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Abstract: Protein kinases are major drug targets. Most kinase inhibitors are directed against the
adenosine triphosphate (ATP) cofactor binding site, which is largely conserved across the human
kinome. Hence, such kinase inhibitors are often thought to be promiscuous. However, experimental
evidence and activity data for publicly available kinase inhibitors indicate that this is not generally
the case. We have investigated whether inhibitors of closely related human kinases with single-
or multi-kinase activity can be differentiated on the basis of chemical structure. Therefore, a test
system consisting of two distinct kinase triplets has been devised for which inhibitors with reported
triple-kinase activities and corresponding single-kinase activities were assembled. Machine learning
models derived on the basis of chemical structure distinguished between these multi- and single-
kinase inhibitors with high accuracy. A model-independent explanatory approach was applied to
identify structural features determining accurate predictions. For both kinase triplets, the analysis
revealed decisive features contained in multi-kinase inhibitors. These features were found to be
absent in corresponding single-kinase inhibitors, thus providing a rationale for successful machine
learning. Mapping of features determining accurate predictions revealed that they formed coherent
and chemically meaningful substructures that were characteristic of multi-kinase inhibitors compared
with single-kinase inhibitors.

Keywords: protein kinases; human kinome; kinase inhibitors; single- and multi-target activity;
explainable machine learning; structural features

1. Introduction

In drug discovery, the ability of small molecules to interact with more than one protein
in a well-defined manner provides the basis of polypharmacology; that is, the induction
of the desired (or undesired) in vivo effects of drugs through the engagement of multiple
targets [1–5]. Such multi-target activities of small molecules are a topic of intense investi-
gation, from different perspectives [1–9]. Multi-target compounds (MT-CPDs) might be
identified, for example, using profiling assays or proteomics techniques [10–12]. However,
rationalizing multi-target activities of compounds (also referred to as promiscuity) at the
molecular level of detail, distinguishing true activities from assay artifacts, and understand-
ing how MT-CPDs might differ from single-target compounds (ST-CPDs) are far from being
trivial tasks [13–17].

In addition to experimental methods, computational data analysis and predictive
modeling are also applicable to aid in the analysis of the multi-target activities of small
molecules [6–9]. For example, machine learning (ML) on the basis of chemical structure has
been successfully used to systematically distinguish between MT-CPDs and corresponding
ST-CPDs from medicinal chemistry or biological screening, thus providing evidence for the
presence of structural features that differentiate MT- and ST-CPDs [18,19]. Furthermore, it
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has been shown through ML that structural features setting MT- and ST-CPDs apart strictly
depend on the targets these compounds are active against and cannot be generalized [20].

Since ML model decisions are typically difficult to rationalize, the identification of
structural features that determine accurate predictions requires the application of ap-
proaches for explaining ML [21–25]. Therefore, as a model-independent approach, the
Shapley value concept [26] from game theory [27] was considered, which was originally
developed to determine the contributions of individual players to the performance of a
team [26]. In ML model interpretation, this concept can be applied to quantify the contribu-
tions of individual features to the prediction of a test instance. To ensure computational
feasibility for large feature sets typically used in ML, a local interpretation model can
be derived that approximates a complex ML model in a given region of feature space
for individual predictions. This local approach is termed Shapley Additive exPlanations
(SHAP) [28] and has been adapted for explaining compound activity predictions [29].
SHAP values quantify the contributions of features that are present or absent in a com-
pound to a prediction, and the sum of all feature contributions yields the probability of
this prediction. This local approach is applicable to any ML method to approximate SHAP
values. Moreover, for decision tree-based methods, an algorithm has been introduced for
the calculation of exact SHAP values [30].

Using the tree-based SHAP approach, we previously attempted to identify the struc-
tural features that determined the accurate prediction of compounds active against given
target pairs (dual-target compounds, DT-CPDs) vs. corresponding ST-CPDs [31]. Targets
forming investigated pairs were structurally and functionally unrelated. SHAP feature
importance analysis identified structural motifs in DT-CPDs that differentiated them from
ST-CPDs and that were implicated in polypharmacology [31].

