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ABSTRACT

AT-rich interaction domain 1A (ARID1A), a mammalian switch/sucrose nonfermenting complex subunit, modulates several cellular
processes by regulating chromatin accessibility. It is encoded by ARID1A, an immunosuppressive gene frequently disrupted in a
many tumors, affecting the proliferation, migration, and invasion of cancer cells. Targeting molecular pathways and epigenetic
regulation associated with ARID1A loss, such as inhibiting the PI3K/AKT pathway or modulating Wnt/b-catenin signaling, may help
suppress tumor growth and progression. Developing epigenetic drugs like histone deacetylase or DNA methyltransferase inhibitors
could restore normal chromatin structure and function in cells with ARID1A loss. As ARID1A deficiency correlates with enhanced
tumor mutability, microsatellite instability, high tumor mutation burden, increased programmed death-ligand 1 expression, and T-
lymphocyte infiltration, ARID1A-deficient cells can be a potential therapeutic target for immune checkpoint inhibitors that warrants
further exploration. In this review, we discuss the role of ARID1A in carcinogenesis, its crosstalk with other signaling pathways, and
strategies to make ARID1A-deficient cells a potential therapeutic target for patients with cancer.
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INTRODUCTION

In 1998, it was discovered that mammalian switch/
sucrose nonfermenting (SWI/SNF) complexes are associ-
ated with cancer.[1] Twenty percent of all cancer types
are associated with mutations in the 29 genes that make
up the SWI/SNF complex, suggesting that this complex
plays a crucial role in carcinogenesis and that genetic
disruption of this complex may lead to tumor develop-
ment.[2–4] Of note, molecular alterations to AT-rich
interaction domain 1A (ARID1A) are found in approxi-
mately 10% of human malignancies, making it the
most frequently mutated gene in the complex.[5] ARID1A is
located on chromosome 1p36.11 and is a region of the
genome frequently lost in cancer.[6]

ARID1A mutations are prevalent in various cancers,
including gynecologic, gastrointestinal, pancreatic, breast,
urothelial, renal cell carcinoma, and non–small cell lung
cancer (NSCLC).[7–10] ARID1A contributes to signaling via
key molecular pathways, such as phosphatidylinositol-
4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA),
phosphatase and tensin homolog, tumor protein p53,
and protein phosphatase 2 scaffold subunit A alpha.[11] In

hepatocellular carcinoma, ARID1A displays a dual role, with
its gain of function triggering tumor initiation and loss
promoting tumor progression.[12,13] ARID1A loss pre-
dicts poor overall survival in gastric cancer and sug-
gests potential sensitivity to programmed death-1–
programmed death-ligand 1 (PD-1–PD-L1) immune
checkpoint therapies.[14–16] ARID1A is essential for
maintaining the integrity of pancreatic acinar cells and is
a barrier to transformation and epithelial-mesenchymal
transition in the pancreas.[17] Loss of ARID1A, in the
presence of the KRAS mutation and P53 loss, the most
common molecular alterations in pancreatic ductal
adenocarcinoma, exacerbates the aggressive behavior of
pancreatic ductal adenocarcinomas.[17] In breast cancer,
ARID1Amutations are linked to cancer aggressiveness, prog-
nosis, epigenetic regulation, and cell invasion through inter-
actions with the RAB11FIP1 gene.[9,18–23] In renal cell
carcinoma, ARID1A silencing leads to increased cell prolifer-
ation and reduced cell death, with lower expression levels
correlating with poor prognosis.[24,25] ARID1Amutations are
also identified in cancers of unknown primary origin, mela-
noma, colorectal cancer, and NSCLC.[8,10,26,27] While the
role of ARID1A in colorectal cancer remains unclear, its loss
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in NSCLC has been linked to poorer survival rates, indicat-
ing its potential as a valuable prognostic marker.[28–30]

Because ARID1A mutations are found in many cancer types
and interact with other critical molecular pathways, an
understanding of the association between these aberrant sig-
naling pathways could lead to the use of a synthetic lethal
strategy in which the simultaneous inactivation or alter-
ation of two genes leads to cell death, while the inactivation
or alteration of either gene alone does not.[31,32]

This article aimed to review the role of ARID1A in
cancer biology, its interaction with other signaling
pathways, and the potential therapeutic strategies for
targeting ARID1A-deficient cells, including epigenetic
drugs and immune checkpoint blockade therapies.

