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KEYWORDS Abstract The radiological assessment of muscle properties—size, mass, density (also termed
Adipose tissue; radiodensity), composition, and adipose tissue infiltration—is fundamental in muscle diseases.
Computed More recently, it also became obvious that muscle atrophy, also termed muscle wasting, is

tomography; caused by or associated with many other diseases or conditions, such as inactivity, malnutri-
Fat infiltration; tion, chronic obstructive pulmonary disorder, cancer-associated cachexia, diabetes, renal
Muscle; and cardiac failure, and sarcopenia and even potentially with osteoporotic hip fracture.
Muscle density Several techniques have been developed to quantify muscle morphology and function. This re-

view is dedicated to quantitative computed tomography (CT) of skeletal muscle and only in-
cludes a brief comparison with magnetic resonance imaging. Strengths and limitations of CT
techniques are discussed in detail, including CT scanner calibration, acquisition and recon-
struction protocols, and the various quantitative parameters that can be measured with CT,
starting from simple volume measures to advanced parameters describing the adipose tissue
distribution within muscle. Finally, the use of CT in sarcopenia and cachexia and the relevance
of muscle parameters for the assessment of osteoporotic fracture illustrate the application of
CT in two emerging areas of medical interest.
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Introduction

The quantitative assessment of muscle properties is of
increasing interest in musculoskeletal research and routine.
Historically, computed tomography (CT) and magnetic
resonance imaging (MRI) have been used in the diagnosis
and monitoring of muscle diseases such as myopathies and
muscular dystrophies [1—3]. Muscle imaging has also been
used to assess muscle atrophy or muscle wasting caused by
or associated with inactivity, denervation, fasting, malnu-
trition, chronic obstructive pulmonary disorder, cancer-
associated cachexia, diabetes, renal failure, cardiac fail-
ure, Cushing syndrome, sepsis, burns, and trauma [4]. More
recently, the paradigm of the bone—muscle unit [5,6] has
focussed musculoskeletal research on quantitative muscle
assessments such as muscle volume, CT muscle density and
content, and distribution of adipose tissue. A new field of
application is sarcopenia, where muscle function and
perhaps muscle mass are important parameters to measure
[7,8].

In skeletal muscle, lipids are either stored as adipocytes,
with fat imaging characteristics, either in between muscle
groups (perimuscular adipose tissue), or as interstitial
(intramuscular) adipose tissue inside muscles (extra-
myocellular lipids) or as intramyocellular lipid (IMCL)
droplets, which are not visually identified as fat in CT or MRI
but modify the imaging appearance of muscle tissue [9].
The combination of intramuscular and perimuscular adi-
pose tissue is typically denoted as intermuscular adipose
tissue (IMAT) (Figure 1). Increased amounts of inter-
muscular adipose tissue correlate with cardiovascular risk
[10], while the presence of IMCL is a risk factor for of insulin
resistance [11]. Increased baseline extramyocellular lipid in
isolated supraspinatus muscle tears is associated with sur-
gical repair failure at 6-month follow-up [12].

The two standard techniques available for body
composition parameters quantification are dual X-ray ab-
sorptiometry (DXA), which provides lean and fat mass
assessment, and bioelectrical impedance, which estimates
fat-free and fat masses. However, both bioelectrical
impedance and DXA cannot provide a spatially resolved
distribution of muscle and adipose tissue. This is the
domain of CT and MRI. While this review is focussed on CT, a

brief comparison between MRI and CT may help the reader
to put both techniques into perspective.

MRI provides better soft tissue contrast than CT
(Figure 2), but standard spin-echo T1-weighted sequences
only provide a qualitative assessment of fat, which appears
white, compared with muscle, which in this sequence is
dark. The extend of larger agglomerations of adipose tissue
can be measured, but the true fat content of muscle cannot
be determined from T1-weighted images because the grey
values of the muscle voxels do not scale in a known way
with the fat content. MR spectroscopy (MRS) and Dixon
sequences [13,14] are MR techniques originally developed
to quantify the fat content of the liver, which, from the
perspective of MRI, is a very homogenous organ. MRS is the
only imaging method that allows for a detailed analysis of
the acquired MR spectrum and, more specifically, for the
separation of intracellular and extracellular lipids [15,16].
However, with MRS, only a very small volume of interest, a
so-called spectroscopy voxel with a volume about 1 cm?, is
analysed. This works well for the liver but for muscle, such
a small volume may not be representative of the overall fat
distribution, especially in elderly and diseased individuals
with a high and inhomogeneous muscle fat infiltration. A
solution could be a multivoxel MRS protocol [17], but ap-
plications in muscle have rarely been reported.