In this work, we aimed to differentiate compounds with reported activity against single
or multiple protein kinases, representing a scenario completely distinct from investigating
compounds that are active against unrelated targets. Kinases represent a major class of
drug targets [32] and the efficacy of kinase inhibitors often relies on polypharmacology,
especially in oncology [32,33]. Most currently available kinase inhibitors target the ATP
cofactor binding site that is largely conserved across the human kinome [34,35]. Thus,
ATP site-directed kinase inhibitors are expected to be promiscuous [33,34], although the
results of experimental kinase profiling campaigns [11,12] and the analysis of publicly
available compound activity data [7,35] do not generally support this notion. Many ATP
site-directed kinase inhibitors are only annotated with a single kinase [35], and it often
remains unclear to what extent differences in the experimental test frequency of kinase
inhibitors are responsible for the presence or absence of multi-kinase annotations.

In order to investigate compounds with different activity against closely related
targets, we assembled inhibitors with reported activity against triplets or in part very
closely related kinases and other inhibitors only reported to be active against one of these
kinases. First, we addressed the question of whether these corresponding single- and
triple-kinase inhibitors (ST- and MT-CPDs, respectively) can be distinguished using ML
models exclusively derived on the basis of chemical structure. Second, we attempted
to rationalize the results of these predictions using the SHAP formalism and identified
structural features decisive for prediction outcomes. Third, the findings were interpreted
from a chemical perspective.

2. Materials and Methods
2.1. Compounds and Activity Data

Compounds annotated with standard potency measurements (Ki, IC50, or Kd) and
an exact potency value (“=”) of at least 10 µM against human kinases were extracted (and
recorded as negative decadic logarithmic values) from ChEMBL (version 29) [36]. Only
direct interactions (target relationship type: “D”) with wild-type proteins at the highest
confidence level (target confidence score: 9) were considered, omitting measurements
flagged as “potential author error” or “potential transcription error.” Compounds with a
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mass of 1000 Da or more and potential assay interference compounds were removed using
public tools and filters [16,37,38].

2.2. Target Selection

A search was carried out for kinase triplets including at least two closely related
kinases from the same family for which sufficient numbers of MT- and corresponding ST-
CPDs for meaningful ML and feature analysis were available (see Results and Discussion).
Based on available inhibitors with high-confidence activity data and the applied selection
criteria, two kinase triplets were prioritized, as reported in Table 1. In addition to focal
adhesion kinase 1 (FAK1), triplet 1 contained two Januskinases, that is, Janus kinase 2
(JAK2) and 3 (JAK3). Triplet 2 comprised three closely related dual specificity tyrosine-
phosphorylation-regulated kinases (DYRK1A, DYRK1B, and DYRK2). For triplet 1, larger
numbers of compounds were available than for triplet 2. A generally limiting factor for
triplet assembly was the limited availability of sufficient numbers of MT-CPDs with high-
confidence activity data, which were essential for the analysis. Nine of the ST-CPDs for
FAK1 (triplet 1) were designated allosteric compounds. All other inhibitors for both triplets,
including all MT-CPDs, were ATP-competitive.

Table 1. Kinase triplets and compound statistics.

Annotation Number of Inhibitors

Tr
ip

le
t1

(Triple-target) MT-CPDs 223
ST-CPDs

Tyrosine-protein kinase JAK2 1225
Tyrosine-protein kinase JAK3 724

Adhesion kinase 1 505

Tr
ip

le
t2

(Triple-target) MT-CPDs 74
ST-CPDs

Dual specificity tyrosine-phosphorylation-regulated kinase 1A 343
Dual specificity tyrosine-phosphorylation-regulated kinase 1B 19
Dual specificity tyrosine-phosphorylation-regulated kinase 2 51

2.3. Molecular Representation

As a molecular representation, atom environments were selected as preferred topolog-
ical features [20,39]. The RDKit [37] implementation of the Morgan fingerprint correspond-
ing to the extended connectivity fingerprint [39] was utilized to generate hash values of
molecule-specific layered atom environments (up to a bond radius of 2, corresponding to a
bond diameter of 4) for each atom in a compound. Obtained feature hashes were assigned
to unique positions in the final feature vector to avoid bit collisions, thereby ensuring the
interpretability of calculated feature importance values.

