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Objective: Temporal lobe epilepsy (TLE) can be conceptualized as a network disease.

However, the network characteristics in lateralization remain controversial.

Methods: In this study, resting-state functional MRI scans were acquired from

53 TLE patients [22 with left-side TLE (LTLE) and 31 with right-side TLE (RTLE)]

and 37 matched healthy controls. We focused on the characteristics of static and

dynamic functional connectivity, including static connectivity patterns and topological

properties, as well as temporal properties of the dynamic connectivity state and the

variability of the dynamic connectivity and network topological organization. Correlation

analyses were conducted between abnormal static and dynamic properties and

cognitive performances.

Results: The static functional connectivity analysis presented a significantly decreased

cortical-cortical connectivity pattern and increased subcortical-cortical connectivity

pattern in RTLE. The global-level network in RTLE showed a significant decrease

in global efficiency. The dynamic functional connectivity analysis revealed that RTLE

patients exhibited aberrant connectivity states, as well as increased variability in the

subcortical-cortical connectivity. The global-level network in RTLE revealed increased

variance in global efficiency and local efficiency. The static or dynamic functional

connectivity in LTLE did not show any significant abnormalities. The altered dynamic

properties were associated with worsening cognitive performance in language and

conceptual thinking by the TLE patients.

Conclusion: Our findings demonstrated the presence of abnormalities in the static

and dynamic functional connectivity of TLE patients. RTLE patients exhibited more

pronounced aberrant connectivity patterns and topological properties, which might

represent a mechanism for reconfiguration of brain networks in RTLE patients.

These observations extended our understanding of the pathophysiological network

mechanisms of TLE.

Keywords: temporal lobe epilepsy, functional magnetic resonance imaging, static functional connectivity, dynamic

functional connectivity, cognitive deficits
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INTRODUCTION

Temporal lobe epilepsy (TLE) is the most common type
of localization-related epilepsy associated with recurrent
spontaneous seizures and widespread cognitive dysfunction.
Over the past decades, compelling evidence from semeiology,
histopathology, electrophysiology, and neuroimaging has
revealed that the neurobiological insults in TLE extend
beyond the epileptogenic temporal lobe into extratemporal
regions, supporting the concept that TLE is a disorder of
large neural networks (Spencer, 2002; Jiruska et al., 2014). The
connectome analysis, as applied to data from structural metrics
or neurophysiologic signals, allows assessment of the aberrant
connectivity between different regions in the brain network, as
well as the network topological features related to integration and
segregation, which has helped develop the network hypothesis of
TLE (Bernhardt et al., 2013; Cataldi et al., 2013).

Due to the hemispheric asymmetries of the human brain, the
different network organization patterns involved in left-side TLE
(LTLE) and right-side TLE (RTLE) have long been recognized.
Based on correlations observed among cortical and subcortical
volumes, structural covariance network analysis conducted by
Yasuda et al. (2015) demonstrated reduced cortical/subcortical
connectivity and a less than optimal topological organization in
TLE patients compared to controls. Although both LTLE and
RTLE patients displayed decreased global efficiency, increased
local efficiency, and an increased clustering coefficient, more
severe abnormalities were observed in LTLE. A global white
matter connectome analysis also described a more pronounced
reduction in connectivity in LTLE than RLTE (Besson et al.,
2014). This pattern of more pronounced structural network
alterations is consistent with the more severe morphological
abnormalities seen in gray and white matter in LTLE. However,
not all studies have reported a similar lateralization effect for
the structural network pattern. One recent structural network
study indicated that the structural disruptions of networks in
patients with LTLE and RTLE were differed in distribution
and severity; RTLE exhibited more extensive abnormalities
than patients with LTLE (Yu et al., 2019). Lemkaddem et al.
(2014) found that patients with RTLE experienced more severe
connectivity alterations at the whole-brain, hub, and regional
levels. The laterality of the epileptogenic zone also exerts a
distinct impact on the functional network derived from resting-
state functional magnetic resonance imaging (fMRI) data. In
published findings, the functional network of RTLE and LTLE
are different, and the network pattern is as controversial as the
structural network. As reported by Vytvarova et al. (2017), a
significant disturbance in functional connectivity was observed
only in LTLE; the global functional network showed a higher
clustering coefficient and characteristic path length. Chiang et al.
(2014) identified more pronounced reductions in the functional
connectivity of the limbic network in RTLE. The tendency toward
reorganization in topological changes in LTLE was thought
to help explain lateralized variations in neurobehavior and
cognition. It is unclear whether the network abnormalities in
TLE arise from pathologic mechanisms directly related to seizure
impact or whether they are an adaptive mechanism to prevent

the loss of functional integrity. The heterogeneous hemispheric
lateralization effect also has not been clearly explained. Thus,
further evidence is needed concerning the network pathology of
TLE, especially for functional networks.

In most previous studies, it has been assumed that the
functional interactions remained constant during fMRI scanning.
In that context, functional connectivity represents an average
across complex spatio-temporal phenomena. Recent studies
highlight the abundant information contained within the
dynamic characteristics of functional connectivity (Hutchison
et al., 2013; Cohen, 2018; Liégeois et al., 2019). Dynamic
functional connectivity has been applied to characterize the
inherent dynamic properties of brain networks in clinical
populations, including schizophrenia (Lemkaddem et al., 2014),
Parkinson’s disease (Chiang et al., 2014; Vytvarova et al.,
2017), and Alzheimer’s disease (Liégeois et al., 2019). This
information has led to a better understanding of the underlying
neural mechanisms of the disorders that cannot be discovered
through static functional connectivity alone. For patients with
TLE, only a few studies have focused on the fluctuations of
connectivity within predefined regions of interest, such as the
hippocampus (Morgan et al., 2020). The characterizations of
dynamic functional connectivity in TLE from the perspective of
global networks remain largely unknown.

In this study, we investigated the differences in static and
dynamic functional connectivity patterns among healthy controls
as well as LTLE and RTLE patients. Graph theory methods
were employed to capture the global properties that reflected
the information flow in the brain networks. Correlation analyses
also were carried out between abnormal characteristics and
cognitive performances.We expected to gain new insight into the
physiological networks affected by lateralization.