MR Dixon sequences provide a scalable map of the fat
fraction from 1 to 100%, in which a grey value of 1 corre-
sponds to a fat fraction of 0.1% and a grey value of 1000
corresponds to a fat fraction of 100%. A quantitative map of
the muscle fat fraction can be obtained once the muscle
has been segmented. Several variants of Dixon sequences
exist. However, accuracy errors of the muscle fat faction
may be rather large and depend on the specific imple-
mentation on a given scanner. Also, many implementations
are dedicated to liver but not to muscle imaging [18,19].

In contrast to MRI, CT is faster, more widely accessible,
and cheaper. Radiation exposure of arms or legs is low
(<0.5 mSv), while volumetric muscle measurements of the
trunk are associated with higher exposure. For example,
using a low-dose protocol, exposure for a single slice scan
at the height of L3 is about 0.1—0.2 mSv depending on the
slice thickness and about 2 mSv for a volumetric scan at the
level of L1-4, which is still rather moderate when compared

Subcutaneous AT (SAT)

Adipose Tissue (AT)
(~ 80% lipids,
19% water)
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Muscle—lipid system illustrated for the thigh. The blue contour denotes the fascia that separates subcutaneous tissue

from the intrafascia region. The green contour outlines a single muscle also denoted as a muscle organ in this contribution to
distinguish it from muscle tissue that includes intramyocellular lipids but excludes intramuscular AT (red), which is composed of
extramyocellular lipids. Intermuscular AT is the combination of perimuscular AT (yellow) and intramuscular AT (red).

AT = adipose tissue.
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Figure 2

T1-weighted MRI (left) and a low radiation exposure CT (right) image of the thigh. The CT image contains an in-scan

calibration phantom to obtain a scan with specific CT values of water. The slice position does not match exactly, and the slice

thickness differs.

MRI = magnetic resonance imaging; CT = computed tomography.

with an annual background radiation of about 2.5 mSyv. One
advantage of CT is the possibility to quantify the muscle
density also termed as muscle attenuation or muscle radi-
ation attenuation, which linearly depends on the muscle fat
content. The muscle volume may be measured either with
MRI or CT. However, the spatial resolution of CT images is
higher. Typical MR parameters are a slice thickness of 3 mm
and an in-plane pixel size of 0.5 mm, whereas for CT, a slice
thickness of 1 mm and an in-plane pixel size of 300 microns
are state of the art.

In this contribution, we will first review CT imaging
protocols including methods for muscle density calibration
and segmentation methods used in quantitative muscle
research. An overview of basic and advanced parameters
that can be quantified in a CT image and their potential
limitations will be given. Finally, the use of muscle pa-
rameters in clinical routine and research will be discussed.

Methods of quantitative CT imaging
CT imaging techniques

Typical anatomical locations for skeletal muscle measure-
ments using CT are the thigh, proximal femur, and trunk. CT
acquisition and reconstruction parameters vary widely
across studies. Most CT muscle studies are performed on
whole-body clinical CT scanners. A spiral CT scan or single
slices of the targeted volume are acquired. These scanners
are widely available, and protocols can easily be tailored to
the specific location. Dedicated peripheral CT scanners
have been used in some studies to image muscle and adi-
pose tissue of arms or legs [20,21]. As these scanners lack
flexibility and scan times are high, this review is restricted
to the whole-body equipment.

Although CT studies on muscle assessment appeared not
long after the introduction of the first CT scanner in the
mid-1970s, little has been published on acquisition pro-
tocols for muscle measurements. For the thigh and upper
femur, the following settings have been reported: tube
voltage of 100—120 kV, exposure: 40—200 mAs, slice

thickness 1—10 mm and a soft to medium reconstruction
kernel [22—25]. Thicker slices reduce noise and are
adequate when the muscle volume or density is of primary
interest. For a more advanced analysis of the adipose tissue
distribution, a higher spatial resolution is required, and a
slice thickness of <2 mm is preferable. In the thigh and
proximal femur, scans usually cover 10—20 cm, but in some
studies, the complete upper or lower limb was scanned
[26,27], while in others, a single 10-mm-thick slice was
acquired at mid-thigh [22,28]. Several studies applied a
retrospective analysis of existing CT scans, often initially
collected in epidemiological or cross-sectional studies, to
measure the bone mineral density (BMD) and assess frac-
ture risk [25,28—30].