2.4. Machine Learning

Compounds were classified using a balanced random forest (BRF) model consisting
of an ensemble of decision trees [40,41]. For each tree, a unique bootstrap sample of the
training set was drawn and subsequently balanced by randomly under-sampling the ma-
jority class. This approach allowed us to utilize the majority of training data under the
condition of class balance; an important criterion, given the presence of significantly differ-
ent numbers of MT- and corresponding ST-CPDs. Predicted probabilities for multi-target
activity were calculated as the mean probability over individual trees, which estimated
the class probability as the fraction of samples of the given class in the final leaf node.
Hyperparameters such as number of decision trees (“n_estimators”: 25, 50, 100, 200, 400),
minimal number of samples for a split (“min_samples_split”: 2, 3, 5, 10), and minimum
number of samples for a leaf node (“min_samples_leaf”: 1, 2, 5, 10) were assessed via
internal 10-fold shuffle-split cross validation on the training set. The final MT- vs. ST-CPD
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classifier was trained with the best-performing hyperparameter combination using the
complete training set, representing a random sample of 75% of the compounds. Model
performances were assessed using a balanced sample of the remaining 25% of MT- and
ST-CPDs as test instances over 10 individual trials. As performance measures, balanced
accuracy (BA) [42], F1-score (F1) [43], precision, recall, and Matthews correlation coefficient
(MCC) [44] values were calculated. These performance measures are defined as follows:

BA = 1/2(TPR + TNR)

F1 = TP/(TP + 1/2(FP + FN))

Precision = TP/(TP + FP)

Recall = TP/(TP + FN)

MCC = (TP × TN-FP × FN)/
√

((TP + FP)(TP + FN)(TN + FP)(TN + FN))

TP, TN, FP, and FN stand for true positives, true negatives, false positives, and false
negatives, respectively.

2.5. SHAP Analysis and Feature Extraction

The use of BRF models enabled the accurate calculation of SHAP feature importance
values for individual predictions using the TreeExplainer algorithm with tree-path depen-
dent feature perturbations [30]. SHAP theory is provided in the Supplementary Methods,
and cumulative SHAP feature contributions yielding a class label probability are illustrated
in Supplementary Figure S1.

A feature extraction scheme was devised for correctly predicting instances taking
into account that SHAP feature importance values might differ from test instance to test
instance [31]. This feature extraction scheme bridges instance predictions and SHAP feature
importance across all test instances, as follows:

(i) For each correctly predicted MT-CPD, the top-ranked N features with the highest
SHAP values were pre-selected and these features were pooled.

(ii) The pool of the top-ranked N features was re-ranked by the feature frequency of
occurrence in correctly predicted MT-CPDs, and the top M most frequent features
were selected.

For the calculations reported herein, N = 5 and M = 10 settings were consistently applied.

3. Results and Discussion
3.1. Study Design

The newly generated kinase triplet test system with available MT- and ST-CPDs, as
described below, enabled us to first address the key question if multi-kinase inhibitors
could be systematically distinguished from single-kinase inhibitors by ML on the basis
of chemical structure information. Given the frequent assumption that kinase inhibitors
tend to be promiscuous, this was not necessarily likely. If accurate classification of MT- vs.
ST-CPDs is possible, however, then structural features detectable by ML must exist that
differentiate MT- and ST-CPDs and hence determine accurate predictions. If so, the second
step of the analysis then aims at identifying these features via an independent explanatory
approach (SHAP). Whether or not features determining algorithmic predictions might
be chemically relevant and explainable in chemical terms was another open question.
Therefore, in the third step, we aimed at rationalizing distinguishing features (provided
they were identified) from a chemical perspective. Hence, the analysis was designed to
identify the structural features driving the correct prediction of ST- and/or MT-CPDs,
which might also be implicated in kinase selectivity or promiscuity, respectively.
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3.2. Systematic Analysis of Kinase Triplets

The 489 human kinases with available active compounds were systematically orga-
nized into triplets, yielding nearly 20 million (19,368,964) unique combinations. Of these
possible combinations, 6,132,688 were found to share at least one inhibitor. Figure 1 reports
the distribution of the number of MT-CPDs for these triplets, revealing that ~75% of all
triplets had no more than two MT-CPDs and only 64 triplets had at least 50 MT-CPDs.
Hence, confirmed MT-CPDs were generally rare.
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Figure 1. MT-CPDs for systematically explored kinase triplets. The boxplot shows the number of
MT-CPDs (on a logarithmic scale) for all possible kinase triplets with at least one available MT-CPD.
The left and right boundaries of the box indicate the upper and lower quartile of the distribution,
while the vertical orange line represents the median value. The whisker shows the maximum of the
distribution. Values exceeding the maximum are statistical outliers and depicted as circles.