FUNCTIONS OF ARID1A

ARID1A regulates gene transcription by directly control-
ling cancer-related gene expression or indirectly by recruit-
ing or activating histone-modifier enzymes.[33,34] This
regulates immunologic response, chromatin arrangement,
cell differentiation, and development.[33–35] ARID1A may
behave as a tumor suppressor or oncogene, depending on
the cancer type and stage.

Tumor Suppressor Gene
ARID1A, also known as BAF250a, is a key component of

the SWI/SNF complex, belonging to the BRG1-associated
factor (BAF) subclass.[36–38] Inactivation or silencing of
ARID1A has been associated with dysregulated transcrip-
tional programs, cell cycle control, DNA damage response,
checkpoint signaling, regulation of p53 targets, and telo-
merase activity in various types of tumors.[39,40] ARID1A
inhibits carcinogenesis by binding to yes-associated pro-
tein and transcriptional co-activator with PDZ-binding
motif. This linkage prevents yes-associated protein/tran-
scriptional co-activator with PDZ-binding motif from
binding to the TEA-domain transcription factor, which is
required to activate downstream target genes responsible
for cellular proliferation.[41] The posttranslational acetyla-
tion of Lys120 in the DNA-binding domain of p53 regu-
lates apoptosis without impacting cell cycle control. [42]

However, ARID1A mutations upregulate HDAC6, which
deacetylates Lys120 on P53.[43] This process inhibits P53’s
proapoptotic action and promotes cancer. The upregula-
tion of HDAC6 expression is also one of the consequences
of ARID1A inactivation, which leads to deacetylation of
Lys120 of P53. This posttranslational modification that is
proapoptotic in nature and specifically governs apoptosis
without affecting the regulation of the cell cycle. The inhi-
bition of P53K120Ac by ARID1A mutations leads to the
suppression of the apoptosis-promoting function of P53,
thereby facilitating the advancement of cancer. Cell prolif-
eration was observed to be elevated in cell lines carrying
wild-type (WT) ARID1Awith shRNA-mediated suppression
of ARID1A but had no impact on ARID1A-null cells.[44]

However, restoring ARID1A in cells where it had been

removed markedly reduced proliferation, providing more
evidence for its function as a tumor-suppressor gene.[44]

Oncogene
ARID1A exhibits context-dependent activity in various

cancer models.[39,45] ARID1A has tumor-promoting proper-
ties in the early stages of transformation.[46] Hepatocellular
carcinoma tumors overexpressed ARID1A in 83% of cases
relative to healthy liver tissue, and higher ARID1A expres-
sion levels have been associated with poorer prognosis.[47,48]

WT ARID1A was also found in primary endometrial cancer
tumors, butmetastatic subclones from the same patient har-
bored detrimental mutations.[11] Loss of ARID1A in mice
with APC mutations slowed the progression of ovarian can-
cer and delayed the onset of colon cancer.[49] Sun et al[46]

suggested the significance of taking stage, dosage, and tissue
context into account when assessing ARID1A’s role and for-
mulating treatment plans to modify the epigenetic machin-
ery in cancer.

THERAPEUTIC STRATEGIES TO TARGET
ARID1A MOLECULAR ALTERATIONS IN
CANCER

Understanding the biology of ARID1A has led to the
identification of potential targets for therapeutic inter-
ventions to treat ARID1A deficient cancers (Fig. 1). Sev-
eral biomarker-based studies (Table 1) to evaluate
cancer therapeutics in ARID1A-deficient malignancies
are ongoing.

Figure 1. Therapeutic targets in ARID1A-deficient malignancies.
ABL: Abelson murine leukemia viral oncogene homolog 1; ATR:
ataxia telangiectasia and Rad3-related protein; AURKA: Aurora kinase
A; BET: bromodomain and extra-terminal motif; C-KIT: KIT proto-
oncogene receptor tyrosine kinase; DSB: double-strand break; EZH2:
enhancer of zeste homolog 2; HDAC: histone deacetylase 6; PARP:
poly (ADP-ribose) polymerase 1; PD-L1: programmed death-ligand 1;
SRC: proto-oncogene tyrosine-protein kinase; TILS: tumor-infiltrating
lymphocytes; TMB: tumor mutation burden.
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Synthetic Lethality
The application of synthetic lethality as a strategy for