Studies dedicated to the assessment of the paraspinal
muscles typically assessed the complete lumbar spine,
acquiring either a spiral scan or single 3- to 5-mm-thick
slices at the level of the intervertebral disks [31—35].
Another application of CT is the evaluation of cachexia in
patients with cancer, where the volume of the subcutane-
ous and visceral fat together with the of the abdominal and
paraspinal muscles is measured. For this purpose, analysis
is often limited to a single 5- to 10-mm-thick CT slice at the
level of L3 [36—39]. In many other instances, existing CT
scans from clinical routine are analysed.

Muscle analysis and quantitative parameters

The most straightforward quantitative measurements are
the muscle area from a single slice or muscle volume from a
stack of slices covering a whole muscle. These measure-
ments require a prior segmentation. However, muscle
segmentation is a difficult step, due to the low soft tissue
contrast, especially at the trunk where muscles and sur-
rounding organs have similar CT values. Therefore, the
most simplistic segmentation approach is a manual outline
of the muscles [23,34,40], an acceptable technique as long
as the number of slices to be processed is small. The
advantage of a manual segmentation is the use of expert
knowledge to outline the muscle border, although different
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experts will never fully agree on a specific segmentation.
However, when a larger stack of CT images needs to be
segmented, as with spiral scanning, a more automated
segmentation approach is required.

Most of the literature on muscle segmentation is dedi-
cated to MRI, whereas reports using CT are sparse
[25,27,41—47]. In several clinical studies and research
projects, commercially or publically available software
tools such as Slice-O-Matic (http://www.tomovision.com/
index.html), OsiriX (http://www.osirix-viewer.com), or
ImageJ (https://imagej.nih.gov/ij/) have been used.
OsiriX and ImageJ do not provide dedicated muscle
segmentation algorithms, but standard segmentation tools
such as thresholding, contouring regions, or volumes of
similar signal intensity that define muscle, fat, or organs
in combination with morphological operations can be
easily combined with corrective operator interaction.
Three studies [48—50], in which the three software tools
were compared, reported excellent agreement between
paraspinal muscle of cross-sectional area (CSA)
measurements of abdominal and paraspinal muscles,
despite the use of a simple threshold or even fully manual
segmentation.

In the thigh, usually first the outer margin, i.e., the skin,
then the fascia, and finally the individual muscles within
the fascia are successively segmented [25]. In the trunk,
statistical shape or atlas-based approaches [41,51] have
been proposed to facilitate the segmentation of abdominal
and paraspinal muscles, which is complicated by the pres-
ence of organs and visceral fat. Atlas-based approaches,
which require prior training with a gold standard, seem to
be the method of choice to separate individual muscles, for
example, the quadratus lumborum, multifidus, and sacro-
spinalis within the paraspinal muscle group. Similar seg-
mentation techniques have been suggested for the hip and
thigh muscles [27].

Analysis of entire muscles requires scanning of a large-
volume. However, most often, only a small range (several
centimetres) of a muscle is scanned to reduce the radiation
dose. In this case, area and volume measurements need to
be normalized, for example, to the square of the body
height [24,39,52,53], to be representative regarding fatty
infiltration assessment. The trunk muscle area at the L4-5
level or 5 cm above is highly correlated with the total
body skeletal muscle volume (> > 0.8) [54]. In the
appendicular skeleton, radiation exposure is much lower
than that in the trunk and larger volumes can be scanned.

The assessment of the muscle density requires a cali-
bration step but not necessarily muscle segmentation.
Representative muscle density values may be obtained by
geometrically defined volumes of interest (VOIs) placed in
the muscle of interest such as a circle for a slice-based
analysis or a sphere or cylinder for a volume-based analysis.
A detailed overview of studies in which a geometrical VOI
was used to determine the muscle density has been pro-
vided in Ref. [55]. So far, in the vast majority of studies
measuring the muscle density, muscle was first segmented
and the muscle area was obtained as a primary outcome.