MATERIALS AND METHODS

Participants
Fifty-three TLE patients with unilateral TLE [including left-
side TLE (LTLE) and right-side TLE (RTLE)] were enrolled
through the Epilepsy Clinic of the First Affiliated Hospital of
Guangxi Medical University from December 2018 to January
2020. Diagnosis and localization of TLE were determined by
comprehensive evaluation, including a detailed history and
seizure semiology, ictal/interictal scalp electroencephalography,
and routine clinical MRI according to the guidelines of the
International League Against Epilepsy (ILAE) (Berg et al., 2010;
Scheffer et al., 2017). The inclusion criteria were as follows:
(1) the patients were right-handed; (2) the typical clinical
semiology was consistent with seizures of temporal lobe origin;
(3) ictal/interictal scalp electroencephalograms demonstrated
epileptic discharges originating from a unilateral temporal lobe;
and (4) the patients had been regularly taking antiepileptic drugs
(AEDs). The exclusion criteria included the existence of clinical
or electrographic evidence of bitemporal or extratemporal
seizures, developmental anomalies, cortical malformations, or
other focal lesions on the clinical MRI, a history of severe
mental or neurological disease other than epilepsy, any history
of substance or alcohol abuse, inability to complete all of the
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procedures in this experiment, and contraindications for MRI.
A subset of the patients exhibited MRI evidence of hippocampal
atrophy, a common finding in TLE. However, this was not used
as an inclusion or exclusion criterion.

Thirty-seven healthy control (HC) subjects without a history
of mental or neurological disease were recruited from the
surrounding community. They were matched to the patient
groups with respect to age, gender, and years of education. This
study was approved by the Medical Research Ethics Committee
of the First Affiliated Hospital of Guangxi Medical University.
Written informed consent was obtained from each subject.

Cognitive Data
The Montreal Cognitive Assessment (MoCA) (Nasreddine et al.,
2005), a brief cognitive screening tool, was administered to all
participants. Several researchers have suggested using the MoCA
to screen patients with epilepsy (Phabphal and Kanjanasatien,
2011; Yang et al., 2018). We utilized the Chinese version
of the MoCA Basic, which was translated from the original
English with subtle linguistic and cultural modifications (Chen
et al., 2016). This screening tool assesses several cognitive
domains, including executive function, language, orientation,
calculation, conceptual thinking, memory, visuoperception,
naming, attention, and concentration.

MRI Data Acquisition
All participants underwent structural and functional data
acquisition using an Achieva 3.0 T MRI system scanner (Philips,
Amsterdam, The Netherlands) with a standard eight-channel
head coil. Earplugs were used to reduce scanner noise. Foam
padding was placed between the patient’s head and coil to
minimize head movements. Participants were instructed to
remain awake and relaxed, avoid thinking about any specific
topic, and keep their eyes closed during the scanning. T1-
weighted high-resolution data were acquired with the turbo field
echo sequence, using the following parameters: repetition time=
7.8ms, echo time= 3.4ms, flip angle= 9◦, field of view= 256×
256mm, matrix size = 256 × 256, number of slices = 176 with
no gap, voxel size = 1 × 1 × 1mm. Functional MRI data were
obtained using an echo-planar imaging sequence: repetition time
= 2,000ms, echo time = 30ms, flip angle = 90◦, field of view =

220 × 220mm, matrix size = 64 × 62, number of slices = 41,
slice gap =0.5mm, and voxel size = 3.44 × 3.44× 3.5mm. The
total time for the functional MRI acquisition was 7min 30 s, and
225 volumes were collected.

MRI Data Pre-processing
Pre-processing of functional data was performed using the Data
Processing and Analysis for Brain Imaging toolbox (DPABI V4.2,
www.rfmri.org/dpabi), which is based on Statistical Parametric
Mapping software (SPM12, www.fil.ion.ucl.ac.uk/spm). The first
ten volumes were removed in the functional data pipeline to
allow for signal stabilization. The remaining volumes underwent
slice timing correction and realignment. To eliminate the
influence of head motion, participants were excluded if they
presented mean frame-wise displacement (FD) values > 0.2mm,
or if the maximum displacement was > 3mm, or 3◦ in angular

rotation (Power et al., 2014; Yin et al., 2021). The functional
images were co-registered to the individual T1 image, then
normalized to the Montreal Neurological Institute (MNI) space
using an affine transformation with the voxels resampled to a
resolution of 3× 3× 3mm. Finally, the normalized images were
spatially smoothed using a 6mm full-width at half-maximum
Gaussian kernel.

Group Independent Component Analysis
After pre-processing, the functional data were decomposed
into functional networks using the group independent
component analysis ICA of fMRI Toolbox (GIFT v4.0b,
http://icatb.sourceforge.net/). The pipeline of the spatial group
ICA basically followed the steps described in the classic
article by Allen et al. (2014). A two-step data reduction
was used to reduce the functional data dimension. For
subject-specific data reduction, a total of 120 principal
components across each subject were retained using the
standard economy-size decomposition algorithm. In the group-
level data reduction, the concatenated subject-reduced data
were decomposed into 100 group independent components
using the expectation maximization algorithm. The Infomax
ICA algorithm was run 20 times using ICASSO to estimate
the reduction stability. Independent components with average
intra-cluster similarity values > 0.8 were selected. Then, the
spatial maps and time courses were back-reconstructed for
each subject.

The meaningful independent components were identified
based on the criteria recommended by Allen et al. (2011).
Briefly, the spatial map of components exhibited peak activations
in gray matter and showed low spatial overlap with known
vascular, ventricular, and susceptibility artifacts and edge regions
corresponding to head motion. Also, the spectral powers of the
corresponding time courses were dominated by low-frequency
fluctuations, and the low-frequency to high-frequency power
ratio was higher than 4. In the current study, 43 independent
components were ultimately retained.

Static and Dynamic Functional
Connectivity Network Construction
Before evaluating functional connectivity, the time courses
for the 43 independent components were further processed
to detrend, despike, and filter using a high-frequency cutoff
of 0.15Hz (Allen et al., 2011). A 43 × 43 functional
connectivity matrix was created for each subject by performing
Pearson’s correlations for time courses of pairwise independent
components. The static functional connectivity was defined as a
measure of average connectivity during the entire scan duration,
while the dynamic functional connectivity was computed using
the sliding-window approach. In line with previous studies
(Allen et al., 2014; Fiorenzato et al., 2019), the time courses
were divided into windows of 22 TRs with a Gaussian, σ =

3 TRs. The onset of each window progressively slid in steps
of one TR from the previous one, resulting in 193 windows.
This segment length has been demonstrated to provide a good
compromise between the quality of the correlation matrix
estimation and the temporal resolution. For each subject, the
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resulting 193 functional connectivity matrixes represented the
dynamic changes of functional connectivity during the resting
state scan period. The values for the static and dynamic
functional connectivity matrixes were transformed to z-scores to
improve normality.

Static Functional Connectivity Analysis
Static Connectivity Analysis
Connectivity analysis was performed on the static functional
connectivity matrix. The MANCOVAN utility within GIFT was
used to test the effect of group membership on functional
network connectivity. The design matrix included group
membership (HC, LTLE, or RTLE) as a covariate of interest.
Age, sex, education level, andmean FDwere considered nuisance
covariates. Multivariate analysis of covariance was conducted to
identify factors that influenced the response matrix, and then
univariate tests were performed with a reduced design matrix.
Only group membership showed a significant relationship with
functional network connectivity. Therefore, univariate tests were
performed using a term for group membership. The significance
criterion was P < 0.05 with false discovery rate (FDR) correction
for multiple comparisons.