developing cancer therapeutics was introduced after the
efficacious employment of poly (ADP-ribose) polymer-
ase 1(PARP) inhibitors in patients with ovarian cancer
with BRCA mutations.[50–54] Synthetic lethal strategy
is used to target molecular alterations in gene pairs,
which, when simultaneously inactivated, produces cell
death.[31,32] This strategy is widely used in cancers with
loss-of-function molecular alteration in tumor suppressor
genes. As cross-talk between ARID1A and other signaling
pathways have been implicated in carcinogenesis, numer-
ous therapeutic targets, such as PARP, enhancer of zeste
homolog 2 (EZH2), PIK3CA, the glutathione metabolic
pathway, and histone deacetylase 6 (HDAC6), have been
investigated for the treatment of ARID1A-deficient
cancers.[55–62]

Ataxia telangiectasia and Rad3-related protein
inhibitors
ARID1A regulates the DNA damage response (DDR)

mechanism, which detects DNA damage and coordi-
nates cellular responses.[63] The ATR/checkpoint kinase
2 pathway, which is triggered by single-strand breaks
(SSBs), and the ataxia telangiectasia-mutated/check-
point kinase 1 (Chk1) pathway, which is activated by
double-strand breaks (DSBs), serve as key DNA damage
response regulators.[64] ATR prevents premature mitotic
entrance by activating the G2 checkpoint in the presence
of DNA damage.[65] Cell division cycle 25C (CDC25C)
is an essential component of the G2/M transition, and
its activity is regulated by Aurora kinase A (AURKA) and
the ARID1A/ATR/CHK1 pathway.[65,66] In colorectal can-
cer cells with ARID1A mutations, interruption of the
ARID1A/ATR/CHK1 pathway promotes tumor cell prolif-
eration by increasing CDC25C activity.[65] In models
with ARID1A mutations associated with elevated levels
of checkpoint kinase 2, the inhibition of ATM results in
the accumulation of cytosolic DNA and the activation of
the cGAS/STING signaling pathway.[67] This process
increases the infiltration of T cells into ARID1A-deficient
cells, contributing to enhanced immune response.
Subsequently, Williamson et al[68] investigated the

therapeutic potential of ATR inhibitors in ARID1A-
deficient malignancies. Researchers discovered that
ARID1A-deficient cancer cells were more sensitive to
ATR inhibitors than their WT counterparts, possibly
because of their inability to recover from replication
stress.[68] Significantly, ATR inhibition prevented the
growth of ARID1A-deficient tumor xenografts in mice
with minimal toxicity to healthy tissues.[68] These
results demonstrate the potential of ATR inhibitors as
a synthetic lethal therapy for tumors with ARID1A
deficiency, highlighting the need for further research
and development of ATR-targeting molecules for can-
cer treatment.

PARP inhibitors
PARP1 is best known for detecting DNA SSBs.[69] Acti-

vated PARP1 mediates recruitment of the SSB repair
(SSBR) machinery for DNA repair. Subsequently, PARP1
dissociates from the site to allow the repair machinery
to access DNA. This allowed PARP1 to be released from
DNA to another location to initiate the SSBR process.[70]

PARP1 has also been implicated in the repair of DNA
DSBs by nonhomologous end-joining and alternative
end-joining. PARP inhibitors are often used to interfere
with DNA repair and induce tumor cell death in homol-
ogous recombination–deficient cancers, such as those
caused by BRCA1/2 or other genes in the homologous
recombination pathway.[71,72] PARP inhibitors (PARPis)
prevent the release of PARP1 from DNA.[73] This PARP
trapping prevents the repair machinery from accessing
DNA. Thus, PARP trapping suppressed DNA repair and
induced cell death.
PARPis are selectively lethal to cells lacking DNA repair