It must be understood that the muscle density is not a
physical density measured in mg/cm?, but a ‘CT density’
measured in Hounsfield units. The term muscle attenuation
is used synonymously [56], but the term CT density will be

used in the present contribution. By default, each CT
scanner is calibrated to water:

CT number=""".1000[HU]
Hw

where p is the linear absorption coefficient of the material
under investigation, and p,, is the attenuation coefficient of
distilled water at room temperature. In a calibrated scan-
ner, the CT numbers for water and air are 0 and -1000,
respectively. For water-equivalent materials, i.e., for ma-
terials with comparable mass absorption coefficients such
as muscle, CT values quantify percentage density differ-
ences to water. A CT value of 1 HU quantifies a density
difference to water of 0.1%. The physical density of skeletal
muscle, including IMCLs, is about 1.055 g/cm® [57—59]
compared with 1 g/cm? for water. Thus, for a properly
calibrated scanner, the CT value of skeletal muscle also
termed as muscle tissue is about 50—60 HU. Published
values of IMCL content in human skeletal muscle as
measured by MRS are between 6% and 14% [60] compared
with 2%—9% for chemical analysis [57] and 2%—5% for his-
tochemical analysis [61]. Additional infiltration of extra-
cellular lipids—or adipose tissue within muscle—will
decrease the muscle density value below 50 HU.

Owing to CT scanner instabilities, the water value often
deviates from 0 HU. Figure 3 shows CT values measured in
the European Spine Phantom (ESP), which was scanned on
41 scanner units. The ESP is a reference standard used in
bone densitometry, in which soft tissue is made of a water-
equivalent plastic. Each scan was acquired with the same
phantom on a different CT scanner, and 17 different CT
scanner models from four manufacturers were tested. All
scanners were regularly calibrated according to the local
hospital and manufacturer standard operating procedures.
In the ESP, a cylindrical VOI positioned in the water-
equivalent soft tissue region anterior to the vertebrae
was analysed. In 15% of the scanner units (6 of 41), CT
values differed by 5 or more HU from 0. In the thigh, a
difference of 5 HU in the water value causes a 15% differ-
ence in the muscle density [25]. Thus, for accurate muscle
density measurements the use of a calibration phantom
should be considered. This phantom can either be scanned
with the subject (simultaneous calibration). An example is

CT value of water equivalent soft tissue VOI
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Figure 3  CT values of the water-equivalent soft tissue ma-

terial of the same European Spine Phantom measured anteri-
orly to the vertebrae from 41 different CT scanners.
CT = computed tomography.
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shown in Figure 2. Alternatively the phantom can be scan-
ned before or after the patient (asynchronous calibration).

CT values are used not only to determine the muscle
density but also to segment muscle and adipose tissue.
Furthermore, they play a central role in estimating the
adipose tissue content within muscle. Table 1 lists the
published CT values used for these three different appli-
cations and the terminology used in the corresponding
reference for muscle and adipose tissue parameters. It
shows that even for a given application, for example, to

significantly, which has also been noted in an earlier review
[55]. One source of confusion in comparing CT values of
muscle and adipose tissue among previous works is the
great variability in terminology. For example, the term
muscle is typically used to denote the organ muscle, which
includes adipose tissue, whereas the term muscle tissue
includes intramyocellular lipids (ICML) but excludes adipose
tissue. Thus, the CT value of muscle will vary considerably
depending on its adipose tissue content. Some authors,
however, use muscle tissue synonymously with muscle [24].

determine the tissue

composition,

CT values vary

CT values for muscle tissue are higher than those of muscle.

Table 1  CT values used for segmentation, tissue composition, and the measurement of adipose tissue infiltration of muscle.
Reference Terminology CT value (HU) Comment
Segmentation

Mitsiopoulos 1998 [109]
Mitsiopoulos 1998 [109],
Irving 2007 [49],
Mihlberg 2017 [25]
Lonn 1994 [67]

Fuchs 2018 [110]
Edmunds 2016 [26]

Van der Werf 2018 [24]
Neander 1997 [111]
Strandberg 2010 [22]
Tissue composition
Goodpaster 2000 [101]
Margadant 2016 [38]
Mourtzakis 2008 [39]

Heymsfield 1997 [112]

Muscle fat infiltration
Goodpaster 2000 [101]

Lang 2008 [29],
Frank-Wilson 2018 [62]
Gargiulo 2014 [113]

Daguet 2011 [23]

Miihlberg 2017 [25]

Hahn 2016 [106]