Static Graph Theory Analysis
A graph theory method was applied to examine the topological
organization of the static functional connectivity networks. The
topological properties on the static functional connectivity
matrixes across all subjects were calculated using the
graph theoretical network analysis toolbox (GRETNA v2.0,
www.nitrc.org/projects/gretna). Each functional connectivity
matrix was binarized with respect to a set of fixed sparsity
thresholds. The threshold range of sparsity was identified
as 0.08–0.48 in 0.01 increments, based on a previous study
(Song et al., 2021). Only positive relationships were used in
the analysis. The small-world properties (including normalized
clustering coefficient, normalized characteristic path length,
and small-worldness index) and network efficiency (including
global network efficiency and local network efficiency) were
examined at each sparsity threshold. To avoid the specific
selection of a threshold, we applied an area under the curve
(AUC) approach, which is widely used in graph theory-based
network studies (Tu et al., 2019). The AUC changes for each
topological property were calculated for statistical comparisons.
Age, sex, education level, and mean FD were considered
nuisance covariates.

Dynamic Functional Connectivity Analysis
Connectivity State Analysis
The variability in functional brain connectivity gave rise to highly
structured patterns of connectivity that emerged and dissolved
over time, which are called connectivity states (Allen et al.,
2014; Yu et al., 2015). To explore the frequency (measured by
temporal occurrence) and structure (measured by representing
strength and directionality) of recurring functional connectivity
patterns over time, the k-means clustering algorithm was applied
to cluster the states of the windowed functional connectivity
matrixes across all subjects. We used the squared Euclidean

distance method for the k-means in this study, and 500
iterates and 150 replicate functional connectivity windows were
partitioned into different clusters. The optimal number of
clusters was determined based on the silhouette criterion of the
cluster validity index (Fiorenzato et al., 2019). The temporal
properties of the functional connectivity state, including the
reoccurrence fraction and mean dwell time in each state, as
well as the total transition number between different states, were
calculated for each subject.

Connectivity Variability Analysis
To assess the variability in individual functional connectivity
across sliding windows, the variance of the 193 windowed
functional connectivity matrixes mentioned above was calculated
for statistical comparisons. Age, sex, education level, and
mean FD were considered nuisance covariates. The significance
criterion was P < 0.05, with false discovery rate (FDR)
corrections for multiple comparisons. A larger variance indicated
more variable (or less stable) functional connectivity of
the networks.

Dynamic Graph Theory Analysis
A graph theory method also was applied to examine the
variability of the topological organization of the dynamic
functional connectivity networks across windows. Similar to
the static graph theory analysis, calculations of the topological
properties on the 193 functional connectivity matrixes across
all subjects were performed using the GRETNA toolbox. The
variance of the AUC changes for each topological property was
calculated for statistical comparisons. Age, sex, education level,
and mean FD were considered nuisance covariates.

Statistical Analysis
The statistical analyses were conducted in SPSS v. 22.0.
The one-sample Kolmogorov-Smirnov test was used as the
normal distribution test for quantitative data. The variables
of the demographics data demonstrated normal distribution.
Therefore, one-way ANOVAs (three levels: HC, LTLE, and RTLE)
were used to determine the significance, and post-hoc analysis
was conducted if a significant difference was found. Differences
in clinical characteristics between the LTLE and RTLE groups
were detected using a two-sample t-test (continuous data) or a
chi-square test (categorical data) as appropriate. The variables
of the MoCA scores and dynamic properties exhibited non-
normal distribution, so the Kruskal-Wallis test was used to
compare cognitive profiles across groups. Post-hoc analysis
was used to determine from which groups the differences
originated. Partial correlation analyses were conducted to detect
associations between the MoCA performance and the altered
dynamic properties. Age, sex, education level, and mean FD
were treated as controlling covariates. The significance criterion
was P < 0.05, and the Bonferroni correction was applied for
multiple comparisons.
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RESULTS

Demographics and Clinical Characteristics
Fifty-three TLE patients (22 with LTLE and 31 with RTLE) and
37 controls were included in the study. The demographic data
and clinical features of all subjects are summarized in Table 1.
No significant differences were observed among the three groups
with regard to age, sex, and education level. No significant
differences were found in the epilepsy-related features between
patients in the LTLE and RTLE groups, including age at onset of
epilepsy, epilepsy duration, seizure frequency, seizure type and
the number of current AEDs taken. Significant differences were
observed in cognitive performance assessed with MoCA among
the three groups, as shown in Figure 1. Patients with LTLE
primarily exhibited impairments in executive function, language,
conceptual thinking, and memory. Patients with RTLE exhibited
impairments in language and conceptual thinking.

Intrinsic Connectivity Networks
Identification
Resting-state fMRI data were decomposed into functional
independent components using group spatial ICA. Spatial
maps of 43 independent components were identified and are
shown in Figure 2. Based on the anatomical and presumed
functional properties, these independent components were
arranged into seven functional networks, including a subcortical
network (SCN), auditory network (AUD), somatomotor network
(SMN), visual network (VIS), cognitive control network (CCN),
default mode network (DMN), and cerebellar network (CBN).
Detailed images of each independent component are shown
in Supplementary Figure 1, and the coordinates for the peak
activations are listed in Supplementary Table 1.

Static Functional Connectivity Analysis
Static Connectivity Patterns
Supplementary Figure 2 displays the averaged static functional
connectivity network between the independent components
computed over the entire scan. The static connectivity within
the AUD, SMN, VIS, and DMN networks, as well as between the
SCN and SMN, the AUD and CCN, the AUD and DMN, the VIS
and SMN, the VIS and CCN, the VIS and DMN, and the CCN
and DMN networks showed significant differences among the
three groups (P < 0.05, FDR corrected). Specifically, compared
with the HC group, the RTLE group exhibited significantly
decreased connectivity within the AUD, SMN, VIS, and DMN
networks, as well as decreased connectivity between the AUD
and CCN, the AUD and DMN, the VIS and SMN, the VIS and
CCN, the VIS and DMN, and the CCN and DMN networks.
Comparison between the HC and RTLE groups also revealed
increased connectivity between the SCN and SMN networks,
shown in Figure 3. There was no difference between the LTLE
and HC and RTLE and LTLE groups.