components. In BRCA1/2-deficient cells, PARPis increase
the number of DNA SSBs, which are converted into irre-
versible DNA DSBs during replication.[74] DNA DSBs trig-
ger cell death through apoptosis when the quantity of
DNA damage is too high for repair.[74] It has been sug-
gested that ARID1A-deficient tumors could be vulnerable
to PARPis, as ARID1A mutations can impair the DNA
damage response.[56] PARPi may be useful in treating
cancers with ARID1A mutations, including breast cancer
and cholangiocarcinoma.[75,76] A case report detailed the
favorable response to olaparib therapy for almost 13
months in a patient with pancreatic ductal adenocarci-
noma who had a detrimental ARID1A mutation.[77] Park
et al[78] discovered that ARID1A-deficient cells are more
vulnerable to PARPi because ionizing radiation–induced
DSBs make them rely on PARP-dependent repair path-
ways. Preclinical studies have shown promising results
supporting this hypothesis, but its clinical relevance has
not been confirmed yet.[79,80] Ongoing clinical trials are
investigating the efficacy of PARPis in ARID1A-deficient
tumors, but further research is needed to establish this
association.[81,82]

However, ARID1A alterations have been linked to a par-
adoxical clinical scenario in ovarian cancer. Despite being
correlated with PARPI sensitivity in preclinical contexts,
ARID1Amutations appear remarkably to induce resistance
to platinum-based chemotherapeutic agents in ovarian
cancer.[83–87] To investigate this paradox, one research
group examined the complex mechanisms of platinum
resistance associated with these mutations.[88] They dis-
covered that the absence of ARID1A protein resulted in a
remarkable transcriptional upregulation of multidrug
resistance-associated protein 2 (MRP2).[88] MRP2, an efflux
pump that facilitates the ATP-dependent active transport
of platinum compounds across the cellular membrane,
may play a crucial role in promoting platinum resis-
tance.[88,89] Thus, the observed transcriptional shift
induced by ARID1A loss may provide a mechanistic
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explanation for the platinum resistance observed in
patients with ovarian cancer.

EZH2 inhibitors
ARID1A interacts with EZH2 at its carboxyl terminus

and suppresses the interferon response mediated by
EZH2. Gene expression patterns indicated that EZH2 and
ARID1A directly targeted PI3K-interacting protein 1
(PIK3IP1), a negative regulator of PI3K-Akt signaling.[56]

ARID1A activates PIK3IP1 expression, whereas EZH2 sup-
presses PIK3IP1 expression. The ARID1A protein appears
to inhibit EZH2 activity. The loss of ARID1A function con-
sequently results in the suppression of PIK3IP1, which
normally inhibits the PI3K pathway. By inhibiting unre-
strained EZH2 activity, the PI3K pathway could be ren-
dered ineffective. Tazemetostat, an oral EZH2 inhibitor,
demonstrated significant clinical activity in a phase 2
study, with a 69% objective response rate, a median
response duration of 10.9 months, and a median pro-
gression-free survival (mPFS) of 13.8 months in patients
with EZH2-mutant relapsed or refractory follicular lym-
phoma.[90] Tazemetostat showed a respectable safety pro-
file.[90] Bitler et al[56] demonstrated that inhibiting EZH2
decreased cell proliferation and increased cell death
in cancer cells with ARID1A mutations. Nonetheless,
the phase 2 clinical trial (ClinicalTrials.gov identifier:
NCT03348631) of Tazemetostat for patients with recur-
rent ovarian or endometrial cancer is still ongoing.

PI3K/AKT pathway inhibitors
Targeting EZH2 in ARID1A-mutated tumors has been

associated with the suppression of PI3K/AKT signaling,
and studies have shown a linkage between the ARID1A
and PI3K pathways in clear cell ovarian cancer.[56,91]

Class I PI3K is the most abundant of the four classes of
PI3K. It plays a central role in cell survival, growth, pro-
liferation, autophagy, differentiation, and metabolism
by converting phospho-inositide 4,5-bisphosphate to
phospho-inositide 3,4,5-triphosphate in various cellular
membranes.[92–96] Class I PI3K enzymes have a catalytic
and regulatory subunit.[97–99] The binding of regulatory
subunits to catalytic subunits stabilizes the catalytic
subunit proteins and permits the precise regulation of
their enzymatic activity.[95] Five regulatory subunit pro-
teins are expressed from the following three genes:
PIK3R1/p85/p55/p50, PIK3R2/p85, and PIK3R3/p55.[97–99]

Two catalytic subunit proteins are expressed from two
genes, PIK3CA/p110 and PIK3CB/p110.[97–99] Phosphatase
and tensin homolog mutations or deletions are frequently
observed in various malignancies, activating the PI3K/
AKT pathway and facilitating the growth and progression
of tumors.[100–102]