Skeletal muscle
Adipose tissue

Adipose tissue

—29 to 150

—190 to —30

—190 to —30

Muscle incl. skin/visceral organs —29 to 151

Muscle density
Fat

LDM

NDM

Muscle tissue
Muscle

Muscle

Skeletal muscle
Muscle tissue
Skeletal muscle
Subcutaneous and

intramuscular adipose tissue

Visceral adipose tissue
Adipose tissue
Nonadipose tissue lean

LDM
NDM
Fat, lean

Fat

Loose connective tissue
LDM

Normal muscle

Pure fat

Pure muscle

Pure adipose tissue
HDM

Muscle
Fat

—29 to 150
—200 to 10
-9 to 40
41 to 70

—29 to 150

10 to 100

1 to 101

0 to 100

60
—29 to 150
—190 to —30

—150 to —50
—90 to —30
—29 to 151

0 to 29
30 to 100

—200 to —6
-5 to 20
20 to 40
40 to 200

-108
60

= —100

35

30 to 80
—190 to —30

HU thresholds to separate lean and
fat mass derived from in-scan calibration phantom

Internal calibration — . fat

Internal calibration — psoas

muscle of young healthy individuals
Internal calibration — thigh subcut.
adipose tissue

Internal calibration — psoas muscle
of young healthy individuals

HDM = high-density muscle; LDM = low-density muscle; NDM = normal-density muscle; subcut. = subcutaneous.
The CT value range from —29 to 150 originally used by Mitsiopoulos and even earlier by Lonn has been used in many subsequent studies as

can be seen in the table.
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Pure muscle and high-density muscle have been used to
denote the muscle density in young healthy individuals
[23,25], although it can be speculated that some amount of
intermuscular and intramuscular adipose tissue is present
even in young healthy individuals, and therefore, that the
term pure muscle may not be fully appropriate. However,
the average muscle density of young people may serve as an
upper fix point for muscle density calibration using CT. The
terminology is even more diverse for fat/adipose tissue.

Differences in CT values shown in Table 1 are probably
not very relevant when used as thresholds for segmentation
of muscle, subcutaneous, or visceral compartments. Auto-
mated techniques may use fixed thresholds to initiate the
segmentation but are usually refined without using absolute
thresholds. In semiautomatic procedures, initial threshold-
based contours guide the operator and are corrected if
required. In contrast to segmentation, differences in CT
values have a much larger impact on the quantification of
the adipose tissue content within a single muscle or within
a muscle group contained by the perimuscular deep fascia
such as the paraspinal muscles or the whole thigh muscles.
Such an entity is often analysed as a whole to avoid a rather
difficult segmentation of individual muscles. Therefore, the
separation of intermuscular and intramuscular adipose tis-
sue components is of interest. Obviously, the use of abso-
lute thresholds is problematic. They are not consistent
across the literature (Table 1) and do not take into account
deviations from the ideal water calibration of the CT
scanner. Therefore, some studies have suggested tech-
niques based on in-scan calibration phantoms [29,62], in-
ternal calibration [23], or both [25].

For a more detailed characterisation of the adipose tis-
sue infiltration, a frequency analysis (Figure 4) of the
density values [23,55] and of its spatial distribution has
been suggested [25]. Based on the histogram of the CT
values of the segmented muscle, five different bins were
distinguished [23]: pure muscle, pure fat and voxels

number of pixels

300 I -75

250

200
150

100

L

-150 -100 -50 0 50

100 HU

Figure 4 Histogram of density values on a CT slice of the left
glutaeus maximus muscle (inset). Red pixels, with a density be-
tween 130 and 190 Hounsfield units (HU), were classified as pure
muscle. Deep navy blue pixels, with a density of <75 HU, were
classified as pure fat. Between the —75 and 130 HU boundaries,
brown pixels were counted as being composed of 75% muscle and
25% fat, blue—green pixels as 50% muscle and 50% fat, and me-
dium blue pixels as 25% muscle and 75% fat (Figure 2 from Ref.
[23]). The adipose tissue content of the individual voxels of the
glutaeus maximus is not presented in colour.

CT = computed tomography.

containing 25%, 50%, and 75% adipose tissue according to
the muscle density, respectively. This is the quantitative
analogue to the Goutallier score [63] used to qualitatively
score fatty muscle degeneration.

The histogram analysis requires two values, one for
pure adipose tissue and one for pure muscle. In Ref. [25],
the value for adipose tissue was obtained by internal
calibration based on the distribution of subcutaneous ad-
ipose tissue corrected for potential inclusion of water,
oedema, and vessels. The value for pure muscle was ob-
tained from a group of young active athletes. For each CT
scan, this high-density muscle value was individually cor-
rected for potential water calibration offsets using an in-
scan calibration phantom [25]. If the CT scanner is sta-
ble, the in-scan calibration phantom can be replaced by
asynchronous calibration, which means that phantom and
subject scans are typically not performed at the same time
[64].