Static Graph Theory Analysis
The topologic properties of the static connectivity network were
calculated and compared among the groups. As seen in Figure 4,
the global network efficiency showed significant differences

among the three groups. The RTLE group exhibited lower global
network efficiency compared with the HC group. There was no
difference in the global network efficiency between the LTLE and
HC and the RTLE and LTLE groups. There were no differences in
other global properties, i.e., the normalized clustering coefficient,
normalized characteristic path length, small-worldness index,
and local network efficiency among the three groups.

Dynamic Functional Connectivity Analysis
Connectivity State Analysis
Clustering analysis revealed two connectivity states that
recurred throughout the individual scans and across subjects.
Supplementary Figure 3 shows the centroids of the clusters
for each state, which reflected a connectivity pattern that was
stably present within the data. Significant group differences were
detected in the fraction rate of occurrences and the mean dwell
time for each state, as seen in Figure 5. Specifically, compared
with the HC group, the RTLE group exhibited a significantly
lower fraction rate in state I and a higher fraction rate in state
II. The mean dwell time for the RTLE group in state I was
significantly shorter compared with the HC group, and the mean
dwell time for the RTLE group in state II was significantly longer
than the HC and LTLE groups. No differences were observed in
the number of transitions between groups.

Connectivity Variability Analysis
We estimated the temporal variability in the dynamic functional
connectivity using the variance in functional connectivity across
sliding windows. The connectivity variability between the SCN
and SMN, the SCN and VIS, and the SCN and DMN networks
showed significant differences among the three groups (P < 0.05,
FDR corrected). Specifically, compared with the HC group, RTLE
patients exhibited significantly increased connectivity variability
between the SCN and SMNnetworks, the SCN andVIS networks,
and the SCN and DMN networks, as seen in Figure 6. There
were no differences between the LTLE and HC and RTLE and
LTLE groups.

Dynamic Graph Theory Analysis
The variability of the graph metrics with respect to dynamic
changes across windows was calculated and compared among
the groups. As demonstrated in Figure 7, the variance of the
global network efficiency and local network efficiency showed
significant differences among the three groups. The RTLE group
exhibited increased variance in the global network efficiency
and local network efficiency compared with the HC group.
There were no differences in the variance of the global network
efficiency and local network efficiency between the LTLE and
HC and RTLE and LTLE groups. There were no differences
in the variance of normalized clustering coefficient, normalized
characteristic path length, and small-worldness index among the
three groups.

Correlation Between Dynamic Properties
and MoCA Scores
Correlation analyses were performed to test whether functional
connectivity characteristics were associated with cognitive
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TABLE 1 | Demographic characteristics and clinical features of patients with TLE and healthy controls.

HC (n = 37) TLE F/χ2/t P-value

LTLE (n = 22) RTLE (n = 31)

Demographic characteristics

Age (years) 29.57 ± 7.74 29.95 ± 8.10 31.42 ± 9.00 0.447 0.641a

Gender (male/female) 16/21 6/16 8/23 2.789 0.248b

Education level (years) 13.38 ± 2.34 13.31 ± 2.77 13.45 ± 2.47 0.019 0.981a

Clinical features

Age at onset (years) NA 21.57 ± 10.17 21.05 ± 10.25 0.182 0.856c

Epilepsy duration (years) NA 8.39 ± 6.13 10.34 ± 5.53 −1.211 0.231c

Seizure frequency (time/months) NA 4.91 ± 9.16 2.50 ± 3.86 1.313 0.195c

Seizure type (Focal/FBTCS) NA 8/14 15/16 0.757 0.384b

AEDs (mono-/polytherapy) NA 10/12 17/14 0.453 0.501b

Values are presented as means ± standard deviation. For all tests, P < 0.05 was considered statistically significant.
aP-values were obtained by one-way ANOVA.
bP-values were obtained by the chi-square test.
cP-values were obtained by a two-sample t-test.

HC, healthy control; LTLE, left-side TLE; RTLE, right-side TLE; FBTCS, focal to bilateral tonic–clonic seizure.

FIGURE 1 | Group differences in cognitive performance as assessed by the MoCA. (A) Group comparison in MoCA total scores. (B) Group comparison using

sub-item scores of MoCA. The horizontal lines above the bars indicate comparisons that achieved statistically significant thresholds (*P < 0.05, Bonferroni corrected).

performance, as seen in Figure 8. We observed that the variance
in the global network efficiency was negatively correlated with
cognitive performance for language and conceptual thinking (P
< 0.05, uncorrected).

DISCUSSION

Complex changes in functional connectivity affected by
lateralization in TLE are far more complicated than we currently
understand. In the present study, we focused on the static
and dynamic connectivity measures between unilateral TLE
patients and healthy individuals. Several findings emerged.
(1) The static functional connectivity analysis presented

a significantly decreased cortical-cortical connectivity and
increased subcortical-cortical connectivity patterns in RTLE.
The global-level network in RTLE showed a significant
decrease in global network efficiency. However, the static
functional connectivity in LTLE did not display any significant
abnormalities. (2) The RTLE patients exhibited aberrant
connectivity states and increased variability in the subcortical-
cortical connectivity. The global-level network in RTLE
showed increased variance in the global network efficiency
and local network efficiency. However, the dynamic functional
connectivity in LTLE did not manifest significant abnormalities.
(3) The altered dynamic properties were associated with
worsening cognitive performance by the TLE patients in
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FIGURE 2 | Spatial maps of the identified independent components. Forty-three independent components were identified and sorted into seven functional networks

based on their anatomical and functional properties. SCN, subcortical network; AUD, auditory network; SMN, somatomotor network; VIS, visual network; CCN,

cognitive control network; DMN, default mode network; CBN, cerebellar network.

language and conceptual thinking. These observations extended
our understanding of the brain network disorders in unilateral
TLE patients.

In the past decade, characterizing the functional connectivity
patterns has become a powerful tool to explore the epileptic brain.
Our findings concerning the static functional connectivity were
similar to previous findings (Zhang et al., 2009; Maneshi et al.,

2014). The results revealed significantly decreased connectivity
within DMN, perceptual networks (i.e., VIS, AUD, and SMN),
as well as the connectivity between DMN and perceptual
networks in RTLE patients. Decreased connectivity between
CCN and perceptual networks also was observed. The decreased
functional connectivity resulted from disruptions in neuronal
connections and reflected functional impairments associated
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FIGURE 3 | The group comparisons of static functional connectivity. (A) Group difference of static connectivity of 43 independent components between the RTLE and

HC groups (P < 0.05, FDR corrected). (B) Group difference of static connectivity of seven functional networks between the RTLE and HC groups (P < 0.05, FDR

corrected).

with brain disorders. The perceptual networks are responsible
for information communication with the external environment.
The DMN and CCN play complementary roles in supporting
cognitive control, allowing the individual to navigate multiple
streams of brain information flexibly. These disrupted intra-
network and inter-network connectivity could explain the
hallmark pathological functions, including seizure semiology, as
well as behavioral and cognitive deficits. On the other hand,
increased functional connectivity is often interpreted to reflect
enhanced functionality due to a compensatory mechanism. The
increased functional connectivity between subcortical structures
and the regions from SMN, VIS, or DMN systems observed in the
current study probably resulted from a compensatory response
in the decreased cortical-cortical connectivity in TLE. These
enhanced patterns of subcortical-cortical connection highlighted
that the subcortical structures also play an essential role in the
disordered network in TLE.

