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THE BIGGER PICTURE The design and development of high-temperature polymers has been an experi-
mentally driven and trial-and-error process guided by experience, intuition, and conceptual insights. How-
ever, such an Edisonian approach is often costly, slow, biased toward certain chemical space domains, and
limited to relatively small-scale studies, which may easily miss promising compounds. To overcome this
challenge, we formulate a data-driven machine learning (ML) approach, integrated with high-fidelity molec-
ular dynamics simulations, for quantitatively predicting the glass transition temperature of a polymer from
its chemical structure and rapid screening of promising candidates for high-temperature polymers. Our
work demonstrates thatML is a powerful method for the prediction and rapid screening of high-temperature
polymers, particularly with growing large sets of experimental and computational data for polymeric ma-
terials.

Proof-of-concept Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
To formulate a machine learning (ML) model to establish the polymer’s structure-property correlation for
glass transition temperature Tg, we collect a diverse set of nearly 13,000 real homopolymers from the largest
polymer database, PoLyInfo. We train the deep neural network (DNN) model with 6,923 experimental Tg

values using Morgan fingerprint representations of chemical structures for these polymers. Interestingly,
the trained DNN model can reasonably predict the unknown Tg values of polymers with distinct molecular
structures, in comparison with molecular dynamics simulations and experimental results. With the validated
transferability and generalization ability, the ML model is utilized for high-throughput screening of nearly one
million hypothetical polymers. We identify more than 65,000 promising candidates with Tg > 200�C, which is
30 times more than existing known high-temperature polymers (�2,000 from PoLyInfo). The discovery of this
large number of promising candidates will be of significant interest in the development and design of high-
temperature polymers.
INTRODUCTION

Lightweight and high-strength polymers with outstanding high-

temperature properties have been identified as promising mate-

rials for aerospace, electronics, and automotive applications.1–3

These high-temperature polymers are expected to have long-

term durability at high temperatures, high thermal decomposi-

tion temperatures, or high glass transition temperature Tg. For

example, polytetrafluoroethylene is a synthetic fluoropolymer

of tetrafluoroethylene with a maximum service temperature
This is an open access article under the CC BY-N
>260�C, which has been widely used for non-stick coatings

and insulations.4 The other successful high-temperature poly-

mers are perfluoroalkoxy alkanes, polyether ether ketone

(PEEK), and fluorinated ethylene propylene. The high-tempera-

ture properties of these polymers are realized through the het-

eroatoms in the polymer chain of thermoplastics.5–7 However,

the molecular engineering and design of hydrocarbon polymers

and other polymers with high-temperature properties remain to

be explored. The current design and development of high-tem-

perature polymers have been an experimentally driven and
Patterns 2, 100225, April 9, 2021 ª 2021 The Author(s). 1
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trial-and-error process guided by experience, intuition, and con-

