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Abstract
The	giant	panda	is	an	example	of	a	species	that	has	faced	extensive	historical	habitat	
fragmentation,	and	anthropogenic	disturbance	and	is	assumed	to	be	isolated	in	nu‐
merous	 subpopulations	with	 limited	 gene	 flow	 between	 them.	 To	 investigate	 the	
population	size,	health,	and	connectivity	of	pandas	in	a	key	habitat	area,	we	noninva‐
sively	collected	a	total	of	539	fresh	wild	giant	panda	fecal	samples	for	DNA	extrac‐
tion	 within	 Wolong	 Nature	 Reserve,	 Sichuan,	 China.	 Seven	 validated	
tetra‐microsatellite	markers	were	used	 to	analyze	each	sample,	and	a	 total	of	142	
unique	genotypes	were	identified.	Nonspatial	and	spatial	capture–recapture	models	
estimated	the	population	size	of	the	reserve	at	164	and	137	individuals	(95%	confi‐
dence	intervals	153–175	and	115–163),	respectively.	Relatively	high	levels	of	genetic	
variation	and	low	levels	of	 inbreeding	were	estimated,	 indicating	adequate	genetic	
diversity.	Surprisingly,	no	significant	genetic	boundaries	were	found	within	the	popu‐
lation	despite	the	national	road	G350	that	bisects	the	reserve,	which	is	also	bordered	
with	patches	of	development	and	agricultural	land.	We	attribute	this	to	high	rates	of	
migration,	with	four	giant	panda	road‐crossing	events	confirmed	within	a	year	based	
on	repeated	captures	of	individuals.	This	likely	means	that	giant	panda	populations	
within	mountain	ranges	are	better	connected	than	previously	thought.	Increased	de‐
velopment	and	tourism	traffic	in	the	area	and	throughout	the	current	panda	distribu‐
tion	 pose	 a	 threat	 of	 increasing	 population	 isolation,	 however.	 Maintaining	 and	
restoring	adequate	habitat	corridors	for	dispersal	is	thus	a	vital	step	for	preserving	
the	levels	of	gene	flow	seen	in	our	analysis	and	the	continued	conservation	of	the	
giant	panda	meta‐population	in	both	Wolong	and	throughout	their	current	range.
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1  | INTRODUCTION

Rare	 and	 elusive	 large‐bodied	 mammal	 populations	 intrinsically	
occur	at	low	densities	(Mumma,	Zieminski,	Fuller,	Mahoney,	&	Waits,	
2015;	Taberlet	&	Bouvet,	1992)	and	face	increasing	threats	from	cli‐
mate	change	and	anthropogenic	influences	(Li	et	al.,	2015;	Zhu	et	al.,	
2013).	Managers	are	frequently	tasked	with	monitoring	population	
sizes,	distributions,	and	connectivity	in	order	to	guide	management	
actions.	 Noninvasive	 genetic	 sampling	 (NGS)	 is	 increasingly	 being	
used	in	the	conservation	and	management	of	threatened	animals,	as	
it	allows	for	the	estimation	of	important	population	parameters	such	
as	 total	 size,	 genetic	 diversity,	 and	 gene	 flow	 among	 populations	
(Barba	et	 al.,	2010;	Schregel	et	 al.,	2012;	Wang	et	al.,	2016;	Zhan	
et	al.,	2006).	Analyses	of	gene	flow	grant	inference	about	the	func‐
tional	connectivity	of	a	 landscape	and	have	important	implications	
for	conservation.	Maintaining	adequate	connectivity	both	helps	to	
maintain	 genetic	 diversity	 in	 small	 subpopulations	 (Sharma	 et	 al.,	
2012)	and	allows	for	recolonization	of	areas	that	undergo	localized	
extinctions	(Hanski,	1998).

The	giant	panda	(Ailuropoda melanoleuca)	(Figure	1)	is	an	example	
of	a	species	that	has	faced	historical	population	declines	and	been	
the	focus	of	intensive	conservation	effort	through	the	establishment	
of	 protected	 areas	 and	 habitat	 restoration	 (Tuanmu	 et	 al.,	 2016).	
Although	there	is	evidence	of	recent	population	recovery	which	re‐
sulted	in	the	reduction	of	their	extinction	risk	on	the	IUCN	red	list	
(Swaisgood,	Wang,	&	Wei,	2017),	pandas	still	face	ongoing	increases	
in	habitat	fragmentation	and	subpopulation	isolation	(Xu	et	al.,	2017;	
Yang	et	al.,	2017).	Currently,	their	occupancy	has	been	reduced	to	
the	 eastern	 edge	 of	 the	 Tibetan	 plateau	 in	 six	 separate	mountain	
ranges	 (Schaller,	 Hu,	 Pan,	 &	 Zhu,	 1985).	 Within	 these	 mountain	
ranges,	major	rivers,	roads,	and	habitat	loss	are	estimated	to	further	
segregate	panda	populations	into	33	subpopulations	(State	Council	
Information	Office).

Road	 development	 in	 particular	 has	 increased	 substantially	
across	 the	 giant	 panda	 range.	While	 roads	 cover	 seemingly	 small	
proportions	of	land	surface,	they	affect	the	environment	in	various	
ways,	such	as	through	the	loss	of	suitable	habitat,	animal	mortality,	
acting	as	barriers	 to	 individual	movements,	and	causing	 landscape	
fragmentation	(Balkenhol	&	Waits,	2009;	Fahrig,	2004;	Zhao	et	al.,	
2016).	These	effects	can	act	to	increase	genetic	structure	between	
populations	 and	 decrease	 genetic	 diversity	 within	 populations,	
which	further	reduces	population	viability	(Keyghobadi,	2007).	This	
was	found	to	be	the	case	 in	the	giant	panda	population	occupying	
the	Xiangling	Mountains,	which	exhibited	genetic	differentiation	on	
either	side	of	a	major	road	(Zhu,	Zhan,	Meng,	Zhang,	&	Wei,	2010;	
Zhu,	Zhang,	Gu,	&	Wei,	2011).