Our study also extended results from static functional
connectivity analysis to a more subtle time scale. Using sliding
windows and k-means clustering, we identified two connectivity
patterns that recurred throughout the entire scanning time.
State I accounted for the largest percentage of windows and
time and was primarily characterized by positive couplings
located primarily within distinct networks (i.e., SMN, VIS,
and DMN). In contrast, state II occurred less frequently and
presented stronger positive couplings between networks (i.e.,
SMN-VIS, DMN-SMN, DMN-VIS, and DMN-CBN). In the

RTLE group, the reoccurrence fraction and dwell time of the
within-network connected state (state I) was decreased compared
to the HC group, while the between-network pattern (state
II) increased. This unstable state underscored the vulnerability
of the functional network in TLE. Specifically, RTLE patients
presented less frequency in the within-network connected state,
which supported the concept of reduced functional segregation
of functional networks. The RTLE patients spent more time in
the between-network connected state, which could be interpreted
as a potential compensatory mechanism to regain cortical
homeostasis in an abnormal brain. Although LTLE and RTLE
patients did not experience more state transitions than HC
participants, we observed a significant increase in the temporal
variability of functional connectivity across the sliding windows.

Zhang et al. (2016) characterized a stable brain-wide
topography of functional connectivity variability in healthy
subjects, indicating the degree of flexibility and adaptability in
various brain regions. They found that regions showing extreme
variability (either highest or lowest) in healthy subjects, such
as the DMN and subcortical areas, also showed significant
disease-specific variability changes in mental disorders. Similar
observations were reported in patients with generalized tonic-
clonic seizures (GTCS). Compared to healthy controls, GTCS
patients revealed increased variability of functional connectivity
in cognition-related networks, especially in the DMN. This
alteration in connectivity variability was relatively consistent
across different methods and templates, which reflected a
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FIGURE 4 | Global topological properties in static functional connectivity. The left column represents the small-world properties and network efficiency across the

sparsity range 0.08–0.48. Straight lines show the average, and the corresponding transparent areas indicate the standard error. The right bar demonstrates the group

effect of AUC. The horizontal lines above the bars indicate comparisons that achieved statistically significant thresholds (*P < 0.05, Bonferroni corrected). Gamma,

normalized clustering coefficient; Lambda, normalized characteristic path length; Sigma, small-worldness index; Eg, global network efficiency; Eloc, local network

efficiency.

FIGURE 5 | Temporal properties and connectivity of the dynamic functional connectivity state. Group differences in the fraction rate (A), mean dwell time (B), and the

number of transitions of each state (C) were measured. The horizontal lines above the bars indicate comparisons that achieved statistically significant thresholds (*P <

0.05, Bonferroni corrected).

dynamic restructuring of the brain network (Jia et al., 2020).
One study of TLE patients focused on the instability index
of connectivity within the DMN using the non-overlapping
time windows approach. This study revealed that two region
pairs, the precuneus-left inferior parietal and the precuneus-left
middle temporal, exhibited higher levels of unstable connections
compared to controls. Also, this instability was more pronounced
for RTLE patients and associated with a longer disease duration
(Robinson et al., 2017). In the current study, the subcortical

structures appeared to be the region that consistently expressed
higher variability in their relationships with other regions. Higher
variability in connectivity was observed between the putamen or
thalamus and the SMN, VIS, or DMN systems. Ample evidence
has demonstrated that the subcortical nuclei, especially the
thalamus, amplify the spread of seizures and play crucial roles
in regulating broad epileptogenic networks in TLE (Guye et al.,
2006). Atrophy of the thalamus coexistent with the temporal lobe
possibly reflects neuronal loss secondary to seizures (Barron et al.,
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FIGURE 6 | Variability in dynamic functional connectivity across windows. (A) Group difference of connectivity variability of 43 independent components between the

RTLE and HC groups (P < 0.05, FDR corrected). (B) Group difference of connectivity variability of seven functional networks between the RTLE and HC groups (P <

0.05, FDR corrected).

2012). Furthermore, damage to the thalamocortical network,
particularly ipsilateral to the epileptogenic focus, was observed
in our previous study (Chen et al., 2015). The results of the
high variability analysis that we observed here extend static
network research to the temporal dynamic domain. Given that
the thalamus is increasingly well-described as a gatekeeper to
control the information interaction across cortical networks,
we believe that dysfunction in the thalamocortical functional
connectivity is a core neurobiological abnormality in TLE.

The brain systems in adults exhibit efficient information
segregation and integration at a cost-efficiency balance (Liao
et al., 2017). Graph theory has the potential to illuminate
the topological characteristics related to global integration and
local segregation characteristics of complex functional networks
at the whole-brain level. Thus, both the static and dynamic
analyses included graph theory measures in the current study.
The differences in global topological properties of functional
connectivity between TLE patients and healthy individuals
have been reported in numerous studies. In our present static
functional connectivity results, the global network efficiency
was significantly decreased in RTLE patients compared to HCs,
suggesting a lower efficiency of parallel information transfer.
Higher variability in dynamic functional connectivity also
transcended local connections. The global network efficiency,
which measures the network’s ability for information transfer,
exhibited increased variance in RTLE patients, implying less
efficient and more unstable information transfer within the

functional network and suggested that abnormalities existed
in the global network integration. Increased variance in the
local network efficiency, a measure of the efficiency with which
a given node communicates with the rest of the brain, was
observed in RTLE patients, suggesting poor stationarity of the
local segregation. In contrast, the small-world index among TLE
patients consistently exhibited temporal stationarity, indicating
that an optimal balance existed between global integration and
local segregation. These results confirmed and extended the
findings of static functional connectivity described above.

