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Abstract: Determining the quality of Ti-6Al-4V parts fabricated by selective laser melting (SLM)
remains a challenge due to the high cost of SLM and the need for expertise in processes and materials.
In order to understand the correspondence of the relative density of SLMed Ti-6Al-4V parts with
process parameters, an optimized extreme gradient boosting (XGBoost) decision tree model was
developed in the present paper using hyperparameter optimization with the GridsearchCV method.
In particular, the effect of the size of the dataset for model training and testing on model prediction
accuracy was examined. The results show that with the reduction in dataset size, the prediction
accuracy of the proposed model decreases, but the overall accuracy can be maintained within a
relatively high accuracy range, showing good agreement with the experimental results. Based on a
small dataset, the prediction accuracy of the optimized XGBoost model was also compared with that
of artificial neural network (ANN) and support vector regression (SVR) models, and it was found
that the optimized XGBoost model has better evaluation indicators such as mean absolute error,
root mean square error, and the coefficient of determination. In addition, the optimized XGBoost
model can be easily extended to the prediction of mechanical properties of more metal materials
manufactured by SLM processes.

Keywords: machine learning; optimized XGBoost method; small dataset; selective laser melting;
Ti-6Al-4V

1. Introduction

The Ti-6Al-4V titanium alloy is widely used in chemical, aviation, and medical fields
due to its excellent mechanical properties such as high strength and high toughness, as well
as its low elastic modulus and corrosion resistance [1]. However, the high cost and challeng-
ing machinability of complex components of the Ti-6Al-4V alloy restrict its applications
when fabricated by traditional fabrication methods such as casting and forging [2]. Addi-
tive manufacturing (AM) is gaining increasing attention from both academia and industry
due to its unique advantages over traditional isomaterial and subtractive manufacturing.

Selective laser melting (SLM) is an attractive manufacturing process for defense and
other industries due to its advantages in energy utilization, absorption rate, vacuum protec-
tion, and production efficiency [1,3,4]. At present, the SLM process has been widely used
in the manufacturing of Ti-6Al-4V alloys [5,6]. With the SLM process, many parameters
including the laser scanning speed, laser power, hatch distance, and powder layer thickness,
etc., may affect the final quality of printed products [7–10], and the ranges of these param-
eters are quite wide, making experiments for data collection more time-consuming and
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tedious. Numerous studies have reported the fabrication of high-density Ti-6Al-4V parts
via SLM with different process parameters [11–13], and their results showed differences in
the parts’ density.

Many authors have attempted to optimize SLM process parameters using various
algorithms, such as direct optimization [14] and Doehlert matrix design [15]. Clearly, it
is not appropriate to study process parameters independently, as the performance of the
printed parts is a function of several interacting key process parameters.

In recent decades, machine learning (ML) technology has made great strides and
has gone beyond the scope of computer science because it can provide a new approach
to solving traditional engineering problems [16]. Dataset-based ML methods have some
unique applications in the field of additive manufacturing [17,18] because of their unique
advantages in data processing with high accuracy in data prediction [19].

Extreme Gradient Boosting (XGBoost), a machine learning technique, first proposed
by Chen and Guestrin [20], has performed well in numerous data mining competitions due
to its ability to analyze certain important parameters in the model and easily interpret the
predicted output. The XGBoost-based model is a massively parallel boosted tree mode,
and is currently the fastest and best boosted tree model. It is more than 10 times faster than
ordinary models and has been widely used in many fields.

Some studies [21,22] have shown that XGBoost is superior to other algorithms in
handling tabular datasets, such as artificial neural networks (ANN) and support vector
regression (SVR), which usually require large-scale datasets in the form of pictures or videos.
More recently, Duan et al. [23] used XGBoost, ANN, and SVR to predict the compressive
strength of recycled aggregate concrete, and they indicated that XGBoost is better than
other algorithms and the XGBoost decision tree algorithm has a very good ability to solve
nonlinear regression problems.

Prominent applications of XGBoost decision trees can be found in Dong et al. [24] at
the material level and Lim and Chi [25] at the structural level. Because of the recognized
accuracy, XGBoost has also been used in the field of additive manufacturing in recent years.
For example, Zhang et al. [26] combined XGBoost and long short-term memory (LSTM)
to accurately predict the temperature in a molten pool. Through the XGBoost method,
Peng et al. [27] constructed relationship mapping between the physical characteristics of
defects and fatigue life of AM parts.