Of	 the	 six	 mountain	 ranges	 occupied	 by	 giant	 pandas,	 the	
Qionglai	Mountains	 form	 the	 second	 largest	 tract	 of	 habitat	 and	
contain	 eight	 nature	 reserves	 for	 giant	 pandas.	 Despite	 this,	 the	
Qionglai	 panda	 population	 has	 been	 estimated	 to	 consist	 of	 five	
subpopulations	 (Figure	 2)	 (Forestry	 Department	 of	 Sichuan	
Province,	2015).	Two	of	these	subpopulations	share	a	border	along	
a	 national‐level	 (G350)	 road	 running	 approximately	 through	 the	
middle	 of	Wolong	Nature	Reserve,	 the	 flagship	 panda	 reserve	 in	
China	and	comprising	2,016	km2	of	 rugged	mountains	situated	at	
the	core	of	panda	habitat	in	the	Qionglai	Mountains.	There	are	also	
approximately	5,000	local	residents	living	in	three	townships	situ‐
ated	alongside	the	national	road.	The	northern	Wolong‐Caopo	sub‐
population	 and	 southern	 Xiling‐Jiajin	 subpopulation	 are	 assumed	
to	 be	 separated	 by	 these	 anthropogenic	 disturbances	 (Figure	 2)	
(Forestry	Department	of	Sichuan	Province,	2015),	but	 this	popu‐
lation	substructuring	was	not	based	on	an	analysis	of	the	genetic	
structure	or	gene	flow.	Due	to	the	reserve's	rugged	terrain	and	the	
elusive	behavior	of	pandas,	empirical	 information	is	 lacking	about	
whether	the	southern	and	northern	subpopulation	are	connected	
via	effective	migration	across	the	road.	This	would	mean	that	these	
subpopulations	 in	Wolong	act	as	a	single	meta‐population,	which	
has	 implications	for	their	persistence	and	management.	Such	em‐
pirical	 evidence	 of	 population	 connectivity	 is	 also	 largely	 lacking	
across	 the	 giant	 panda	 range,	 as	 analyses	 within	 the	 occupied	
mountain	ranges	have	rarely	employed	genetics	methods	(Shen	et	
al.,	2008;	Xu	et	al.,	2006).

F I G U R E  1  Two	captive	giant	pandas	in	Wolong.	Photo	credit	
to	Bo	Luo	of	the	China	Conservation	and	Research	Center	for	the	
Giant	Panda.
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The	main	 objective	 of	 this	 study	was	 to	 thus	 evaluate	 the	 ge‐
netic	connectivity,	through	the	presence	or	absence	of	migration,	of	
the	panda	subpopulations	on	either	side	of	the	main	road	through	
Wolong.	We	 also	 endeavored	 to	 use	 NGS	methods	 to	 determine	
the	population	size,	distribution,	and	genetic	diversity	of	the	panda	
population	in	Wolong	to	better	understand	their	ecology	and	inform	
effective	 conservation.	We	 hypothesized	 that	 the	 population	 size	
would	be	fairly	large	due	to	the	widespread	availability	of	understory	
bamboo	habitat	in	the	reserve,	and	that	this	would	translate	to	high	
levels	of	genetic	diversity.	That	said,	we	also	hypothesized	that	there	
would	be	a	detectable	effect	of	the	road	on	gene	flow.	We	expect	
our	 results	 to	have	 implications	 for	 the	 conservation	of	 remaining	
giant	panda	populations	both	within	Wolong	and	throughout	their	
range.

2  | MATERIALS AND METHODS

2.1 | Study region and sample collection

Our	 study	 area	 consisted	 of	 the	 subalpine	 regions	 of	 Wolong	
Nature	 Reserve.	 This	 region	 is	 situated	 in	 a	 global	 biodiversity	
hot	spot	area	and	features	approximately	905	km2	of	known	and	
potentially	 suitable	giant	panda	habitat	 (Forestry	Department	of	
Sichuan	Province,	2015).	From	March	2015	through	January	2016,	
we	 conducted	 systematic	 sampling	 to	 collected	 fecal	 samples	
along	line	transects	placed	within	520	1.42	×	1.42	km	survey	grid	
cells	 throughout	 the	panda's	entire	potential	distribution	area	 in	
the	reserve.

A	 total	 of	 165	 trained	 field	workers	 searched	 for	 fresh	 panda	
feces,	 taking	 a	 zigzag	 route	 in	 the	 survey	 cell	 in	 order	 to	 collect	

F I G U R E  2  Five	giant	panda	
subpopulations	purportedly	separated	by	
human	disturbance	events	in	the	Qionglai	
Mountains.
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samples	from	as	many	pandas	as	possible.	Most	samples	were	less	
than	two	weeks	old,	based	on	the	condition	of	 the	mucosal	mem‐
brane	 on	 the	 outer	 layer	 of	 the	 feces.	 All	 samples	were	 carefully	
collected	 to	 avoid	 contamination	 and	 preserved	 in	 sterile	 bags	 or	
ethanol.	All	samples	were	stored	at	−20°C	until	DNA	was	extracted.	
Each	 sample	 was	 georeferenced	 using	 hand‐held	 GPS	 units	 and	
mapped	in	ArcGIS‐10.	The	geographical	distribution	of	sample	loca‐
tions	is	shown	in	Figure	3.