As a minimal amount of negative data, triplets were required to have at least 17 ST-
CPDs for each kinase, reducing the number of triplets to 57. For 35 of these triplets, a mean
balanced accuracy of BRF models greater than 80% was observed (see below) and SHAP
calculations prioritized features determining the predictions. For the 35 triplets, the number
of MT-CPDs ranged from 51 to 310. As representative triplets for subsequent analysis,
triplet 1 with very high prediction accuracy and a large number of available MT-CPDs, and
triplet 2 with lower prediction accuracy and a smaller number of MT-CPDs were chosen. In
both instances, features decisive for the predictions were clearly interpretable in chemical
terms (which is not necessarily the case in ML).

3.3. Compound Classification

Figure 2 summarizes the performance of our BRF models. For both kinase triplets,
MT- and ST-CPDs were distinguished with surprisingly high accuracy, as determined
on the basis of different performance measures. The calculations were generally stable,
as reflected by the narrow distributions of the results obtained over independent trials.
For triplet 2, prediction accuracy was consistently above 80%. However, for triplet 1, the
predictions were nearly perfect, with values of all performance measures approaching
1.0 (the trial set-ups and results were thoroughly re-examined, excluding the presence of
artifacts for triplet 1). Taken together, these findings provided evidence for the presence of
distinguishing structural features and an unexpectedly solid foundation for subsequent
feature analysis.
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Figure 2. Performances of the balanced random forest classifier. Boxplots represent distributions of
balanced accuracy, F1 score, precision, recall and MCC over 10 individual trials for triplet 1 (blue)
and triplet 2 (orange). In a boxplot, the horizontal line indicates the median value of the distribution
and the upper and lower boundaries of the box indicate the upper and lower quartile, respectively. In
addition, whiskers represent the maximum and minimum values of the distribution, and statistical
outliers are depicted as diamonds.

3.4. Representation Features Determining Predictions

On the basis of the BFR results, SHAP analysis was carried out for each correctly
predicted MT- and ST-CPD, prioritized features were extracted (see Materials and Methods),
and their contributions to accurate predictions were quantified. The analysis was carried
out for all representation (fingerprint) features that were present in test compounds as well
as for features that were absent, thus comprehensively searching for features determining
correct predictions.

Figure 3 shows the results of SHAP feature importance analysis. For both triplets 1
and 2, a clear and consistent picture emerged from the analysis. Accurate predictions of
MT-CPDs were determined by the features that were present in these compounds. These
features made large positive contributions, whereas features absent in MT-CPDs made
only small positive or negative contributions to the predictions (which essentially canceled
out). By contrast, correct predictions of ST-CPDs were largely determined by features
that were absent in these compounds (but present in MT-CPDs). In this case, present
features only made small supporting contributions (i.e., negative in the case of the ST-CPD
class) or opposing (positive) contributions. These observations paralleled our previous
findings for MT- and ST-CPDs with activity against pairs of unrelated targets [31]. Thus, for
kinase inhibitors, ML successfully distinguished between MT- and ST-CPDs on the basis of
structural features that were unique to MT-CPDs.
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Figure 3. Feature contributions. Boxplots report the distributions of cumulative SHAP values of
features present (blue) or absent (orange) in correctly predicted MT- or ST-CPDs. (a,b) show the
results for triplet 1 and triplet 2, respectively.

3.5. Feature Mapping and Rationalization

After extracting and mapping individual features determining the accurate prediction
of MT-CPDs, we annotated atoms of MT-CPDs with SHAP values from all features present
in the respective compounds (including extracted features) for further analysis. Using
layered atom environments (consisting of atom sets) as representation features made it
possible to unambiguously map these contributions on a per-atom basis. For MT-CPDs from
both triplets 1 and 2, highlighted regions were not evenly distributed over the compound
structure, but delineated a coherent substructure, as shown in Figures 4 and 5, respectively.
Hence, the mapping of structural features determining the accurate prediction of MT-
CPDs identified a well-defined structural motif. In both cases, this structural motif was
predominantly formed by extracted (prioritized) features. In ST-CPDs, similar structural
features influencing the predictions were not detected, as discussed above. For triplet 1,
the delineated substructure was a [1,2,4]triazolo[1,5-a]pyridine, as depicted in Figure 4.



Biomolecules 2022, 12, 557 8 of 12Biomolecules 2022, 12, x  8 of 12 
 

 
Figure 4. Feature mapping for MT-CPDs of triplet 1. Extracted features are mapped on exemplary 
correctly predicted MT-CPDs (upper left) on a per-atom basis. The continuous atom color code in-
dicates the number of extracted features per atom, ranging from 1 (yellow) to 10 (dark red). In ad-
dition, SHAP values for all present features were mapped to the corresponding atoms and shown 
in a heat-map format (lower left). Both representations identify the [1,2,4]triazolo[1,5-a]pyridine 
substructure (upper right) as the center of positive feature contributions to the correct prediction of 
this MT-CPD and others containing this substructure. The presence (+) or absence (−) of the sub-
structure in ST- and MT-CPDs of triplet 1 is reported in the table insert (lower right). 