A further step is the quantification of the spatial distri-
bution of adipose tissue infiltration and the characterisa-
tion of muscle structures termed as washed out or moth
eaten (Figure 5) in radiological scoring systems [65]. For
this purpose, we have recently used a number of different
descriptors that quantify the texture [25]. They can either
be applied to the CT images directly or after image binar-
isation. While details are beyond the scope of this review,
Figure 7 illustrates the principle, assuming four different
muscle—fat compositions, where for simplicity, muscle in
red has a value of 1 and fat in white has a value of 0,
corresponding to a binary image. Texture parameters may
help to better distinguish different structural patterns than
CT density (or in case of the simplified simulation, relative
volume).

Muscle mass in gram is not a primary parameter of CT. It
has been estimated by multiplying the muscle volume by a
density of 1.06 g/cm? [66,67] or 1.04 [68]. Accuracy of this
approach is questionable as the degree of muscle fat infil-
tration is neglected. A better approach would be to
calculate the physical density of each voxel from its CT
number, which as described previously, denotes the per-
centage density difference from water. Nevertheless, cor-
relation coefficients of r> > 0.96 have been reported in
healthy volunteers [68,69] between muscle mass in the
thigh estimated by CT, even with the simplified technique,
and fat-free mass (FFM) measured by DXA. Correlation be-
tween the muscle area measured by CT and FFM was
r? = 0.74. Another study of premenopausal lean and obese
women reported correlations between the CT muscle area
and DXA FFM at the thigh of r> = 0.59 and r? = 0.58,
respectively [70].

Applications of quantitative muscle imaging by
CcT

Several recent systematic reviews and meta-analyses
impressively demonstrated that muscle imaging by quanti-
tative CT plays an important role in a large variety of dis-
eases affecting organs such as the lung [71], liver [72,73],
or abdomen [74,75]. Further systematic reviews were
dedicated to muscle characteristics in cerebral palsy [76],
vascular claudication [77], low back pain [78], and muscle
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Mercuri Score
Stage O normal appearance
Stage 1 earl@en app%vith scattered small areas of decreased CT density
Stage 2 late moth-eaten appearance, with numerous discrete areas of decreased CT density (CT) with
SBE <8 beginning confluenc®, comprising less than 30% of the volume of the individual muscle
st % late moth-eaten appea¥ance, with numerous discrete areas of decreased CT density (CT) with
age o . Fo i s
€ beginning confluence, comyrising less 30% - 60% of the volume of the individual muscle
I
Stage 3 ashed-out appearance,_fuzz\appearance due to confluent areas of decreased CT density with
8 muscle stilT present at the periphery
end-stage appearance, muscle replaged by lower CT density, connective
Stage 4 2 2 @ b e g
tissue and fat, with only a rim of fascidand neurovascular structures distinguishable

Figure 5
moth-eaten and washed-out muscle structures.
CT = computed tomography.

fatigue in old age [79]. CT imaging is used to assess muscle
diseases, age-related muscle deterioration (sarcopenia)
and muscle wasting (cachexia), other chronic diseases
associated with or causing muscle weakness, after organ
transplantation specifically and surgery in general; in body
composition studies to assess efficacy of exercise or nutri-
tional intervention; and to predict the risk of osteoporotic
fracture or the impact of fracture on muscle. Obviously, it
is beyond the scope of this review to cover all these ap-
plications in relevant details, in particular, as other imaging
techniques—radiography, MRI, and DXA—are often used as
well. Therefore, the following two sections have been
selected as example applications.

Sarcopenia and cachexia

*Cachexia and sarcopenia present several analogies in both
the pathogenic mechanisms and the clinical picture. The
loss of muscle mass and strength is a hallmark of these two
clinical conditions. Although frequently overlapping and
often indistinguishable, especially in old individuals, these
two conditions should be considered as distinct clinical
entities” [80]. The first definition of sarcopenia proposed in
1988 [81] was completely based on appendicular lean mass,
determined from a whole-body DXA scan. Later definitions
of sarcopenia included impaired muscle strength and/or
physical performance [82—85]. None of these definitions is
based on CT, although specific thresholds of the muscle size
assessed by CT have been proposed for the diagnosis of
sarcopenia [86]. Yet, the controversy on which imaging
modality should be preferred is still ongoing [87,88]. One
limitation to the use of CT is its lower degree of stand-
ardisation when compared with DXA, but also controversies
concerning which of the muscle parameters assessed by CT
should be used. DXA only provides lean mass, and in