2.2 | DNA extraction and amplification

Total	genomic	DNA	was	extracted	from	fecal	samples	using	QIAamp	
DNA	stool	mini	kits	 (Qiagen,	Germany),	according	to	the	manufac‐
turer's	 instructions.	We	used	seven	tetra‐microsatellite	 loci	 to	dis‐
tinguish	among	individuals.	These	were	as	follows:	GPL‐60,	gpz‐20,	
GPL‐29,	gpz‐6,	GPL‐53,	GPL‐44,	and	gpz‐47	(Huang	et	al.,	2015).	The	
probability	of	identity	across	these	loci	in	the	target	population	was	
estimated	 using	GIMLET	1.3.3	 (Valière,	 2002).	 PCR	 amplifications	
were	 carried	 out	 in	 25	μl	 reaction	 mixtures	 comprising	 approxi‐
mately	 50	ng	 of	 template	 DNA,	 2	mm	MgCl2,	 200	μmol	 of	 dNTP	
each,	15	pmol	of	each	primer,	1.0	μg	of	bovine	serum	albumin	(BSA),	
and	0.3	units	of	Hotstart	DNA	polymerase	(Takara).	Amplifications	
were	performed	using	the	following	PCR	procedure:	an	initial	dena‐
turation	step	for	5	min	at	95°C,	 followed	by	35	cycles	of	95°C	for	
45	s,	30	s	at	locus‐specific	annealing	temperature	and	50	s	at	72°C,	
and	a	final	elongation	for	10	min	at	72°C.	For	genotyping,	the	PCR	
amplification	products	were	separated	by	capillary	electrophoresis	
using	a	denaturing	acrylamide	gel	matrix	on	an	ABI	3730xl	Genetic	
Analyzer.	Alleles	were	detected	using	Genemapper	3.2	software.

2.3 | Quality control

Genotyping	 errors	 caused	 by	 amplification	 of	 poor	 quality	 DNA	
from	fecal	samples	such	as	allelic	dropout	and	false	alleles	can	se‐
verely	 bias	 estimates	 of	 population	 parameters	 (Broquet	 &	 Petit,	

2004;	 Lampa,	Henle,	 Klenke,	Hoehn,	 &	Gruber,	 2013).	 Therefore,	
we	performed	control	measures	to	ensure	the	quality	of	our	genetic	
data.	All	fecal	samples	were	amplified	at	least	three	times	for	each	
marker.	 A	 single‐locus	 genotype	was	 not	 accepted	 until	 our	 repli‐
cates	resulted	in	at	least	three	identical	homozygote	profiles	or	two	
identical	heterozygote	profiles.	These	criteria	were	based	on	a	pilot	
study,	where	genotypes	obtained	from	feces	versus	blood	samples	
were	compared	(Huang	et	al.,	2015).	Huang	et	al.	(2015)	concluded	
that	the	seven	loci	used	in	this	study	always	featured	exact	matches	
between	 blood	 and	 fecal	 samples	 of	 n	=	15	 captive	 pandas,	 and	
that	results	from	feces	exposed	to	the	natural	environment	for	up	
to	5	weeks	(longer	than	the	estimated	2‐week	cutoff	of	our	study)	
were	consistent.	As	an	additional	quality	control,	we	used	MICRO‐
CHECKER	 to	 search	 for	 loci	with	 large	 allele	 dropout	 and	 scoring	
errors	 caused	 by	 stutter	 peaks	 (Oosterhout,	 Hutchinson,	Wills,	 &	
Shipley,	2004).	No	evidence	of	allelic	dropout	or	scoring	error	due	to	
stuttering	was	found	for	any	locus.	Finally,	we	used	FreeNA	to	esti‐
mate	null	allele	frequencies	for	each	locus	(Chapuis	&	Estoup,	2007).	
There	was	an	average	null	allele	frequency	of	<0.04	across	the	7	loci.

2.4 | Estimation of population size

Individual	 genotypes	 were	 identified	 with	 the	MStools	 plugin	 for	
Microsoft	 Excel	 using	 the	 following	 rules:	 (a)	Genotypes	 from	dif‐
ferent	samples	were	believed	to	represent	the	same	individual	if	all	
alleles	 in	all	 loci	were	 identical.	 (b)	 If	only	one	allele	was	 found	 to	
differ	between	 individuals,	DNA	was	re‐extracted	and	three	more	
PCR	replication	was	performed.	 If	 the	allele	was	still	different,	we	
judged	the	samples	as	belonging	to	different	individuals.	(c)	If	there	
were	differences	of	two	or	more	alleles,	the	samples	were	accepted	
as	belonging	to	different	individuals.

The	noninvasive	records	of	individual	genotypes	throughout	an	
area	can	be	used	to	estimate	the	total	population	size	via	capture–
mark–recapture	methods	(Gervasi	et	al.,	2008;	Lukacs	&	Burnham,	
2005;	Mumma	et	al.,	2015).	We	used	the	identification	of	different	