Abnormal activation of this pathway, which serves as
a downstream signal transducer for several cell surface
receptors, is often associated with the development of
cancer, such as somatic changes that activate the PI3K/
AKT/mTOR pathway are seen in about 30% of patients
with bladder cancer.[103] In bladder cancer, the absence

of ARID1A activates the PI3K signaling pathway, promot-
ing cell proliferation and survival.[104] Inhibitors of EZH2
and PI3K have proven to be particularly effective against
ARID1A-deficient bladder cancer cells, both in vitro and
in vivo.[104] Additionally, breast cancer and gastric cancer
cells with ARID1A deficiency exhibited enhanced sensitiv-
ity to therapy using small molecule inhibitors targeting
the PI3K/AKT signaling pathway.[59,105] When the PI3K/
AKT pathway was inhibited, pancreatic cancer cells defi-
cient in ARID1A were more sensitive to radiation in vitro
due to increased apoptosis and a weakened DNA damage
response.[106] In addition, Yang et al[107] discovered that a
combination of PARP and PI3K inhibitors may be used to
treat gastric cancer. Based on these findings, therapy of
ARID1A-deficient cancers with inhibitors of the PI3K sig-
naling pathway shows promise.

Glutathione inhibitors
Gamma-glutamate cysteine ligase (GCL) is a rate-lim-

iting enzyme synthesizing the antioxidant glutathione
(GSH).[108] ARID1A collaborates with the BAF complex,
BRG1, the catalytic subunit of the SWI/SNF chromatin
remodeling complex, RNA polymerase II, and the anti-
oxidant transcription factor NRF2 to create a complex
that binds to the transcription start site of SLC7A11.[62]

SLC7A11 encodes a subunit of the transporter XCT that
imports cystine into the cell in exchange for gluta-
mate.[62,109] Thioredoxin reductase then converts the
imported cystine to cysteine to produce thioredoxin.[62]

GCL uses both cysteine and glutamate to produce
reduced GSH.[62] Thioredoxin and GSH collaborate to
control reactive oxygen species (ROS) levels and avert
cell death. In ARID1A-deficient cells, however, SLC7A11
is weakly expressed, and XCT levels are low, resulting in
a decrease in intracellular cystine, cysteine, and GSH [62]

These cells are susceptible to inhibition of thioredoxin
reductase and GSH by compounds such as auranofin,
APR-246, and buthionine sulphoximine (BSO), which
further depletes the antioxidant capacity of ARID1A-
deficient cells.[62] Consequently, ROS levels increase
indiscriminately, causing cell mortality. ROS can dam-
age cells and induce cell death At high concentrations,
whereas cancer cells rely on the antioxidant GSH to
combat excessive ROS, making GSH a prospective can-
cer treatment target.[109–111] Under such conditions,
inhibition of GGLC (glutamate-cysteine ligase synthe-
tase catalytic subunit)results in apoptotic cell death in
ARID1A-deficient gastric cancer cells.[62,112] Similarly,
the GSH inhibitor APR-246 and GGLC inhibitor buthio-
nine sulfoximine (BSO) are effective against ARID1A-
deficient ovarian clear cell carcinomas (OCCC) cells.[113]

BSO works by depleting cells of cysteine, a key component
in GSH synthesis, which can lead to decreased levels of
intracellular GSH.[114] This depletion of GSH can sensitize
cells to oxidative stress and induce cell death.[115] In pre-
clinical studies, BSO has been shown to have antitumor
effects, particularly in combination with other chemo-
therapeutic agents.[116] Therefore, inhibition of GSH by
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synthetic lethal targeting of GCL is a promising therapeu-
tic approach for malignancies lacking ARID1A.