The Mercuri score for grading the muscle appearance in neuromuscular diseases [65] and two CT images demonstrating

sarcopenia research, more studies used DXA than CT.
Similarly to the use of DXA for routine BMD measurements,
DXA may be preferred for sarcopenia in daily clinical
routine. However, CT and MRI provide some muscle mea-
surements, such as fatty infiltration, an important factor of
muscle degeneration, which are not available for DXA and
are key techniques to address the pathophysiology of sar-
copenia and mechanisms of interventions. Several epide-
miological studies such as Osteoporotic Fractures in Men,
AGES-Reykjavik, and Health, Aging, and Body Composition
(Health ABC) included CT of the proximal femur and upper
shaft, a valuable source for sarcopenia research largely
unexplored so far. Also existing CT scans obtained for other
diagnostic purposes may be retrospectively analysed to
obtain muscle characteristics [89—91].

Cachexia has been defined as "a complex metabolic
syndrome associated with underlying illness and charac-
terised by the loss of muscle mass with or without the loss
of fat mass”. A quick search for cachexia and cancer in
PubMed resulted in 1250 entries. The prominent feature of
cachexia is "weight loss in adults” [92]. In addition, a more
specific definition has been agreed on for cancer cachexia
[93]. For patients with cancer, CT imaging is a key diagnosis
tool for follow-up diagnosis and treatment monitoring [39].
The potential for opportunistic muscle imaging in such
patients has already been emphasised a decade ago [36]. A
typical imaging technique in cancer cachexia is the analysis
of a single CT at the level of L3. In addition to the muscle
volume, density and intramuscular adipose tissue, the
volume of subcutaneous and visceral fat volume is deter-
mined (Figure 6). However, longitudinal measurements of
visceral fat on a single slice are problematic because of
motion, in particular that affecting the visceral organs,
which can significantly change the local amount of visceral
fat.
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Figure 6 The left CT image at the level of L3; the right segmentation: subcutaneous adipose tissue (blue), paraspinal muscle
(brown), abdominal muscle (orange), intramuscular adipose tissue (green), visceral fat (yellow), and visceral organs (grey).

CT = computed tomography.

== |1 5

relative volume [%] (**) 50 40 100 80
local inhomogeneity [pixel] 1 0.35 0 0.33
area/volume [edge/pixel] 48 2.4 0.8* 1.6*
variogram slope [1/pixel] 0 -0.01 0 -0.014

Figure 7 Four simulated binary muscle (red)—fat (white) distributions where muscle has a value of 1 and fat, of 0. The table
shows the results of three different texture parameters plus relative volume. It shows that, for example, the relative volume
differs only slightly between the two leftmost structures, while local inhomogeneity discriminates much better. By default, a
periodic continuation of the 5 x 5 pattern was assumed for calculations except when marked with an asterisk (*), where zero
boundary conditions were used, i.e., all pixels outside the pattern were white; values marked (S) appeared independent of the

boundary type used.
Osteoporotic fracture

BMD is an important risk factor for osteoporotic fracture, but
the prediction of osteoporotic fracture remains challenging
[94]. In particular, progress remains limited for the predic-
tion whether an individual will sustain a hip fracture within
the next 5 or 10 years. In contrast to vertebral fractures,
almost all osteoporotic hip fractures are caused by a fall,
which is associated with muscle strength [95—98]. Age-
related loss of skeletal muscle mass is associated with the
loss of bone mass [99,100], and low muscle attenuation is
associated with obesity and impaired muscle function [101].
So far, only a few studies have investigated the impact of soft
tissue parameters on hip fracture. In the Health ABC study,
decreases in DXA-derived subcutaneous fat thickness
significantly increased hip fracture risk after adjustment for
hip areal BMD (aBMD) in men [hazard ratio (HR) 1.44 confi-
dence interval (Cl; 1.02—2.02)] and women [HR 1.39 (CI 1.07;
1.82)]. An increase in appendicular lean mass in the leg
decreased hip fracture risk in men (HR 0.65 [CI 0.46; 0.92)]
but not in women, even after adjustment for the body height
[102]. The association between lean mass and fracture was
confirmed in the Framingham (leg lean mass) [103],

Epidémiologie de U’Ostéoporose (whole-body lean mass)
[104], and (WHI; appendicular lean mass) [105] studies, all of
which included women only. After adjustment for hip aBMD,
fat mass did not significantly increase hip fracture risk in the
Epidémiologie de I’Ostéoporose (whole-body fat mass) and
WHI (appendicular fat mass) studies. It was not separately
assessed in the Framingham study.