F I G U R E  3  Sampling	locations	of	giant	
panda	feces	in	Wolong	nature	reserve,	
China
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individuals	 through	 the	 fecal	 genetics	 data	 to	 build	 a	CMR	model	
and	estimate	 the	giant	panda	population	 size	 in	Wolong	using	 the	
“CAPWIRE”	package	 (Pennell,	 Stansbury,	Waits,	&	Miller,	2013)	 in	
the	 R	 programming	 environment.	 CAPWIRE	 performs	 population	
size	estimation	as	well	 as	or	better	 than	other	 abundance	estima‐
tors	when	 the	 data	 contain	multiple	 observations	 of	 an	 individual	
within	 a	 session	 and	 there	 are	 <200	 individuals	 (Miller,	 Joyce,	 &	
Waits,	2005;	Mumma	et	al.,	2015).	Because	our	fecal	collection	ef‐
forts	 focused	on	all	 the	giant	panda's	suitable	habitat,	we	 inferred	
that	recapture	probability	was	even	among	all	individuals.	We	thus	
ran	models	under	the	assumption	of	equal	capture	(ECM)	probabili‐
ties	in	CAPWIRE	to	estimate	the	population	size.	Because	our	study	
population	was	not	 closed	during	 the	 study	period	 and	 there	was	
likely	migration	across	the	Northern	and	Southern	borders,	we	also	
used	the	R	package	“secr”	to	employ	spatially	explicit	capture–recap‐
ture	(SECR)	methods	to	estimate	a	density	of	pandas	per	square	km	
across	our	study	area	(Efford,	2013).	We	used	the	polygon	trap	for‐
mat	corresponding	to	the	520	survey	cells	and	grouped	the	data	into	
1	session	of	30	sampling	occasions	based	on	proximity	of	collection	
time.	We	then	multiplied	the	estimated	density	by	the	sample	area	to	
get	an	estimate	of	the	number	of	pandas	in	Wolong.

2.5 | Population genetics analysis

The	number	of	alleles	 (A),	observed	heterozygosity	 (Ho),	expected	
heterozygosity	 (He)	 and	 polymorphic	 information	 content	 (PIC)	
were	calculated	at	individual	loci	and	across	loci	using	the	software	
CERVUS	3.0	(Marshall,	Slate,	Kruuk,	&	Pemberton,	1998).

A	 Bayesian	 clustering	method	 implemented	 in	 Structure	 2.3.1	
(Pritchard	et	al.,	2000)	was	used	to	determine	the	most	likely	num‐
ber	of	genetic	clusters.	The	admixture	model	was	chosen,	allele	fre‐
quencies	were	assumed	correlated,	and	analysis	was	conducted	with	
a	burn‐in	of	100,000	and	followed	by	1,000,000	MCMC	repetitions.	
Ten	independent	runs	were	carried	out	for	each	cluster	set	(K),	from	
1	 to	4.	The	most	 likely	K	 value	was	determined	by	evaluating	 the	
log	likelihood	[In	P(X/K)]	of	the	posterior	probability	of	the	data	for	
each	value	of	K	(Pritchard	et	al.,	2000).	In	addition,	the	△K	statistic,	
the	second‐order	 rate	of	change	 in	 the	 log	probability	of	 the	data	
between	successive	values	of	K,	was	estimated	and	used	to	deter‐
mine	the	most	likely	number	of	genetic	clusters	(Evanno,	Regnaut,	&	
Goudet,	2005).	To	cross‐validate	the	results	of	STRUCTURE,	we	also	
conducted	 a	 principal	 coordinates	 analysis	 (PCoA)	 using	GenALEx	
V6.5	(Peakall	&	Smouse,	2012).	In	this	analysis,	multivariate	genetic	
distances	between	individuals	(Smouse	&	Peakall,	1999)	are	decom‐
posed	through	PCoA	to	find	sources	of	genetic	variation	across	the	
population.

For	 quantifying	 genetic	 differentiation	 between	 populations,	
we	estimated	an	FST	and	 its	 significance	value	 through	 resampling	
10,000	permutations	of	the	genotypes	between	populations	to	de‐
rive	a	null	distribution	using	Arlequin	3.5	(Excoffier	&	Lischer,	2010).	
Stable	and	separate	populations	have	high	FST	values,	while	popu‐
lations	with	high	migration	rates	between	them	tend	to	have	lower	
FST	 values	 (Sun	 &	 Chang,	 2016).	 Simulations	 have	 shown	 that	 FST 

performs	better	than	other	indices	of	population	differentiation,	as	
it	is	more	sensitive	in	detecting	population	genetic	processes	when	
the	mutation	 rate	 is	 high	 relative	 to	 the	migration	 rate	 (Whitlock,	
2011).	GeneClass	v.2.0	was	used	 to	detect	 first‐generation	migra‐
tion	 of	 individuals	 across	 the	 road.	 Specifically,	 we	 assigned	 the	
two	populations	on	either	side	different	 identities	before	applying	
Bayesian	likelihood‐based	test	statistics	to	compute	the	probability	
of	 an	 individual	 originating	 in	 one	 of	 the	 populations	with	Monte	
Carlo	resampling	of	10,000	simulated	individuals	at	an	alpha	value	
of	0.01	(Piry	et	al.,	2004).	In	this	analysis,	we	estimated	the	ratio	of	
the	likelihood	that	an	individual	is	of	the	same	population	from	which	
it	was	sampled	(L_home)	divided	by	the	ratio	of	the	highest	likelihood	
of	the	individual's	assignment	to	any	sampled	population	(L_max)	to	
detect	migrants.

The	 Triadic	 maximum	 likelihood	 (TrioML)	 estimator	 and	 the	
QuellerGt	moment	estimator,	implemented	in	Coancestry	1.0,	were	
used	to	calculate	the	inbreeding	coefficient	(f)	for	each	individual	and	
pairwise	relatedness	value	(r)	between	two	individuals,	respectively	
(Wang,	 2011).	 The	 individual	 inbreeding	 coefficient	 reflects	 the	
extent	 to	which	 their	parents	are	genetically	 related:	 f < 0.125	has	
been	defined	as	 low	 inbreeding,	0.25	>	f >	0.125	as	moderate,	and	
f ≥ 0.25	as	high	inbreeding	(Marshall	et	al.,	2002).	A	smaller	negative	
pairwise	relatedness	value	(r)	suggests	distant	kinship,	while	a	larger	
positive	value	suggests	closer	kinship.	Offspring	of	two	individuals	
with	a	high	pairwise	relatedness	value	(r)	have	a	high	risk	of	inbreed‐
ing	deficiencies.