 
Figure 5. Feature mapping for MT-CPDs of triplet 2. The presentation is according to Figure 4. In 
the molecular representation on the upper left, the continuous atom color code indicates the number 
of extracted features per atom, ranging from 1 (yellow) to 11 (brown). Both molecular representa-
tions identify the imidazo(1,2-b)pyridazine substructure (upper right) as the center of positive fea-
ture contributions to the correct prediction of this MT-CPD and others containing this substructure. 
The presence (+) or absence (−) of the substructure in ST- and MT-CPDs of triplet 1 is reported in the 
table insert (lower right). 

The [1,2,4]triazolo[1,5-a]pyridine substructure was present in 210 of 223 MT-CPDs, 
but in only 19 of 1206 JAK2, 2 of 722 JAK3 ST-CPDs and none of the 505 FAK1 ST-CPDs. 
Thus, the substructure was characteristic of triplet 1 MT-CPDs. This finding also ex-
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source establishing triple-kinase activity [45]. It follows that the 21 ST-CPDs containing 
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Figure 4. Feature mapping for MT-CPDs of triplet 1. Extracted features are mapped on exemplary
correctly predicted MT-CPDs (upper left) on a per-atom basis. The continuous atom color code
indicates the number of extracted features per atom, ranging from 1 (yellow) to 10 (dark red). In
addition, SHAP values for all present features were mapped to the corresponding atoms and shown
in a heat-map format (lower left). Both representations identify the [1,2,4]triazolo[1,5-a]pyridine
substructure (upper right) as the center of positive feature contributions to the correct prediction
of this MT-CPD and others containing this substructure. The presence (+) or absence (−) of the
substructure in ST- and MT-CPDs of triplet 1 is reported in the table insert (lower right).
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Figure 5. Feature mapping for MT-CPDs of triplet 2. The presentation is according to Figure 4. In the
molecular representation on the upper left, the continuous atom color code indicates the number of
extracted features per atom, ranging from 1 (yellow) to 11 (brown). Both molecular representations
identify the imidazo(1,2-b)pyridazine substructure (upper right) as the center of positive feature
contributions to the correct prediction of this MT-CPD and others containing this substructure. The
presence (+) or absence (−) of the substructure in ST- and MT-CPDs of triplet 1 is reported in the
table insert (lower right).

The [1,2,4]triazolo[1,5-a]pyridine substructure was present in 210 of 223 MT-CPDs, but
in only 19 of 1206 JAK2, 2 of 722 JAK3 ST-CPDs and none of the 505 FAK1 ST-CPDs. Thus,
the substructure was characteristic of triplet 1 MT-CPDs. This finding also explained the
decisive role of extracted features defining this substructure for accurate predictions. All 210
MT-CPDs containing this substructure originated from a single patent source establishing
triple-kinase activity [45]. It follows that the 21 ST-CPDs containing the [1,2,4]triazolo[1,5-
a]pyridine might also have triple-kinase activity. On the other hand, since only 21 of 2433
ST-CPDs contained this substructure, it is very likely to represent a chemical signature of
MT-CPDs.
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For triplet 2, the substructure in MT-CPDs identified by feature mapping was imidazo(1,2-
b)pyridazine, as depicted in Figure 5. In this case, features present in MT-CPDs were more
widely distributed across the compound structure, while the imidazo(1,2-b)pyridazine was
highlighted by mapped SHAP values. This was consistent with the observation that this
substructure was contained in 42 of 74 MT-CPDs (which also originated from a single study
establishing triple-kinase activity [46]). For the remaining 32 MT-CPDs, extracted features did
not delineate another well-defined structural motif. However, the imidazo(1,2-b)pyridazine
substructure was also characteristic of the large subset of 42 MT-CPDs because it did not occur
in any DYRK1B or DYRK2 ST-CPD, and only in 1 of 342 DYRK1A ST-CPDs.