In this study, we demonstrated the presences of abnormal
static and dynamic functional connectivity in TLE patients
relative to controls, including the functional connectivity
patterns and network topological properties. It is notable that
TLE showed a different pattern of functional connectivity in
terms of lateralization. In published findings, the functional
connectivity network characteristics in RTLE and LTLE remain
variable and in conflict. These observations might be affected
by sample size, MRI collection parameters, analysis methods,
and others. Dynamic functional connectivity could provide
more information concerning the inherent characteristics of the
networks that cannot be discovered through static functional
connectivity alone. We applied both static and dynamic
functional connectivity approaches in the current study and
observed that patients with RTLE exhibited greater alterations
than patients with LTLE. The differences between the RTLE
and HC groups were significant after multiple comparison
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FIGURE 7 | Variability of global topological properties in dynamic functional connectivity. The left column represents the variance of small-world properties and

network efficiency for the sparsity range 0.08–0.48. Straight lines show the average, and the corresponding transparent areas indicate the standard error. The right bar

demonstrates the group effect of AUC. The horizontal lines above the bars indicate comparisons that achieved statistically significant thresholds (*P < 0.05, Bonferroni

corrected). Gamma, normalized clustering coefficient; Lambda, normalized characteristic path length; Sigma, small-worldness index; Eg, global network efficiency;

Eloc, local network efficiency.

FIGURE 8 | Significant correlations are present between characteristics and cognitive performance in all TLE patients.

corrections, but the LTLE and HC groups were not different.
It appears that the cognitive dysfunction in TLE patients also
exhibited a lateralization effect, with RTLE tending to be less
severely affected. Patients with LTLE demonstrated more severe
deficits in executive function, language, conceptual thinking, and
memory. Conversely, patients with RTLE exhibited impairments
only in language and conceptual thinking. Also, the observed
increased variance in global network efficiency was negatively
associated with cognitive performance. Epilepsies are considered
dynamic diseases of brain systems in which neuronal networks
change between a normal mode of activity and a seizure mode

(Da Silva et al., 2003; Richardson, 2012). Given that the brain
is a remarkably adaptive and plastic organ (Pedersen et al.,
2017), abnormal dynamic network properties might reflect a
restructuring of the brain networks that respond and adapt
to epileptic activity, protecting the epileptic brain from a
continuously ictal state. Thus, we speculate that the significant
abnormal dynamic connectivity in RTLE might serve to stabilize
neural networks and act as an adaptive mechanism to prevent the
loss of functional integrity in the epileptic brain.

Several limitations of this study need to be considered.
First, all patients included in this study were taking AEDs.
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Previous studies have reported on the effects of AEDs on
functional networks (Pang et al., 2020). We agree that
it is challenging to dissociate the relative contribution of
AEDs from the observations noted in this study. Thus, it
is critical to distinguish AED-related effects on dynamic
functional connectivity properties by comparing these results
with drug-naïve patients in the future. Second, directed effective
connectivity among brain regions was introduced recently to
explain the connectivity dynamics in the brain (Park et al.,
2018; Zarghami and Friston, 2020). The functional connectivity
network we constructed in this study did not provide information
on the directionality or causality of the connections. An attractive
approach in TLE patients in the future would be to generate
effective connectivity data features that change over time. This
would provide an essential step toward a better understanding of
functional connectivity affected by lateralization in TLE.

CONCLUSIONS

Overall, these observations documented abnormalities in static
and dynamic functional connectivity in TLE patients. We
found that RTLE was associated with more pronounced
aberrant connectivity patterns and topological properties, which
might be a compensatory mechanism subsequent to epileptic
activity. These findings extended our understanding of the
pathophysiological network in TLE.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study
are included in the article/Supplementary Material,

further inquiries can be directed to the
corresponding author.

ETHICS STATEMENT

This study was approved by the Medical Research Ethics
Committee of the First Affiliated Hospital of Guangxi Medical
University. Written informed consent to participate in this study
was provided by the participants’ legal guardian/next of kin.

AUTHOR CONTRIBUTIONS

JZ contributed to conception and design of the study. XP and
XL wrote the first draft of the manuscript. JZ and PW wrote
sections of the manuscript. XL, WW, and LN organized the data
collection. WC and ZL performed the statistical analysis. All
authors contributed to manuscript revision, read, and approved
the submitted version.

FUNDING

This study was supported by a grant from the National
Natural Science Foundation of China (Nos. 81560223,
81660225) and Natural Science Foundation of Guangxi
Province (2021GXNSFBA220031).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2021.820641/full#supplementary-material

REFERENCES

Allen, E. A., Damaraju, E., Plis, S. M., Erhardt, E. B., Eichele, T., and Calhoun,

V. D. (2014). Tracking whole-brain connectivity dynamics in the resting state.

Cerebral Cortex 24, 663–676. doi: 10.1093/cercor/bhs352

Allen, E. A., Erhardt, E. B., Damaraju, E., Gruner, W., Segall, J. M., Silva, R. F., et al.

(2011). A baseline for the multivariate comparison of resting-state networks.

Front. Syst. Neurosci. 5:2. doi: 10.3389/fnsys.2011.00002

Barron, D. S., Fox, P. M., Laird, A. R., Robinson, J. L., and Fox, P. T. (2012).

Thalamic medial dorsal nucleus atrophy in medial temporal lobe epilepsy: a

VBMmeta-analysis. Neuroimage Clin. 2, 25–32. doi: 10.1016/j.nicl.2012.11.004

Berg, A. T., Berkovic, S. F., Brodie, M. J., Buchhalter, J., Cross, J. H.,

van Emde Boas, W., et al. (2010). Revised terminology and concepts for

organization of seizures and epilepsies: report of the ILAE Commission

on Classification and Terminology, 2005-2009. Epilepsia 51, 676–685.

doi: 10.1111/j.1528-1167.2010.02522.x

Bernhardt, B. C., Hong, S., Bernasconi, A., and Bernasconi, N. (2013). Imaging

structural and functional brain networks in temporal lobe epilepsy. Front. Hum.

Neurosci. 7:624. doi: 10.3389/fnhum.2013.00624

Besson, P., Dinkelacker, V., Valabregue, R., Thivard, L., Leclerc, X., Baulac, M.,

et al. (2014). Structural connectivity differences in left and right temporal lobe

epilepsy. Neuroimage 100, 135–144. doi: 10.1016/j.neuroimage.2014.04.071

Cataldi, M., Avoli, M., and de Villers-Sidani, E. (2013). Resting state networks in

temporal lobe epilepsy. Epilepsia 54, 2048–2059. doi: 10.1111/epi.12400

Chen, K. L., Xu, Y., Chu, A. Q., Ding, D., Liang, X. N., Nasreddine, Z. S., et al.

(2016). Validation of the Chinese version of montreal cognitive assessment

basic for screening mild cognitive impairment. J. Am. Geriatr. Soc. 64, e285–

e290. doi: 10.1111/jgs.14530

Chen, X. M., Huang, D. H., Chen, Z. R., Ye, W., Lv, Z. X., and Zheng, J. O.

(2015). Temporal lobe epilepsy: decreased thalamic resting-state functional

connectivity and their relationships with alertness performance. Epilepsy Res.