2.6 | Spatial density pattern

We	 used	 the	 kernel	 density	 estimation	 (KDE)	 function	 in	 ArcGIS	
10.0	to	quantify	the	spatial	pattern	of	giant	panda	density	(Bailey	&	
Gatrell,	1995).	Previous	studies	in	Wolong	have	estimated	the	diam‐
eter	of	giant	panda	home	ranges	to	fall	between	1	and	3	km	(Guan	
et	al.,	2016;	Hu,	2001;	Schaller	et	al.,	1985).	Supposing	that	a	given	
giant	panda's	home	range	is	a	circle,	the	142	identified	panda's	GPS	
locations	were	used	to	denote	the	center	of	the	circle	with	a	radius	
of	3	km	(for	pandas	with	multiple	recaptures,	we	only	used	the	site	
of	 the	 first	discovery	 for	 this	analysis).	This	circle	 represented	 the	
maximum	likely	area	that	a	giant	panda	might	utilize.	Closer	regions	
to	the	observed	panda	locations	represent	areas	of	higher	probable	
activity	frequencies,	which	are	reflected	 in	the	kernel	density	out‐
put.	The	density	map	was	divided	into	three	tiers	(low,	medium,	and	
high),	indicating	different	levels	of	density	of	inferred	space	use.

3  | RESULTS

3.1 | Sampling and molecular identification

Of	the	520	survey	cells,	we	found	fresh	fecal	samples	in	140.	In	total,	
539	 fresh	 fecal	 samples	 were	 noninvasively	 collected	 for	 genetic	
analysis	from	the	entire	study	area	during	two	sampling	sessions	in	
the	years	2015–2016	(Figure	3).	Successful	genotyping	of	6	or	more	
microsatellite	loci	was	obtained	for	322	samples	(with	three	samples	
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that	were	successfully	genotyped	at	only	5	 loci).	The	probability	of	
two	individuals	who	were	full	siblings	sharing	an	identical	multi‐locus	
genotype	was	0.00808	based	on	6	loci,	indicating	that	this	subset	of	
the	original	7	 loci	was	enough	for	accurate	 individual	 identification	
(PIDsib	<	0.01)	 (Waits,	Luikart,	&	Taberlet,	2001).	Although	using	5	
loci	resulted	in	a	PIDsib	of	0.015,	the	three	samples	that	were	only	
successfully	genotyped	at	5	loci	were	included	in	the	analysis	because	
of	large	spatial	distance	between	them	and	other	samples	(>2	km).

Our	molecular	analysis	identified	142	individual	giant	pandas	in	the	
study	area.	Identified	individuals	were	observed	from	1	to	17	times,	
with	an	average	of	2.3	samples	per	individual.	57	(40%)	giant	pandas	
were	represented	by	two	or	more	observations,	leaving	85	individu‐
als	that	were	only	observed	once.	Our	ECM	capture–mark–recapture	
(CMR)	model	estimated	a	population	size	of	164	individuals	(95%	con‐
fidence	interval	153–175).	The	SECR	analysis	of	panda	density	across	
the	study	area	estimated	0.13	pandas/km2	(95%	confidence	interval	
0.11–0.16),	translating	to	137	individuals	(115–163)	in	Wolong.

3.2 | Spatial density pattern

There	were	four	areas	with	relatively	high	densities	of	giant	pandas	
in	Wolong:	the	Tiantaishan,	Hetaoping‐Niutoushan,	Wuyipeng,	and	
Xihe	areas,	ordered	from	north	to	south	(Figure	4).	The	large	home	
range	overlap	and	spatial	proximity	of	separate	areas	of	activity	in‐
dicate	that	in	the	absence	of	strong	resistance	or	barriers	to	move‐
ment,	the	giant	pandas	in	Wolong	constitute	a	relatively	continuous	
population.

3.3 | Genetic variation and inbreeding

The	 number	 of	 alleles	 per	 locus	 ranged	 from	 5	 at	 locus	 GPL‐29/
GPL‐44	to	a	maximum	of	14	at	 locus	gpz‐20.	The	mean	number	of	

alleles	(MNA)	was	7.4	per	loci	for	the	entire	population.	The	expected	
heterozygosity	(He)	ranged	from	0.360	to	0.781	(mean	0.633),	and	
the	observed	heterozygosity	(Ho)	varied	between	0.386	and	0.741	
(mean	 0.604)	 across	 loci.	 The	 polymorphism	 information	 content	
(PIC)	ranged	from	0.336	to	0.742,	with	an	average	of	0.586	(Table	1).	
No	 significant	Hardy–Weinberg	 disequilibrium	was	 detected	 after	
applying	the	Bonferroni	correction	(p	>	0.01).
We	 found	 that	 62.68%	 (n	=	89)	 of	 the	 142	 sampled	wild	 individu‐
als	 had	 an	 estimated	 inbreeding	 coefficient	 of	 f	<	0.125,	 18.31%	
(n	=	26)	of	the	individuals	had	0.25	>	f ≥	0.125%,	and	19.01%	(n	=	27)	
had f	≥	0.25.	The	 average	was	 f	=	0.135	 for	 the	whole	population.	
Genetic	 relatedness	 analysis	 revealed	 that	 68.84%	 of	 genotyped	
pairs	had	an	estimated	relatedness	value	of	r	<	0.125,	with	an	aver‐
age	of	‐0.00013	for	the	whole	population.