For both characteristic substructures, we also found an X-ray structure of a complex
formed between an inhibitor containing the substructure and a kinase from triple 1 and
triple 2, respectively. Figure 6 shows kinase–inhibitor interaction diagrams computed from
these X-ray structures. The [1,2,4]triazolo[1,5-a]pyridine moiety in the inhibitor in Figure 6a
was involved in multiple interactions with JAK2, forming the center of interactions for this
inhibitor in the ATP binding site of the kinase. The imidazo(1,2-b)pyridazine moiety of the
inhibitor in Figure 6b also formed interactions with DYRKA1 (but was not an interaction
hot spot). Both characteristic substructures were located in the same region of the ATP
site (essentially mimicking the adenosine moiety in ATP) and also interacted with residues
conserved in the ATP site of other kinases, consistent with the multi-kinase activity of
inhibitors containing these substructures.
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Figure 6. Kinase interactions with inhibitors containing characteristic substructures. Shown are
kinase–inhibitor interaction diagrams derived from X-ray structures of kinase–inhibitor complexes
using the Molecular Operating Environment (MOE, Chemical Computing Group, Inc., Montreal,
QC, Canada). (a) shows a crystallographic inhibitor containing the [1,2,4]triazolo[1,5-a]pyridine
substructure characteristic of MT-CPDs of triplet 1 in complex with JAK2 (PDB ID: 4JIA) and (b) an
inhibitor with the imidazo(1,2-b)pyridazine substructure of MT-CPDs of triplet 2 in complex with
DYRK1A (PDB ID: 6S11, Chain: A). At the bottom, different types of interactions accounted for in the
diagram are specified. These interaction types were automatically classified using MOE. We note that
under physiological conditions, interactions between the charged glutamic acid residue and aromatic
rings should best be perceived as anionic–πaromatic interactions.



Biomolecules 2022, 12, 557 10 of 12

4. Conclusions

In this work, we attempted to differentiate inhibitors with triple-kinase or corre-
sponding single-kinase activity by ML on the basis of chemical structure, identify features
determining accurate predictions, and interpret key features in chemical terms. Exploring
the molecular origins of the varying promiscuity of ATP site-directed kinase inhibitors
continues to be a topic of intense investigation in medicinal chemistry. For our analysis,
we generated a test system consisting of kinase triplets for which sufficient numbers of
MT- and ST-CPDs with high-confidence activity data were available to enable meaningful
ML. Moreover, we specifically aimed to investigate closely related kinases from the same
family most likely to have similar compound-binding characteristics. MT- and ST-CPDs
from kinase triplet 1 and 2 were differentiated with high accuracy using ML models, pro-
viding evidence for the presence of distinguishing structural features. SHAP analysis then
identified features determining the predictions. An important finding shows that accurate
predictions resulted from features that were present in MT- but absent in ST-CPDs. These
features were found to be chemically sensible, forming coherent substructures that were
characteristic of MT-CPDs. ML prediction accuracy was nearly perfect for kinase triplet 1
and in this case, the characteristic substructure was present in 94% of all MT- and absent in
99% of all ST-CPDs, thus reflecting the high consistency of ML results and feature analysis.
Taken together, the findings reported herein have methodological implications as well as
implications for kinase inhibitor research. From a methodological point of view, our results
clearly support the utility of explainable ML to rationalize predictions from a chemical or
biological perspective and reveal structural information important for drug discovery and
design, as exemplified by the identification of substructures characteristic of MT-CPDs.
However, despite the consistency of the obtained results, they are difficult to generalize
for kinase inhibitor research. ML and feature analysis, at least in part, depend on the
composition of the investigated data sets and care must be taken not to over-interpret the
findings. For example, while we can conclude with certainty from our analysis that the
[1,2,4]triazolo[1,5-a]pyridine and imidazo(1,2-b)pyridazine moieties identified herein are
signatures of multi-kinase activity, we cannot conclude that the designated ST-CPDs as-
sembled on the basis of currently available activity data are kinase-selective. Here, varying
test frequencies among kinase inhibitors might come into play that are for the most part
unknown for compounds collected from different sources and thus cannot be considered
in the computational analysis. On the other hand, it makes perfect sense that designated
ST-CPDs do not share characteristic structural features determining their prediction. The
presence of such features in ST-CPDs would principally not be consistent with kinase selec-
tivity, while the absence of shared features supports differences between these compounds.
Clearly, such considerations are important for putting the results into perspective. How-
ever, explainable ML as presented herein yields, at the very least, experimentally testable
hypotheses for distinguishing between inhibitors with single- and multi-kinase activity
and for exploring further structural features implicated in promiscuity vs. selectivity.
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