44, 47–54. doi: 10.1016/j.yebeh.2014.12.013

Chiang, S., Stern, J. M., Engel, J. Jr., Levin, H. S., and Haneef, Z. (2014). Differences

in graph theory functional connectivity in left and right temporal lobe epilepsy.

Epilepsy Res. 108, 1770–1781. doi: 10.1016/j.eplepsyres.2014.09.023

Cohen, J. R. (2018). The behavioral and cognitive relevance of time-varying,

dynamic changes in functional connectivity. Neuroimage 180, 515–525.

doi: 10.1016/j.neuroimage.2017.09.036

Da Silva, F. L., Blanes, W., Kalitzin, S. N., Parra, J., Suffczynski, P., and Velis,

D. N. (2003). Epilepsies as dynamical diseases of brain systems: basic models

of the transition between normal and epileptic activity. Epilepsia 44, 72–83.

doi: 10.1111/j.0013-9580.2003.12005.x

Fiorenzato, E., Strafella, A. P., Kim, J., Schifano, R., Weis, L., Antonini, A., et al.

(2019). Dynamic functional connectivity changes associated with dementia in

Parkinson’s disease. Brain 142, 2860–2872. doi: 10.1093/brain/awz192

Guye, M., Regis, J., Tamura, M., Wendling, F., McGonigal, A., Chauvel, P., et al.

(2006). The role of corticothalamic coupling in human temporal lobe epilepsy.

Brain 129, 1917–1928. doi: 10.1093/brain/awl151

Hutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini, P. A.,

Calhoun, V. D., Corbetta, M., et al. (2013). Dynamic functional

connectivity: promise, issues, and interpretations. Neuroimage 80, 360–378.

doi: 10.1016/j.neuroimage.2013.05.079

Frontiers in Neuroscience | www.frontiersin.org 12 January 2022 | Volume 15 | Article 820641

https://www.frontiersin.org/articles/10.3389/fnins.2021.820641/full#supplementary-material
https://doi.org/10.1093/cercor/bhs352
https://doi.org/10.3389/fnsys.2011.00002
https://doi.org/10.1016/j.nicl.2012.11.004
https://doi.org/10.1111/j.1528-1167.2010.02522.x
https://doi.org/10.3389/fnhum.2013.00624
https://doi.org/10.1016/j.neuroimage.2014.04.071
https://doi.org/10.1111/epi.12400
https://doi.org/10.1111/jgs.14530
https://doi.org/10.1016/j.yebeh.2014.12.013
https://doi.org/10.1016/j.eplepsyres.2014.09.023
https://doi.org/10.1016/j.neuroimage.2017.09.036
https://doi.org/10.1111/j.0013-9580.2003.12005.x
https://doi.org/10.1093/brain/awz192
https://doi.org/10.1093/brain/awl151
https://doi.org/10.1016/j.neuroimage.2013.05.079
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Pang et al. Functional Connectivity in TLE

Jia, X., Xie, Y., Dong, D., Pei, H., Jiang, S., Ma, S., et al. (2020). of dynamic large-

scale brain network functional connectivity in generalized tonic-clonic seizures.

Hum. Brain Mapp. 41, 67–79. doi: 10.1002/hbm.24787

Jiruska, P., de Curtis, M., and Jefferys, J. G. (2014). Modern

concepts of focal epileptic networks. Int. Rev. Neurobiol. 114, 1–7.

doi: 10.1016/B978-0-12-418693-4.00001-7

Lemkaddem, A., Daducci, A., Kunz, N., Lazeyras, F., Seeck, M., Thiran, J. P., et al.

(2014). Connectivity and tissue microstructural alterations in right and left

temporal lobe epilepsy revealed by diffusion spectrum imaging. Neuroimage

Clin 5, 349–358. doi: 10.1016/j.nicl.2014.07.013

Liao, X., Vasilakos, A. V., and He, Y. (2017). Small-world human brain

networks: perspectives and challenges. Neurosci. Biobehav. Rev. 77, 286–300.

doi: 10.1016/j.neubiorev.2017.03.018

Liégeois, R., Li, J., Kong, R., Orban, C., Van De Ville, D., Ge, T., et al.

(2019). Resting brain dynamics at different timescales capture distinct

aspects of human behavior. Nat. Commun. 10:2317. doi: 10.1038/s41467-019-

10317-7

Maneshi, M., Vahdat, S., Fahoum, F., Grova, C., and Gotman, J. (2014). Specific

resting-state brain networks in mesial temporal lobe epilepsy. Front. Neurol.

5:127. doi: 10.3389/fneur.2014.00127

Morgan, V. L., Chang, C., Englot, D. J., and Rogers, B. P. (2020). Temporal

lobe epilepsy alters spatio-temporal dynamics of the hippocampal functional

network. Neuroimage Clin. 26:102254. doi: 10.1016/j.nicl.2020.102254

Nasreddine, Z. S., Phillips, N. A., Bedirian, V., Charbonneau, S., Whitehead, V.,

Collin, I., et al. (2005). The montreal cognitive assessment, MoCA: a brief

screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 53, 695–699.

doi: 10.1111/j.1532-5415.2005.53221.x

Pang, X. M., Liang, X. L., Zhou, X., Liu, J. P., Zhang, Z., and Zheng, J. O. (2020).

Alterations in intra- and internetwork functional connectivity associated with

levetiracetam treatment in temporal lobe epilepsy. Neurol. Sci. 41, 2165–2174.

doi: 10.1007/s10072-020-04322-8

Park, H. J., Friston, K. J., Pae, C., Park, B., and Razi, A. (2018). Dynamic

effective connectivity in resting state fMRI. Neuroimage 180, 594–608.

doi: 10.1016/j.neuroimage.2017.11.033

Pedersen, M., Omidvarnia, A., Curwood, E. K., Walz, J. M., Rayner, G., and

Jackson, G. D. (2017). The dynamics of functional connectivity in neocortical

focal epilepsy. Neuroimage Clin. 15, 209–214. doi: 10.1016/j.nicl.2017.

04.005

Phabphal, K., and Kanjanasatien, J. (2011). Montreal Cognitive Assessment

in cryptogenic epilepsy patients with normal mini-mental state

examination scores. Epileptic Disord. 13, 375–381. doi: 10.1684/epd.2011.

0469

Power, J. D., Mitra, A., Laumann, T. O., Snyder, A. Z., Schlaggar, B.