3.4 | Population structure and migration

Using	the	locations	of	genotyped	giant	panda	scat	samples	collected	
from	2015	to	2016,	two	giant	pandas	were	found	to	have	travelled	
back	 and	 forth	 across	 the	 road	 (4	 total	 road	 crossings)	 in	 a	 year	
(Figure	5).	This	 indicates	that	pandas	were	capable	of	crossing	the	
road	G350	during	this	time	period.	Moreover,	the	individual‐based	
Bayesian	 likelihood	 test	 statistics	 implemented	 in	GeneClass	 v.2.0	
identified	5	first‐generation	migrants	across	the	road.

The	 genetic	 differences	 between	 the	 southern	 and	 north‐
ern	 population	 around	 national	 road	G350	were	 found	 to	 be	 low	
(Fst	=	0.021	<	0.05,	p	<	0.01),	which	 is	equivalent	 to	approximately	
12	effective	migrants	(Nm)	per	generation.	Bayesian	clustering	anal‐
ysis	revealed	no	significant	genetic	structuring	(K	=	2)	between	the	
two	populations,	with	individuals	from	both	south	and	north	of	the	
road	forming	one	genetic	cluster	(Figure	6).	The	PCoA	based	on	ge‐
netic	 distances	 between	 individuals	 revealed	 a	 similar	 result,	with	

F I G U R E  4  Pattern	of	giant	panda	kernel	space‐use	density	in	Wolong	Nature	Reserve	(r	=	3,000	m)
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no	clear	 separation	between	 the	same	 two	populations	 (Figure	6).	
These	results	indicate	that	no	significant	genetic	differentiation	has	
occurred	around	the	G350	national	road.

4  | DISCUSSION

Previous	capture/recapture	studies	of	giant	pandas	that	have	used	
genetic	markers	have	resulted	in	population	size	estimates	that	have	
exceeded	those	of	other	methods,	with	Zhan	et	al.	(2006)	estimat‐
ing	nearly	double	the	population	size	 in	Wanglang	Nature	Reserve	
compare	to	the	3rd	national	survey.	These	methods	have	been	criti‐
cized	in	the	past	for	potential	violations	of	CMR	model	assumptions,	
including	population	closure	and	genotyping	error	(Garshelis	et	al.,	
2008).	 Our	 CMR	 model	 estimate	 of	 giant	 panda	 population	 size	
within	Wolong	was	also	larger	than	results	from	the	latest	national	
survey,	though	not	as	drastically	so	(slightly	over	50%).	The	potential	
for	genotyping	errors	was	explicitly	addressed	 in	our	analysis	 (see	
2.3),	but	open	borders	could	be	a	source	of	bias	in	the	estimation	of	
population	size.	Because	of	this,	we	used	SECR	methods	to	model	the	
density	of	pandas/km2	and	estimated	a	total	population	of	137	indi‐
viduals.	Because	SECR	estimates	density	in	a	spatially	explicit	man‐
ner	and	thus	avoids	the	assumption	of	spatial	population	closure,	this	
is	likely	a	more	accurate	estimate	of	the	concurrent	number	of	pan‐
das	residing	in	Wolong	at	a	given	time.	Both	this	analysis	and	a	simple	
count	of	unique	genotyped	individuals	in	our	study	still	exceed	the	

TA B L E  1  Characterization	of	microsatellite	loci	for	giant	pandas	
in	Wolong

Locus N A Ho He PIC HW

GPL‐29 139 5 0.698 0.685 0.632 NS

gpz‐20 131 14 0.702 0.774 0.748 NS

gpz‐6 142 6 0.690 0.643 0.601 NS

gpz‐47 140 6 0.386 0.360 0.336 NS

GPL‐60 139 7 0.741 0.781 0.742 NS

GPL‐53 135 9 0.578 0.644 0.577 NS

GPL‐44 139 5 0.432 0.548 0.468 NS

Average – 7.4 0.604 0.633 0.586 –

Note. A:	number	of	alleles;	He:	expected	heterozygosity;	Ho:	observed	
heterozygosity;	HW:	significance	of	Hardy–Weinberg	disequilibrium;	N: 
number	 of	 individuals	 genotyped;	 PIC:	 polymorphic	 information	
content.

F I G U R E  5  Giant	panda	WL063	(a)	
and	WL023	(b)	crossed	the	road	G350	
(yellow	line)	confirmed	by	noninvasive	
individual	identification;	string	of	arrows	
represents	the	chronological	order	of	the	
fecal	samples
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estimated	population	size	from	the	4th	national	survey,	suggesting	
Wolong's	panda	population	has	not	been	in	the	severe	decline	that	
national	survey	results	indicate.	Increased	use	of	molecular	methods	
and	CMR/SECR	modeling	 across	 a	wider	 area	 is	 needed	 for	more	
accurate	monitoring	of	giant	panda	population	changes	over	time.

Estimating	and	evaluating	genetic	variation	is	critical	for	the	effec‐
tive	evaluation	and	management	of	endangered	populations	and	spe‐
cies	(Caniglia,	Fabbri,	Galaverni,	Milanesi,	&	Randi,	2014;	Du	et	al.,	2016;	
Wang	et	al.,	2016).	Populations	with	higher	genetic	diversity	are	often	
inferred	 to	 have	 greater	 capacity	 to	 adapt	 to	 environmental	 change	
(Frankham,	2005).	Our	analysis	of	genetic	variation	in	the	giant	panda	
population	in	Wolong	revealed	relatively	high	levels	of	genetic	diversity	
with	large	MNA,	He,	and	PIC	values.	Although	the	data	are	not	directly	
comparable	because	different	microsatellite	markers	were	used,	com‐
parisons	 of	Wolong	 populations	 to	 other	 mountain	 populations	 sug‐
gested	that	genetic	diversity	in	Wolong	ranks	relatively	high	(Supporting	
information	Table	S1).	On	a	larger	scale,	a	high	level	of	genetic	variation	
was	 also	 confirmed	by	 genomewide	SNP	analysis	 of	 34	wild	 pandas’	
whole	genomes,	suggesting	pandas	have	large	evolutionary	potential	(Li,	
Fan,	Tian,	&	Zhu,	2010;	Wei	et	al.,	2015;	Zhao	et	al.,	2013).