Conventional ML methods rely on big data [28,29], but the acquisition of big data
is difficult and costly, so building ML methods for small data is particularly necessary.
Yu et al. [30] developed a deep neural network (DNN) to accurately predict the tensile
strength of aluminum alloys as a function of the chemical composition and process param-
eters with a small dataset. Normally in ML models, it is difficult to describe features with
few eigenvalues, but in Yu’s work, many eigenvalues were involved [30], meaning more
features were required in the manufacturing processes, and thus increasing the difficulty of
obtaining the data.

For practicality and generality, this paper developed an optimized XGBoost regression
tree algorithm based on supervised learning to predict the relative density of SLMed Ti-6Al-
4V parts with a small dataset using hyperparameter optimization with the GridsearchCV
method. Four key SLM process parameters, including the laser scanning speed, laser power,
hatch distance, and powder layer thickness for regression, were used to predict the relative
density of SLMed Ti-6Al-4V parts. The prediction accuracy of the proposed optimized
XGBoost method was evaluated in terms of evaluation indicators such as the mean absolute
error (MAE), root mean squared error (RMSE), and coefficient of determination (R2) and
was then compared with other conventional ML algorithms such as DNN [30] and SVR [31].
Determining the quality of SLMed Ti-6Al-4V parts remains a challenge due to the high cost
of SLM and the need for expertise in processes and materials, which is aptly addressed
by this work. The proposed optimized XGBoost model provides an alternative solution
to accurately predict the relative density of SLMed Ti-6Al-4V parts with only four SLM
process parameters based on a small dataset. Although this paper only discussed the
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application of the XGBoost model in predicting the relative density of SLMed Ti-6Al-4V
parts, the optimized XGBoost model proposed in this paper can be easily extended to
predict the mechanical properties of many more metallic materials fabricated by the SLM
process. Therefore, the machine learning model proposed in this paper can be widely
applied in the metal SLM industry.

2. Method
2.1. Experimental Dataset

The material for this study is the titanium-alloy Ti-6Al-4V ELI, which is supplied in
powder form. The specific composition of Ti-6Al-4V ELI is listed in Table 1.

Table 1. Specific composition of Ti-6Al-4V ELI alloy powder.

Element Al V Fe C N O H Ti Others

wt. % 5.50–6.50 3.50–4.50 0.25 0.08 0.03 0.13 0.0125 Balance 0.50

Choosing which experimental test dataset to use is very important to the machine
learning process. The experimental dataset must be broad enough and representative
of the question being studied [32]. Nguyen et al. [29] extended the original test data of
2048 sets to obtain 54,054 sets of relative density data of Ti-6Al-4V parts corresponding
to the SLM process parameters. The same method was used here to obtain 54,054 sets
of relative density data with the values of the laser scanning speed, laser power, hatch
distance, and power layer thickness as eigenvalues via the neural network method using
python programming language and the TensorFlow library. The ranges for each parameter
chosen based on experience and certain references [33–35] are listed in Table 2.

Table 2. SLM process parameters and their ranges used to generate data.

Process Parameters Unit Value

Laser scanning speed mm/s 800, 900, 1000, 1200, 1300, 1400, 1500, 1600, 1700,
1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500

Laser power W 80, 90, 95, 100, 105, 110, 115, 120, 130, 135, 140, 145,
150, 155, 160, 165, 170, 175, 180

Hatch distance µm 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100
Power layer thickness µm 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80

2.2. XGBoost Model

The XGBoost algorithm utilizes many classification and regression trees (CARTs) to
solve regression and classification problems. In this study, the prediction of the relative
density of SLMed Ti-6Al-4V parts is a logistic regression problem. The XGBoost model
is a strong regressor fused by many CART regression tree models. As shown in Figure 1,
the structure of XGBoost includes multiple root nodes, internal nodes, leaf nodes, and
branches. In this structure, the i-th parameter xi is input and passed to all root nodes of all
CARTs to make the original decisions. Then, the internal nodes make subsequent decisions,
the branch points point directly to the decision to be made, and the leaf nodes represent
the prediction results of a single CART. Finally, the results of all leaf-pointing nodes are
combined to obtain the prediction results of the XGBoost model [36].
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Figure 1. Schematic diagram of the XGBoost regression tree model.