HDAC inhibitors
In preclinical mouse models, ARID1A mutations ren-

dered OCCCs sensitive to treatment with pan–histone
deacetylase (HDAC) inhibitors, such as suberoylanilide
hydroxamic acid.[91] This sensitivity is attributed to the
recruitment of HDAC2 to ARID1A/EZH2 target genes
such as PIK3IP1 in ARID1A-altered cells, not in ARID1A
WT cells. As HDAC2, a co-repressor of EZH2, suppresses
PIK3IP1 expression in an ARID1A status-dependent
manner, inhibition of HDAC2 restores PIK3IP1 expres-
sion in ARID1A-deficient cells. As such, suberoylanilide
hydroxamine (or vorinostat), a pan-HDAC inhibitor,
suppressed the growth of oncogenic ARID1A-mutated
OCCCs in orthotopic and genetic mouse models.[91]

Similarly, inhibition of HDAC6 with ACY1215 was asso-
ciated with a reduction in the growth of ARID1A-
mutated but not WT tumors, indicating that HDAC6
inhibitors selectively promoted apoptosis of ARID1A-
mutated cells. The above findings provide the rationale
for evaluating HDAC6 inhibitors in treating patients
with ARID1A-deficient OCCC.

Bromodomain and extra terminal domain inhibitors
In 2018, Berns et al[117] reported an in-depth study

investigating the sensitivity of OCCC with ARID1A
mutations to bromodomain and extra terminal domain
(BET) inhibitors. The study identified BRD2, a member
of the BET (bromodomain and extra terminal domain)
family, as a crucial factor in ARID1A mutant cell line
sensitivity to BET inhibition.[117] Analyses of numerous
OCCC cell lines suggest that cell lines containing
ARID1A mutations, particularly JQ1 and iBET-762, are
more sensitive to BET inhibitors.[117] To validate these
in vitro drug sensitivity findings, the researchers used
both OCCC cell line xenografts and patient-derived
xenograft models derived from OCCC patients.[117] The
results of these in vivo models corroborated the in vitro
findings, highlighting the therapeutic potential of BET
inhibitors for patients with ARID1A-mutated malignan-
cies.[117] Swisher et al[118] also investigated the efficacy
of the oral BET inhibitor PLX2853 as a monotherapy for
ARID1A-mutated gynecologic malignancies and in com-
bination with carboplatin for platinum-resistant ovarian
cancer in a recent Phase 1b/2a clinical trial. Initial results
from the study indicate that both PLX2853 monotherapy
and its combination with carboplatin exhibit encouraging
antitumor activity and tolerable toxicity profiles.[118]

These results emphasize the potential of BET inhibitors,
such as PLX2853, as a novel therapeutic strategy for
patients with ARID1A-mutated gynecologic malignancies
and provide evidence for future clinical studies in this
patient population.

AURKA inhibitor
ARID1A represses transcription of AURKA by occupying

the AURKA promoter.[65] Therefore, ARID1A deficiency

enhances AURKA transcription, which activates the
nuclear localization of cell division cycle 25C to promote
the G2/M transition and mitotic entry.[119] Thus, AURKA
inhibition in ARID1A-deficient cells induces G2/M arrest
and apoptosis.[65] As ARID1A has a synthetic lethal inter-
action with AURKA in colorectal cancer cells,[65] ARID1A-
deficient cells are vulnerable to the action of AURKA
inhibitors, warranting further clinical evaluation.

Proto-oncogene tyrosine-protein kinase, Abelson
murine leukemia viral oncogene homolog 1, and KIT
proto-oncogene receptor tyrosine kinase inhibitors
In preclinical OCCCmodels, ARID1A deficiency rendered

cells sensitive to dasatinib, a proto-oncogene tyrosine-
protein kinase, Abelson murine leukemia viral oncogene
homolog 1, and KIT proto-oncogene receptor tyrosine
kinase inhibitor.[79] Dasatinib showed the highest specific
inhibitory effect on ARID1A-mutant OCCC cells compared
with the ARID1A WT cell lines.[79] The sensitivity of
ARID1A-mutant OCCC cells to dasatinib is attributed to
G1–S cell cycle arrest and addiction of ARID1A-mutant
OCCC cells to YES1, a dasatinib target that is highly
expressed in OCCCs.[79] Although these findings are prom-
ising for using dasatinib in treating OCCC, limited activity
has been observed in clinical trials.[120,121] However, it
should be noted that the sample size was limited, and the
study did not assess the ARID1A status in these patients.