Conservation	geneticists	emphasize	the	need	to	prevent	the	oc‐
currence	of	inbreeding	in	endangered	species	because	it	is	typically	
associated	with	 decreased	 fertility	 and	 survival	 (Deborah	&	 John,	
2009;	Keller,	F.,	Waller,	&	Donald,	M.,	2002;	Stevenr	et	al.,	2008).	
As	reflected	by	our	estimated	metrics,	 inbreeding	is	at	a	moderate	
to	 low	 level	 in	the	Wolong	population.	Most	 (68.84%)	pairwise	 in‐
dividuals	had	an	estimated	relatedness	value	of	r	<	0.125,	and	most	
(62.68%)	of	the	individuals	had	an	estimated	inbreeding	coefficient	
of	f	<	0.125.	This	is	likely	due	to	the	combination	of	the	high	rates	of	
migration/gene	flow	documented	 in	 this	study	and	the	prevalence	
for	female‐biased	natal	dispersal	supported	by	collar	tracking	(Pan	et	
al.,	2014;	Zhang	et	al.,	2014)	and	population	genetic	analysis	(Hu	et	
al.,	2017;	Hu,	Zhan,	Qi,	&	Wei,	2010;	Zhan	et	al.,	2007).	These	results	

are	in	agreement	with	previous	genomic	inbreeding	and	relatedness	
metrics	calculated	using	SNP	markers	from	the	whole	panda	genome:	
Pandas	 in	 larger	 populations	 like	 those	 in	 the	Qionglai	Mountains	
have	relatively	low	levels	of	inbreeding	compared	to	other	mountain	
ranges	(Garbe,	Prakapenka,	Tan,	&	Da,	2016).

Our	findings	that	the	pandas	were	able	to	cross	the	national	road	
bisecting	Wolong,	and	that	this	road	has	not	resulted	in	genetic	dif‐
ferentiation	between	the	populations	on	either	side,	differ	from	road	
effects	 found	 in	 the	Xiangling	Mountains.	 Zhu	et	 al.	 (2010)	 found	
that	the	national	road	G108	has	resulted	 in	a	significant	degree	of	
genetic	 differentiation	 in	 the	 giant	 panda	 populations	 there.	 The	
smaller	effect	of	road	G350	on	local	panda	populations	in	Wolong	
(Fst	=	0.021)	compared	to	those	of	G108	(Fst	=	0.033)	could	be	due	
to	smaller	traffic	volumes	of	G350,	which	was	a	provincial	road	S303	
before	2017.	Generally,	wider	roads	with	greater	volumes	of	high‐
speed	 traffic	 affect	wildlife	 populations	more	 strongly	 than	 small,	
less	travelled	roads	(Clevenger,	Chruszcz,	&	Gunson,	2001;	Jaarsma,	
Langevelde,	&	Botma,	2006).

Our	results	are	inconsistent	with	previous	studies	that	have	sug‐
gested	that	due	to	the	 impact	of	major	roads	coupled	with	the	de‐
struction	of	vegetation	nearby,	the	habitat	and	panda	populations	in	
the	Qionglai	Mountains	have	been	fragmented	into	four	blocks	(Xu	et	
al.,	2006).	This	is	directly	related	to	previous	assumptions	that	there	
has	been	a	lack	of	gene	exchange	between	the	two	subpopulations	
separated	by	unsuitable	habitat	and	the	road	G350	in	Wolong	(Hu,	
2001;	Loucks	et	al.,	2001;	Schaller	et	al.,	1985).	These	previous	ef‐
forts	to	describe	panda	population	substructuring	were	not	based	on	
an	 analysis	 of	 genetic	 structure	 and	 gene	 flow,	 however.	 The	 rela‐
tively	high	number	of	effective	migrants	(n	=	12)	per	generation	found	
by	our	 analysis	 suggests	 that	 there	have	been	 consistent	 dispersal	
events	across	the	road	and	valley	in	the	recent	demographic	history	
of	Wolong's	giant	panda	population.	Although	only	5	first‐generation	
migrants	were	detected	in	our	individual‐based	analysis	of	population	
assignment,	this	is	still	enough	to	produce	substantial	levels	of	gene	
flow	and	reduce	genetic	differentiation	across	the	road.

The	kernel	density	map	of	potential	panda	activity	also	supports	
the	 conclusion	 that	 there	 is	 a	 relatively	 continuous	 panda	 popula‐
tion	 across	Wolong	 and	 the	 central	Qionglai	Mountains.	Although	
perhaps	an	overestimation	of	the	actual	extent	of	giant	panda	space	
use	within	home	ranges,	the	output	shows	that	potential	home	range	
movements	 are	 continuous	across	 the	 reserve,	 and	notably	 across	
the	areas	of	human	disturbance.	As	natal	dispersal	movements	are	
typically	much	greater	than	home	range	movements	in	giant	pandas	
(Connor,	Hull,	&	Liu,	2016),	 the	kernel	density	output	 represents	a	
conservative	estimate,	assuming	unrestricted	movement,	of	poten‐
tial	 population	 overlap	 across	 the	 reserve.	 Two	 areas	 in	 particular	
emerge	as	likely	dispersal	corridors—one	in	between	the	two	human	
settlements	(Wolong	and	Gengda)	and	one	to	the	south	of	Wolong	
(Figure	4).	The	sum	of	our	results	indicates	that	the	Wolong‐Caopo	
and	Xiling‐Jiajin	 subpopulations	 in	 the	Qionglai	Mountains	 are	 ge‐
netically	connected	with	each	other	via	potential	dispersal	corridors	
between	them.	This	also	has	implications	for	giant	panda	population	
connectivity	 in	other	 areas	of	 the	panda	 range—major	 roads,	 even	

F I G U R E  6  Bayesian	clustering	plots	(K	=	2)	(a)	and	principal	
coordinates	analysis	(PCoA)	(b)	of	the	south	and	north	
subpopulation	separated	by	road	G350	in	Wolong
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those	with	further	associated	habitat	disturbances,	may	not	be	com‐
plete	barriers	 to	dispersal.	More	 localized	evaluations,	even	within	
the	scope	of	larger‐scale	research,	are	thus	necessary	to	understand	
the	effects	of	anthropogenic	disturbance	on	population	connectivity.