As an example, in the i-th set (xi, yi) (xi is the input data with multiple features, yi is
the real value of the trial), the XGBoost regression tree model is expressed mathematically
as [20]

ŷi = α
K

∑
k=1

fk(xi) (1)

where ŷi is the predicted value corresponding to input xi, α is the learning rate of the
individual regression tree, K is the total number of CARTs being used, and fk is the output
of the k-th regression tree. Equation (1) shows that the predicted score ŷi is the sum of all
fk values.

After obtaining the prediction result, the objective function L was used to evaluate the
quality of the obtained results, denoted as [37]

L =
n

∑
i

l(yi, ŷi) +
K

∑
k=1

Ω( fx) (2)

The objective function consists of two parts: (1) The loss function l, measuring the loss
between ŷi and yi and (2) the regularization item Ω, determining the complexity of the
regression tree structure. For a CART, Ω was expressed as

Ω( f ) = γT +
1
2

λ
T

∑
j=1

ω2
j (3)

where T is the total number of leaf nodes of CARTs, ωj represents the predicted value of
the j-th leaf node, and γ and λ are controlling factors employed to avoid overfitting.

To optimize the objective function and obtain the best prediction results, the XGBoost
model was trained, and the optimization process was carried out step-by-step. In each
step, the objective function was further reduced by generating new CART from the existing
CARTs. The existing CARTs were first replaced by the constant c, and the equation was then
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subjected to second-order Taylor expansion. Based on the L(t−1) obtained in the previous
step, the objective function L(t) for the t-th step was calculated as

L(t) =
n

∑
i
[l(yi, ŷi

(t−1) + gi ft(xi) +
1
2

hi ft
2(xi))] + Ω( ft) + c (4)

where

gi =
∂l
(

yi, ŷi
(t−1)

)
∂ŷi

(t−1)
(5)

hi =
∂2l
(

yi, ŷi
(t−1)

)
∂
(

ŷi
(t−1)

)2 (6)

In this study, the loss function chooses the residual standard error (RSE). Each input
variable xi was mapped to a leaf node of a CART, so fk(xi) was expressed as

fk(xi) = ωq(xi), ω ∈ RT , q(xi) : Rd → {1, 2 . . . , T} (7)

where ω is the value of this specific leaf node, q(xi) is the index of a specific leaf node, d is
the eigenvalue of the input xi, RT represents a T-dimensional vector, and Rd represents a d-
dimensional vector. The first derivative was calculated by substituting Equations (3) and (5)–(7)
into Equation (4).

Letting Gj = ∑i∈Ij
gi and Hj = ∑i∈Ij

hi, when ωj = −
Gj

Hj+λ , Lmin was written as,

Lmin =
1
2

T

∑
j=1

G2
j

Hj + λ
+ γT + c (8)

Therefore, the optimal value of the objective function L was the predicted value
displayed on the leaf nodes, and in order to find the optimal structure for each CART, a
greedy algorithm was used to optimize the regression tree structure [38].

2.3. Hyperparameter Optimization with GridsearchCV Method

According to the principle of XGBoost, certain hyperparameters, including the maxi-
mum tree depth dmax (e.g., dmax = 3 in Figure 1), α in Equation (1), K in Equation (1), γ in
Equation (3), and λ in Equation (3), play a crucial role in the pros and cons of the XGBoost
algorithm. The random initial values of these hyperparameters in this paper were given as
follows: dmax = 3, α = 0.3, K = 300, and γ = λ = 0.

Figure 2 shows the ten-fold cross-validation used to evaluate the model. Once the
values of the hyperparameter set are brought into the XGBoost model, the corresponding
model is generated based on the training dataset. In this work, a ten-fold cross-validation
approach was employed to improve the training accuracy by randomly dividing the
training dataset into ten different subsets. The established XGBoost model was then trained
and evaluated ten times, each time selecting nine subsets for training and another for
evaluation. Finally, an array of ten evaluation scores (E) and their averages were obtained.
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Figure 2. Schematic diagram of ten-fold cross-validation.

After the model was constructed, the accuracy of the established XGBoost model was
evaluated based on the basic evaluation indicators of the three regression tasks, such as
MAE, RMSE, and R2, which were defined as

MAE(y, ŷ) =
1
n

n

∑
i=1
|yi − ŷi| (9)

RMSE(y, ŷ) =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (10)

R2(y, ŷ) = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (11)

where y represents the experimental values, ŷ represents the values predicted by the model,
and y represents the average values across the dataset.

