets to treat
human disease (Tang et al., 2020) and a lysosome specific
function during mitosis could represent a new approach to
targeting cell proliferation (Geisslinger et al., 2020). In
addition to calmodulin and CaBP7, a variety of other small
calcium sensing proteins have been linked to mitosis
progression. Sorcin, a small penta-EF hand calcium sensor,
exhibits mitosis specific changes in cellular localisation (Lalioti
et al., 2014) and is over-expressed in multiple human cancers
(Zhou et al., 2019). It has been linked to the multidrug resistant
phenotype of certain cancers and is therefore of significant
interest as a clinically relevant target (Pomeroy et al., 2002;
Tan et al., 2003; Yokota et al., 2006; Nagpal and Das, 2007;
Zhou et al., 2019). Early in mitosis, sorcin-positive vesicles
associate with the spindle and later, at cytokinesis, they are
found in the cleavage furrow and at the midbody (Lalioti
et al., 2014). Importantly, sorcin has been shown to physically
associate with, and be phosphorylated by, polo-like kinase 1
(PLK1), a key regulator of mitosis (Lee et al., 2014). It induces
PLK1 autophosphorylation and depletion of sorcin promotes
cytokinesis failure and the appearance of multi-nucleate cells
reminiscent of the phenotype observed with CaBP7 knockdown
(Neumann et al., 2010). These loss-of-function observations from
two independent small calcium sensing proteins suggests that
cytokinesis is particularly sensitive to calcium. This is further
consistent with a calcium dependent process such as exocytosis
(Burgoyne and Morgan, 1993; Barclay et al., 2005) operating
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during cell scission (Goss and Toomre, 2008). Identification of
specific focal calcium signals at the final stage of cell division will
be an important future line of enquiry.

The S100 proteins are another family of conserved EF-hand
containing calcium binding proteins with a wide range of
physiological functions. S100A6 (also known as Calcyclin,
(Donato et al., 2017)) is upregulated in proliferating cells
(Nowotny et al., 2000) and is associated with the midbody
during cell division (Skop et al., 2004). Disruption of S100A6
function causes defects in chromosome segregation (Ai and Skop,
2009) and inhibits cell proliferation (Breen and Tang, 2003)
indicating that it has important functions during mitosis. S100
proteins interact with annexins to mediate recruitment to cellular
membranes (Rintala-Dempsey et al., 2008) and this family of
proteins have also been implicated in cell division.

The annexins are a large family of calcium dependent
phospholipid binding proteins (Gerke et al., 2005) that are
involved in a range of physiological processes including cell
division. There are at least 12 different annexin proteins
expressed in humans (Gerke and Moss, 2002) and some of
these have been directly linked to roles in mitosis. Annexin 11
exhibits complex mitosis related trafficking first leaving the
nucleus and associating with the spindle poles (consistent with
our findings of a focal calcium signal at centrosomes) and later,
accumulating at the intercellular bridge (Tomas et al., 2004).
Importantly, depletion of annexin 11 inhibits midbody
formation with daughter cells unable to complete
cytokinesis (Tomas et al., 2004). A second member of the
family, annexin A2, associates with the equatorial cortex
during mitosis and its depletion, like annexin 11, inhibits
cytokinesis albeit through a different mechanism that
disrupts normal recruitment and function of the key
GTPase RhoA thereby preventing normal contractile actin
ring assembly (Benaud et al., 2015). As mentioned above,
there is interplay between annexins and sorcins, and
understanding this and how it links to localised calcium
signals, that must be present to mediate the specific
recruitment of these proteins, is a fertile area of future research.

DISCUSSION

An overarching theme of calcium regulation during mitosis is the
use of focal signals to recruit specific calcium binding proteins
which we then speculate execute mitosis and cytokinesis specific
functions. There is much interesting research to complete in this
area, first, a directed calcium sensing toolkit of localised probes to
identify sites of focal calcium needs to be developed. The first such
probe has revealed a centrosome calcium signal however there is
good reason to believe that other focal signals exist, at the nucleus,
equatorial cortex and midbody, based on historical observations
of calcium signals and the localisation of calcium binding proteins
involved in mitosis during cell division (Figure 1). The second is
to understand what these signals control and how. This will
require identification of the specific calcium binding proteins that
respond to each focal signal and, in turn, what effectors they
interact with to control downstream events. Understanding how
calcium controls cell division is becoming increasingly important
with more and more reports of dysregulated calcium signalling
and aberrant expression of calcium binding proteins linked to
human diseases including cancer. New insights in this area of cell
biology could provide future targets for specific control of cell
proliferation and lead to the development of new classes of anti-
cancer drugs (Sansregret and Swanton, 2017).
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