L., and Petersen, S. E. (2014). Methods to detect, characterize, and

remove motion artifact in resting state fMRI. Neuroimage 84, 320–341.

doi: 10.1016/j.neuroimage.2013.08.048

Richardson, M. P. (2012). Large scale brain models of epilepsy: dynamics

meets connectomics. J. Neurol. Neurosurg. Psychiatry 83, 1238–1248.

doi: 10.1136/jnnp-2011-301944

Robinson, L. F., He, X., Barnett, P., Doucet, G. E., Sperling, M. R., Sharan, A.,

et al. (2017). The temporal instability of resting state network connectivity in

intractable epilepsy. Hum. Brain Mapp. 38, 528–540. doi: 10.1002/hbm.23400

Scheffer, I. E., Berkovic, S., Capovilla, G., Connolly, M. B., French, J., Guilhoto,

L., et al. (2017). ILAE classification of the epilepsies: position paper of the

ILAE Commission for Classification and Terminology. Epilepsia 58, 512–521.

doi: 10.1111/epi.13709

Song, K., Li, J., Zhu, Y., Ren, Y., Cao, F., Huang, Z-G., et al. (2021). Functional

network topology in patients with optic neuritis: a resting-state fMRI study.

Dis. Markers 2021:9948751. doi: 10.1155/2021/9948751

Spencer, S. S. (2002). Neural networks in human epilepsy: evidence

of and implications for treatment. Epilepsia 43, 219–227.

doi: 10.1046/j.1528-1157.2002.26901.x

Tu, Y., Fu, Z., Zeng, F., Maleki, N., Lan, L., Li, Z., et al. (2019). Abnormal

thalamocortical network dynamics in migraine. Neurology 92, e2706–e2716.

doi: 10.1212/WNL.0000000000007607

Vytvarova, E., Marecek, R., Fousek, J., Strycek, O., and Rektor, I. (2017). Large-

scale cortico-subcortical functional networks in focal epilepsies: the role of the

basal ganglia. Neuroimage Clin. 14, 28–36. doi: 10.1016/j.nicl.2016.12.014

Yang, H., Zhang, C., Liu, C., Yu, T., Zhang, G., Chen, N., et al. (2018). Brain

network alteration in patients with temporal lobe epilepsy with cognitive

impairment. Epilepsy Behav. 81, 41–48. doi: 10.1016/j.yebeh.2018.01.024

Yasuda, C. L., Chen, Z., Beltramini, G. C., Coan, A. C., Morita, M. E., Kubota,

B., et al. (2015). Aberrant topological patterns of brain structural network in

temporal lobe epilepsy. Epilepsia 56, 1992–2002. doi: 10.1111/epi.13225

Yin, T., He, Z., Ma, P., Sun, R., Xie, K., Liu, T., et al. (2021). Aberrant functional

brain network dynamics in patients with functional constipation. Hum. Brain

Mapp. 42, 5985–5999. doi: 10.1002/hbm.25663

Yu, Q., Erhardt, E. B., Sui, J., Du, Y., He, H., Hjelm, D., et al. (2015).

Assessingdynamic brain graphs of time-varying connectivity in fMRI data:

application to healthy controls and patients with schizophrenia. Neuroimage

107, 345–355. doi: 10.1016/j.neuroimage.2014.12.020

Yu, Y., Chu, L., Liu, C., Huang, M., and Wang, H. (2019). Alterations of white

matter network in patients with left and right non-lesional temporal lobe

epilepsy. Eur. Radiol. 29, 6750–6761. doi: 10.1007/s00330-019-06295-5

Zarghami, T. S., and Friston, K. J. (2020). Dynamic effective connectivity.

Neuroimage 207:116453. doi: 10.1016/j.neuroimage.2019.116453

Zhang, J., Cheng, W., Liu, Z., Zhang, K., Lei, X., Yao, Y., et al. (2016).

Neural, electrophysiological and anatomical basis of brain-network variability

and its characteristic changes in mental disorders. Brain 139, 2307–2321.

doi: 10.1093/brain/aww143

Zhang, Z., Lu, G., Zhong, Y., Tan, Q., Liao, W., Chen, Z., et al. (2009). Impaired

perceptual networks in temporal lobe epilepsy revealed by resting fMRI. J.

Neurol. 256, 1705–1713. doi: 10.1007/s00415-009-5187-2

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Pang, Liang, Zhao, Wu, Li, Wei, Nie, Chang, Lv and Zheng.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 13 January 2022 | Volume 15 | Article 820641

https://doi.org/10.1002/hbm.24787
https://doi.org/10.1016/B978-0-12-418693-4.00001-7
https://doi.org/10.1016/j.nicl.2014.07.013
https://doi.org/10.1016/j.neubiorev.2017.03.018
https://doi.org/10.1038/s41467-019-10317-7
https://doi.org/10.3389/fneur.2014.00127
https://doi.org/10.1016/j.nicl.2020.102254
https://doi.org/10.1111/j.1532-5415.2005.53221.x
https://doi.org/10.1007/s10072-020-04322-8
https://doi.org/10.1016/j.neuroimage.2017.11.033
https://doi.org/10.1016/j.nicl.2017.04.005
https://doi.org/10.1684/epd.2011.0469
https://doi.org/10.1016/j.neuroimage.2013.08.048
https://doi.org/10.1136/jnnp-2011-301944
https://doi.org/10.1002/hbm.23400
https://doi.org/10.1111/epi.13709
https://doi.org/10.1155/2021/9948751
https://doi.org/10.1046/j.1528-1157.2002.26901.x
https://doi.org/10.1212/WNL.0000000000007607
https://doi.org/10.1016/j.nicl.2016.12.014
https://doi.org/10.1016/j.yebeh.2018.01.024
https://doi.org/10.1111/epi.13225
https://doi.org/10.1002/hbm.25663
https://doi.org/10.1016/j.neuroimage.2014.12.020
https://doi.org/10.1007/s00330-019-06295-5
https://doi.org/10.1016/j.neuroimage.2019.116453
https://doi.org/10.1093/brain/aww143
https://doi.org/10.1007/s00415-009-5187-2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Abnormal Static and Dynamic Functional Connectivity in Left and Right Temporal Lobe Epilepsy
	Introduction
	Materials and Methods
	Participants
	Cognitive Data
	MRI Data Acquisition
	MRI Data Pre-processing
	Group Independent Component Analysis
	Static and Dynamic Functional Connectivity Network Construction
	Static Functional Connectivity Analysis
	Static Connectivity Analysis
	Static Graph Theory Analysis

	Dynamic Functional Connectivity Analysis
	Connectivity State Analysis
	Connectivity Variability Analysis
	Dynamic Graph Theory Analysis

	Statistical Analysis

	Results
	Demographics and Clinical Characteristics
	Intrinsic Connectivity Networks Identification
	Static Functional Connectivity Analysis
	Static Connectivity Patterns
	Static Graph Theory Analysis

	Dynamic Functional Connectivity Analysis
	Connectivity State Analysis
	Connectivity Variability Analysis
	Dynamic Graph Theory Analysis

	Correlation Between Dynamic Properties and MoCA Scores

	Discussion
	Conclusions
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References