The initial XGBoost model was established and the hyperparameters were fine-tuned
using the GridsearchCV method. GridsearchCV is divided into a grid search (GridSearch)
and cross-validation (CV). GridSearch is used to search for hyperparameters, that is, within
the specified parameter range, and adjusts the hyperparameters in turn by step size, trains
the estimator with the adjusted hyperparameters, and finds the hyperparameters with the
highest accuracy in the datasets of all hyperparameters through continuous testing. The
ten-fold cross-validation shown in Figure 2 was used in the CV method.

To narrow the search range and improve the efficiency of fine-tuning, a broad range of
hyperparameters with different tolerances was first roughly searched on the basis of the
original values, and then a fuzzy range was determined for each hyperparameter, where
the tolerance ensured the accuracy of the search. Finally, all possible hyperparameter
combinations were evaluated. The ranges of hyperparameters and common differences for
model fine-tuning are listed in Table 3.
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Table 3. Hyperparameter ranges for model fine-tuning.

Item Range of Values Tolerance

dmax 1–10 1
α 0.01–0.3 0.02
K 100–600 50
γ 0–0.05 0.01
λ 0–1 0.1

We combined the GridsearchCV method with the XGBoost algorithm and optimized
five hyperparameters including the maximum depth dmax of the tree, the learning rate
α, the total number K of CARTs being used, the regression coefficient γ, and the weight
coefficient λ by using the ten-fold cross-validation approach. Then, the test dataset was
applied to the determined optimized model to evaluate its prediction accuracy and obtain
the final best estimator and its hyperparameter.

3. Results and Discussion
3.1. Performance of the Optimized XGBoost Model

The best-estimated model was achieved once the best combination of hyperparameters
was determined. It was then evaluated on the training and the test dataset, respectively. A
dataset of 54,054 sets was generated using a Python script, which was randomly divided
into training and test parts with a ratio of 8:2. Using the dataset, the depth of the XGBoost
decision tree model was adjusted to 8, the learning rate was adjusted to 0.05, and the
XGBoost model was trained using an ensemble of 300 regression trees. Figure 3 shows the
prediction accuracy of the trained XGBoost model on the training dataset and unseen test
dataset, with a total dataset size of 54,054. As shown in Figure 3a, most of the predicted
points were distributed close to the straight line of y = x. Figure 3b plots the relative error
distribution of the model on the training dataset and the unseen test dataset, indicating
that the relative errors of the model in the training set and the test set were relatively small,
and the overall prediction results were satisfactory. It could be concluded that the trained
optimized XGBoost model can effectively provide an accurate relationship map between
the relative density of the SLMed Ti-6Al-4V parts and the process parameters.

Figure 3. Regression analysis on the training dataset and the unseen test dataset by the trained
XGBoost model. (a) The experimental measurement and the numerical prediction of the relative
density. The solid line y = x is the identity line for reference. (b) Distribution plot of relative error for
the training dataset and the unseen test dataset.
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3.2. Influence of Dataset Sizes

To evaluate the generalization performance of the proposed model, the optimized
XGBoost model was trained with datasets of different sizes, where all the datasets were
randomly extracted from both the training part and the testing part with a ratio of 8:2.
Table 4 lists the three evaluation indicators (MAE, RMSE, and R2) of the model on the
unseen test set of data with different dataset sizes. Table 4 indicates that the XGBoost
model proposed in this paper has superior accuracy and generalization performance in
predicting Ti-6Al-4V part density when the dataset size is large. When the size of the
dataset is reduced, the prediction accuracy drops but is still acceptable. For example, when
the size of the test dataset is greater than 649, the coefficient of determination R2 is greater
than 0.9. Even when the size of the training dataset drops to 122, the value of the coefficient
for determination R2 can still reach 0.7632.

Table 4. Comparison of evaluation indicators of the proposed models with different sizes of dataset
on unseen test dataset.