In contrast, CT studies showed a significant contribution of
muscle characteristics to hip fracture risk. In the pelvis [29],
the CSA of total fat and of the extensor and adductor muscles,
as well as CT attenuation of the adductor muscles remained
significantly lower in fractured individuals after adjustment
for age and body mass index. Compared with DXA aBMD alone,
fracture discrimination was improved by the inclusion of the
soft tissue descriptors in a multivariate model. In the Health
ABC study [28], CT attenuation of the thigh muscle predicted
hip fracture with a relative risk (RR) of 1.6, which remained
significant with an RR of 1.4 after adjustment for aBMD.
The RR for aBMD alone was not reported in this study.

In the Osteoporotic Fractures in Men study, composite
descriptors combining the stress strain index or bending
strength of bone with the muscle CSA were determined by
peripheral QCT (pQCT) of the lower limb. These descriptors
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Figure 8 The CT image of the thigh from an elderly individual of the EFFECT study. Left: segmented fascia separating subcu-
taneous adipose tissue (yellow), muscle (red), and perimuscular adipose tissue (uncoloured); center: muscle tissue; and right:
distribution of high-density muscle (red) and intermuscular and intramuscular adipose tissue (yellow). Uncoloured voxels contain

mixtures of muscle and adipose tissue.

CT = computed tomography; EFFECT = European Femur Fracture Study.

predicted hip fracture with a hazard ratio (HR) of up to 1.6
that remained significant after adjustment for aBMD of the
spine and total hip (HR up to 1.2) [30], but areal total hip
BMD alone resulted in an HR of 2.1 for hip fracture pre-
diction. The other two studies [106,107] did not specifically
target hip fracture prediction or discrimination.

In the retrospective analysis of the European Femur
Fracture Study, the relative volume of adipose tissue in the
upper thigh and 12 soft tissue texture parameters charac-
terising the muscle—lipid distribution (Figure 8) were sig-
nificant discriminators of femur fracture. After combination
with the standard BMD in a multivariate model, four pa-
rameters remained significant discriminators: BMD and
cortical thickness representing the bone strength and the
relative volume of adipose tissue representing mechanical
protection against the hip fracture by a larger cushion and
the surface density of the adipocyte distribution within

1.0

combined model

> 0.6 - i
s ' . .
2 : BMD + cortical thickness
c L
& 04 A
soft tissue model
0.2 4
0 T v : :
0 0.2 0.4 0.6 0.8 1.0
1 - Specificity
Figure 9 ROC curves of three different models used for hip

fracture discrimination of the EFFECT study [108].
BMD = bone mineral density; EFFECT = European Femur
Fracture Study. ROC = receiver operator characteristics.

muscle representing muscle degeneration [108]. Area under
the curve values was 0.85 for a combined soft tissue model,
0.84 for a combined bone model containing BMD and
cortical thickness, and 0.92 for a model combining soft
tissue and bone parameters, indicating that soft tissue
parameters discriminated proximal femur fracture and BMD
and that a combined approach was providing the best
discrimination (Figure 9).

Future directions

Quantitative CT to assess the muscle volume and density is
an established technique used routinely in a large variety of
applications. Automated or at least semiautomatic seg-
mentation algorithms must be further developed, in
particular to analyse larger body parts instead of single
slices. The assumption of a well calibrated scanner, i.e., a
CT value of zero for water, is misleading and can lead to
larger accuracy errors in the determination of the CT
muscle density. The use of phantoms should be considered.
Standardisation of the terminology is also required.

The analysis of the muscle lipid distribution which is still
in its infancy may give new insights into the pathophysi-
ology of sarcopenia and cachexia and could in particular
improve risk prediction of osteoporotic hip fracture
because it takes into account to some extent the risk of
falls through the muscle status. In sarcopenia, CT should be
regarded as a complementary imaging method to DXA that
in combination with MRI may also improve our under-
standing on intervention and may better explain effects on
functional muscle outcomes than simple lean mass
measurements.
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