IMMUNE CHECKPOINT INHIBITORS

ARID1A deficiency is associated with increased PD-L1
expression, mismatch repair (MMR) deficiency, micro-
satellite instability (MSI), a high mutation load, DDR,
tumor microenvironment, and tumor-infiltrating lym-
phocytes.[122] As all the above factors are considered
predictors of response to the immune checkpoint block-
ade, it has been hypothesized that ARID1A deficiency
may serve as a biomarker of response to immune
checkpoint inhibitors (ICIs)[14,123,124]

Increased PD-L1 Expression
Increased PD-L1 expression has been observed in

ARID1A-deficient ovarian and gastric cancers.[122,125]

Increased PD-L1 expression in ARID1A deficiency is
attributed to upregulation of the PI3K pathway and
DSBs induced by impaired ATR activation in ARID1A-
deficient cells.[34,44,126–128] In mouse models, mice bearing
ARID1A-deficient ovarian tumors treated with the PD-L1
antibody had reduced tumor burden and significantly pro-
longed survival compared with the control group.[122]

Focusing on the prevalence and impact of ARID1A,
ARID1B, and ARID2 mutations, Zhu et al[129] analyzed
genomic and clinical data of a cohort of patients with
NSCLC from The Cancer Genome Atlas and five cohorts
of patients from the Memorial Sloan Kettering Cancer
Center who underwent ICB treatment. Among patients
with an available PD-L1 score, higher PD-L1 scores were
reported in patients with an ARIDA1B mutation, while
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lower PD-L1 scores were reported in patients with
SMARCA4 mutation. In patients with low PD-L1 scores
(, 50), the mPFS was significantly longer in patients with
any SWI/SNF complex mutation (8.3 months) compared
with WT patients (3.7 months; p ¼ 0.001). They found
that these mutations were associated with a higher muta-
tional burden in the tumor and a better response to ICB
therapy.[129] In addition, patients with ARID1A, ARID1B,
or ARID2 mutations exhibited superior progression-free
survival and overall survival compared with patients with-
out such mutations.[129] In 2020, Okamura et al[130] dem-
onstrated the clinical significance of ARID1A alterations as
a biomarker for predicting positive outcomes in anti-PD-1/
PD-L immunotherapy patients. The researchers conducted
a comprehensive investigation on a cohort of patients
with cancer, including those with gastric, colorectal, and
pancreatic cancers.[130] Patients with ARID1A mutations
(as determined by comprehensive genomic profiling)
exhibited substantially prolonged progression-free sur-
vival after treatment withICIs targeting the PD-1/PD-L
axis.[130] ARID1A-inactivating mutations can result in
considerable increases in PD-L1 expression, which makes
tumors with ARID1A deficiency more sensitive to PD-L1
antibodies. Although these findings are compelling,
additional research with suitable controls is required to
determine the prognostic versus predictive role of
ARID1Amutations in immune checkpoint blockade.

MMRDeficiency andMSI
MMR is a DNA repair process that primarily corrects

mismatched bases to preserve genomic stability.[131]

ARID1A activates MMR by enlisting MSH2.[122] Thus,
ARID1A deletion can lead to MMR deficiency and MSI
in several types of cancer, including endometrioid carci-
noma of the uterus, gastric cancer, and colorectal can-
cer.[132–135] It is unclear if ARID1A loss results in a
functional deficiency of ssDNA repair by MSH2 or if
alterations in ARID1A result from MSI. To this end, a
study was conducted in patients with sporadic MSI
endometrial cancer (tumors MLH1 expression because
of promoter hypermethylation of the MLH1 gene) and
those with germline tumors (Lynch syndrome).[127]

Loss of ARID1A expression was reported in 75% of
patients with sporadic MSI tumors as against 14% of
those with germline tumors, suggesting that ARID1A
could be a causal gene rather than a target gene of MSI.
Given that MSI can lead to the accumulation of muta-
tions, producing neoantigens, ARID1A-deficient tumors
may be sensitive to immune checkpoint blockade.[136,137]

TumorMutation Burden andDNADamage
Response
High tumor mutation burden (TMB) is more typical

in cancers with mutated ARID1A than tumors with WT
ARID1A.[138] DDR gene alterations are emerging as
promising predictive biomarkers for immunotherapy
response.[139,140] Patients with high TMB had better

immunotherapy responses than those than those who had
low TMB, suggesting a potential predictive role for TMB in
immunotherapy outcomes.[130,141] Given the correla-
tion between elevated TMB and enhanced immuno-
therapy response, it is plausible that ARID1A-mutated
tumors would also exhibit enhanced immunotherapy
responses. However, additional research is required to
validate this hypothesis and establish a direct link
between ARID1A mutations, TMB, and immunother-
apy outcomes.