Though	indicating	adequate	dispersal	and	gene	flow	across	the	
reserve	presently,	our	results	do	not	suggest	that	conservation	ac‐
tion	in	Wolong	or	other	areas	should	be	lessened.	In	fact,	the	main‐
tenance	 of	 usable	 movement	 corridors	 across	 the	 valley	 through	
which	the	national	road	G350	runs	should	be	emphasized.	Since	its	
successful	reconstruction	in	2016	after	the	devastating	Wenchuan	
earthquake	in	2008,	traffic	volumes	continue	to	increase.	It	is	thus	
likely	 that	 successful	giant	panda	dispersal	events	across	 the	 road	
have	declined	and	will	continue	to	do	so,	with	genetic	effects	that	
will	manifest	in	future	generations.	Corridor	preservation	and	resto‐
ration	should	thus	be	a	priority	for	managers	to	maintain	the	connec‐
tivity	and	levels	of	gene	flow	seen	in	our	analysis.

This	emphasis	on	functional	connectivity	should	be	more	broadly	
applied	to	giant	panda	populations	across	their	current	distribution	
as	well,	 because	 road	 construction	 and	 increasing	 traffic	 volumes	
have	been	steadily	increasing	phenomenon	throughout	it	(Xu	et	al.,	
2017).	 Although	 our	 results	 suggest	 that	 population	 segregation	
may	not	be	as	extensive	as	suggested	in	previous	analyses	(Forestry	
Department	of	Sichuan	Province,	2015;	Xu	et	al.,	2006),	full	subdivi‐
sion	of	presently	connected	populations	is	likely	an	ongoing	process.	
The	high	 levels	of	genetic	diversity	frequently	seen	 in	giant	panda	
populations	(Wei	et	al.,	2015)	should	thus	be	seen	as	a	resource	to	
preserve,	as	well	as	supplement	with	reintroduction	efforts	(Yang	et	
al.,	 2018).	 Recent	molecular	 and	behavioral	 investigations	 suggest	
that	giant	pandas	rely	primarily	on	adequate	dispersal	opportunities	
to	avoid	 inbreeding	 through	sex‐biased	dispersal	 (Hu	et	al.,	2017).	
This	 emphasizes	 the	 need	 for	 habitat	 connectivity	 in	 giant	 panda	
conservation.	 Ultimately,	 the	 maintenance	 of	 habitat	 corridors	
through	targeted	conservation	efforts	across	the	giant	panda	range	
will	be	what	continues	to	ensure	stable	and	healthy	wild	populations.

Furthermore,	additional	studies	that	build	on	our	results	should	be	
undertaken.	A	more	detailed	analysis	of	genotypes	and	their	spatial	
distribution	would	allow	for	the	reconstruction	of	wild	panda	pedi‐
grees	and	the	investigation	of	small‐scale	dispersal	patterns.	Second,	
a	more	comprehensive	long‐term	noninvasive	genetic	monitoring	of	
population	parameters	such	as	abundance,	geographical	range	shifts,	
vital	 rates,	 and	genetic	variation	would	allow	 for	an	 in‐depth	eval‐
uation	of	population	dynamics	(Schwartz,	Luikart,	&	Waples,	2007;	
Waits	 &	 Paetkau,	 2005).	 Long‐term	 genetic	 monitoring	 has	 been	
successfully	used	in	wild	mammals	such	as	brown	bear	(Barba	et	al.,	
2010),	coyote	(Prugh,	Ritland,	Arthur,	&	Krebs,	2005),	and	wolverine	
(Bischof,	Gregersen,	 Seth,	&	H.,	 Ellegren,	H.	&	 Flagstad,	Ø.,	 2016;	
Henrik,	Øystein,	Cecilia,	Malin,	&	Hans,	2010),	but	such	studies	are	
lacking	on	giant	pandas.	NGS	offers	unique	opportunities	to	acquire	
the	 necessary	 individual	 identifications	 from	 populations	 that	 are	
difficult	 to	 observe	 in	 order	 to	monitor	 population	 dynamics	 over	
large	timescales.	NGS	methods	have	the	additional	advantage	of	not	
disturbing	 animals	 to	 acquire	 identifications,	which	 is	 of	 particular	
importance	for	rare	and	threatened	species	like	the	giant	panda.

This	study	thus	provides	an	effective	base	from	which	to	continue	
to	monitor	the	giant	panda	population	in	Wolong	for	small‐scale	dis‐
persal	 and	population	connectivity	patterns	 in	 the	 face	of	environ‐
mental	changes.	Continued	study	will	also	allow	for	the	investigation	
of	 long‐term	 population	 dynamics	 in	 order	 to	 better	 understand	
panda	ecology	and	inform	management	both	within	the	reserve	and	
throughout	the	current	panda	distribution	area	in	order	to	ensure	the	
continued	recovery	of	one	of	the	world's	foremost	conservation	icons.
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