Training
Dataset (Set)

Test Dataset
(Set) MAE RMSE R2

48,648 10,811 0.4768 0.6245 0.9699
27,027 6757 0.4815 0.6344 0.9696
16,216 4055 0.5194 0.7179 0.9643
8108 2028 0.6001 0.9917 0.9513
4324 1082 0.6871 1.1797 0.9428
2594 649 0.8011 1.7171 0.9184
2162 541 0.8889 2.1495 0.8930
1621 406 0.9870 2.2707 0.8840
486 122 1.5577 5.1405 0.7632

In order to verify the practicability of the model, the relative densities of SLMed Ti-6Al-4V
parts were predicted by the optimized XGBoost model with different sizes of datasets
proposed in this paper and were compared with the experimental measurement results of
Jiang et al. [39]. The input SLM process parameters in the XGBoost model were set by the
laser power of 125 W, the powder layer thickness of 20 µm, the hatch distance of 80 µm, and
the laser scanning speeds of 905 mm/s, 1005 mm/s, and 1105 mm/s, respectively, which
were consistent with the experimental process parameters of Jiang et al. [39]. It should
be noted that the experimental data of Jiang et al. [39] were not included in our XGBoost
model dataset.

Figure 4 shows the predicted relative errors from experimental values as a function
of dataset size used in the optimized XGBoost model, which clearly indicates that as the
dataset size decreases, when the size of the test dataset is larger than 541, the prediction
accuracy changes slightly, but when the size of the test dataset is smaller than 541, the
prediction accuracy drops sharply, at which it indicates that the model has lost its predictive
ability. As also shown in Figure 4, the higher the scanning speed, the smaller the relative
error of the model when the other three processing parameters and the dataset size are
the same.

3.3. Comparing the Predictive Ability with That of Other ML Models under Small Dataset

In this study, a good ML model must guarantee high prediction accuracy and gener-
alization ability under small datasets. For comparison, the SVR and DNN models were
coded and trained here. We chose the test dataset of 649 sets listed in Table 4 to com-
pare the prediction accuracy of the optimized XGBoost model with that of the SVR and
DNN models.
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Figure 4. The predicted relative errors from experimental values as a function of dataset size used in
the optimized XGBoost model.

Figure 5 shows the results of the regression analysis on the training dataset and the un-
seen test dataset by the trained ML models including DNN, SVR, and the present optimized
XGBoost model under a small test dataset of 649 sets. The evaluation indicators, such as
MAE, RMSE, and R2, of the unseen test dataset are also listed in Table 5. Both Figure 5
and Table 5 show that the optimized XGBoost model outperforms the other two models in
accuracy and generality in predicting the relative density of SLMed Ti-6Al-4V parts under
a small dataset. The optimized XGBoost model can effectively provide accurate correspon-
dence between the relative density of Ti-6Al-4V parts and SLM process parameters.

Figure 5. Regression analysis on the training dataset and the unseen test dataset by the trained
ML models using a small dataset. The experimental measurements and the numerical predictions
predicted by (a) DNN, (b) SVR, and (c) the present model. Distribution plot of relative error for
the training dataset and the unseen test dataset evaluated in (d) DNN, (e) SVR, and (f) the present
optimized XGBoost model.
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Table 5. Comparison of prediction results of SVR, DNN, and optimized XGBoost models on the
unseen test set.

Test SVR DNN Optimized XGBoost

MAE 1.3344 0.8576 0.8011
RMSE 4.8646 1.7316 1.7171

R2 0.7687 0.7849 0.9184

4. Conclusions

In this study, the GridsearchCV method was used to fine-tune the hyperparameters of
the XGBoost model with a small dataset to predict the correspondence between process
parameters and relative densities of SLMed Ti-6Al-4V parts. The following conclusions
are drawn:

(1) The trained optimized XGBoost model can effectively provide accurate correspon-
dence between the relative density of the SLMed Ti-6Al-4V parts by SLM and the
processing parameters.

(2) As the dataset size decreases, when the size of the test dataset is larger than 541, the
prediction accuracy changes slightly, but when the size of the test dataset is smaller
than 541, the prediction accuracy drops sharply, at which point the model has lost its
predictive ability.

(3) The present optimized XGBoost model outperforms the ANN and SVR models with
respect to the accuracy and generality in predicting the relative density of the SLMed
Ti-6Al-4V parts under a small dataset.

(4) The optimized XGBoost model has strong practicability under a small dataset. Using
this method, the SLM operators can accurately estimate the relative density of the
products based on the input processing parameters before printing, without spending
a great deal of experience and time.

Although the application of the XGBoost model in predicting the relative density of
SLMed Ti-6Al-4V parts only was discussed here, the optimized XGBoost model proposed
in this paper can be easily extended to the prediction of mechanical properties of more
metal materials manufactured by SLM processes. In future work, we will further modify
the model to predict the corresponding processing parameters according to the specified
mechanical properties of the printed parts desired by the user.
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