TumorMicroenvironment and Tumor-
Infiltrating Lymphocytes
ARID1A expression is significantly decreased in

tumors with increased levels of tumor-infiltrating lym-
phocytes (TILs), and biliary tract tumors can be divided
into immunologically “hot” and “cold” subgroups.[142]

According to accumulating evidence ARID1A alterations
may serve as prospective biomarkers for predicting an
immunotherapy response. After anti–PD-1/PD-L1 immu-
notherapy, patients with ARID1A mutations experienced
prolonged progression-free survival, and this association
has been observed across several cancer types.[5,130] In
addition, ARID1A mutations have been linked to elevated
immune activity in gastrointestinal cancer.[143] These
results suggest a link between ARID1A and the immune
response in the tumor microenvironment, which could
have significant implications for cancer treatment strate-
gies. Additional research is required to elucidate the pre-
cise function of ARID1A alterations in shaping the
immune response and predicting immunotherapy out-
comes in various types of cancer. By comprehending these
predictors, researchers and clinicians can better customize
immunotherapy approaches for patients with ARID1A-
deficiency malignancies, thereby improving treatment
outcomes.

OTHER SWITCH/SUCROSE
NONFERMENTING (SWI/SNF) MEMBERS

In addition to ARID1A, mutations in other SWI/SNF
components, such as ARID1B, SMARCA4, and SMARCB1,
have been found in several human cancers.[144–148]

Genes for components of the SWI/SNF chromatin-
remodeling complex, ARID1A and its homolog ARID1B,
have similar functions.[149] However, they are mutually
exclusive and differ in kinetics.[150] Their expression pro-
files during the cell cycle were significantly different.
While ARID1A accumulates during the G0 cell cycle
phase, its levels continue to decline throughout the
remaining phases of the cell cycle; however, ARID1B lev-
els continue to rise even during mitosis.[55,151] Although
mutations in ARID1A or ARID1B in NSCLC are both asso-
ciated with higher TMB, increased PD-L1 expression, and
improved response to ICB, loss of ARID1B destabilizes
the SWI/SNF complex and inhibits cell proliferation in
ARID1A-mutant tumor cell lines.[128,152] ARID1B is a
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potentially attractive therapeutic target for synthetic
lethality in tumors with ARID1Amutations.
The frequent co-occurrence of ARID1A and BRG1 muta-

tions in various cancers presents a potential therapeutic
opportunity.[153] When ARID1A function is lost, cancer
cells may rely more on other SWI/SNF complex functional
components, such as BRG1.[149] Inhibiting BRG1 can
induce synthetic lethality in ARID1A-deficient cancer
cells, selectively eliminating them while sparing normal
cells with functional ARID1A.[56,150,154] Developing tar-
geted therapies, like small-molecule inhibitors, to selec-
tively inhibit BRG1 in ARID1A-deficient tumors could
offer a promising treatment approach for patients with
these cancers.[155]

SMARCB1 is another component of SWI/SNF chroma-
tin remodeling complex that promotes stability of
ARID1A through enhancer formation and function.[144]

Loss of expression of SMARCB1, the hallmark feature of
renal medullary carcinomas and rhabdoid tumors, con-
tributes to poor differentiation and aggressive behavior of
tumors.[156,157] Re-expression of SMARCB1 significantly
increases protein levels for numerous SWI/SNF subunits,
particularly the tumor suppressor subunits ARID1A and
ARID1B, represses the oncogenic and ferroptosis resis-
tance programs, and promotes epithelial programs.

SUMMARY

ARID1A mutations observed across tumor types result
in the loss of ARID1A expression. Loss of function
ARID1A alterations negatively impact cellular differentia-
tion, cell cycle, and DNA damage repair. The crosstalk
between ARID1A and other signaling pathways allows for
the synthetic lethal targeting of ARID1A-deficient cells
with inhibitors of the PI3K pathway, PARP, EZH2, and
HDACs. Furthermore, the association between ARID1A
deficiency and MSI, high TMB, increased PD-L1 expres-
sion, and tumor-infiltrating lymphocytes renders them
vulnerable to ICI blockade. Large-scale clinical trials are
needed to evaluate the agents that target ARID1A.
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