ceptual insights. For example, different experimental strategies

have been developed to synthesize high-temperature hydrocar-

bon polymers, such as (1) enhancement of the tacticity of the

polymer chains,8,9 (2) introduction of bulky pendant groups into

the side chain,10–12 and (3) incorporation of cyclic structures

into the backbone chain.13–15 Nevertheless, this Edisonian

approach is often costly, slow, biased toward certain chemical

space domains, and limited to relatively small-scale studies,

which may easily miss promising compounds.16 Thus, a robust

and reliable high-throughput screening method is essential for

the discovery and design of high-temperature polymers.17

For high-temperature polymers, a critical property is the

Tg,
10,13,14 which determines the polymer’s phase transition be-

tween a rubbery state and a glassy state, yielding orders of

magnitude difference in elastic modulus.18 Until now, Tg is well

known to be related to many factors, including molecular

weight,19 chain stiffness,20 side groups,21 additives,22 regular-

ity.23 Considering these aspects, researchers have proposed

theoretical correlations between the chemical structure and the

Tg of polymers. These empirical methods are built upon the

assumption that the chemical groups in the repeating units of

the polymer chain contribute to the Tg additively with different

weighting factors.24–26 For example, Van Krevelen and Te Nijen-

huis18 and Hoftyzer and colleagues26 have proposed the ‘‘Molar

Glass Transition Function,’’ based on nearly 600 experimental Tg

values of polymers, with different group contributions and struc-

tural corrections to Tg. This approach provides an effective way

for molecular interpretation of Tg. However, this additive method

is only applicable to the polymers containing previously investi-

gated chemical structures.18 Later, Dudowicz et al.27 formulated

an analytic theory to estimate Tg of polymermelts as a function of

the relative rigidities of the chain backbone and side groups,

monomer structure, polymer mass, and pressure, based on

the generalized Lindemann criteria. This analytical theory can

explain the general trends in the variation of Tg related to the

microstructure of the polymer, e.g., influences of side-chain

length, and relative rigidities between side groups and chain’s

backbone. Nevertheless, it cannot be used to directly predict

the Tg of the polymer based on its chemical structure. Very

recently, Xie et al.28 established a relationship between Tg and

molecular structure of 32 conjugated polymers with a single

adjustable parameter z. z is an effective mobility value, deter-

mined by assigned atomic mobility for the repeating unit of con-

jugated polymers. The experimental results confirm that z is

strongly correlated to the Tg of conjugated polymers, although

they differ drastically in aromatic backbone and alkyl side-chain

chemistry. Yet, quantitatively predicting a polymer’s Tg from its

chemical structure remains a significant challenge. We still lack

a universal model that connect a polymer’s Tg to its repeating

unit and molecular structure.

With advancements in molecular simulation and high-perfor-

mance computing, all-atom molecular dynamics (MD) simula-

tions can reasonably predict a polymer’s Tg,
29 despite the

limitations of computational cost, cooling rate, and uncer-

tainty.30–33 Nevertheless, it is not feasible to use these expensive

MD simulations to explore the vast chemical space of polymers,

defined by the almost infinite combinations of their chemical ele-

ments and molecular structures. With the growing amount of
2 Patterns 2, 100225, April 9, 2021
polymer database,16,30–33 data-driven methods are emerging to

build correlations between chemical structure and the Tg of poly-

mers, including quantitative structure-property relationships

(QSPR) method34–36 and machine learning (ML).37–39 For the

QSPR method, a large array of molecular descriptors are ex-

tracted from the polymer’s repeating unit, which applies to any

chemical structure.40 For example, Katritzky et al. have extracted

more than 400 constitutional, topological, geometrical, and

quantum chemical descriptors for the repeating unit of the poly-

mer.40 Subsequently, a multi-step linear regression analysis is

adopted to train these descriptors, leading to a good match be-

tween predicted and experimental Tgvalues for 88 homopoly-

mers. Wu et al.41 encoded a descriptor vector of seven different

fingerprints, such as standard, extended, hybridization, maccs.

And their Bayesian linear model reported an R value of 0.916

for Tg prediction. Liu and Cao42 have adopted the artificial neural

network to predict the Tg for 113 polyacrylates and polystyrenes,

asa functionof fourmolecular descriptors: themolecular average

polarizability, the energy of the highest occupied molecular

orbital, the total thermal energy, and the total entropy. Later,

Cai et al.43 have combined a support vector regression with par-

ticle swarm optimization, using six quantum chemical descrip-

tors as inputs, to predict Tg values for 32 methacrylate polymers.

However, theQSPRmethod suffers twomajor drawbacks: (1) it is

expensive to quantify a large array ofmolecular descriptors, such

as quantum chemical descriptors, which require the time-

consuming density-functional theory calculations; (2) the QSPR

method might generate many parameters that are challenging

to physically interpret, such as topological bond connectivity

and Kier shape index.40

Considering these aspects, several ML models have been es-

tablished to predict a polymer’s Tg directly from its chemical

structure. For instance, Ramprasad and co-workers37–39,44 uti-

lized three hierarchical levels of descriptors, including atomic

level, QSPR, and morphological descriptors, for feature repre-

sentation of polymers. They fitted their datasets of 451–1,321

polymers with the Gaussian process regression model in the

polymer genome platform.38,45–48 When using 1,321 polymers

for training, their ML model reported a root-mean-square error

of 27 K and R2 of 0.92.39 In addition to molecular descriptors

as feature representation, ML models, such as convolutional

neural networks (CNNs) with image-based input, have also

been examined. For example, Miccio et al.49,50 converted the

SimplifiedMolecular Input Line Entry System (SMILES) notations

of 331 polymers into a two-dimensional (2D) matrix (binary im-

ages) by the presence or absence of composing characters in

the SMILES formulation. This approach can be used to predict

the unknown Tg of polymers with average relative errors as low

as 6%, particularly without time-consuming calculations of mo-

lecular descriptors. Table 1 summarizes the database, feature

representation, models, and prediction metrics from these theo-

retical, QSPR and ML studies.

Despite these extensive studies, we are still facing several sig-

nificant challenges in creating ML models to directly predict a

polymer’s Tg based on its chemical structure.16 Firstly, most of

these data-driven models are built upon a small dataset of poly-

mer Tg values with less than 1,000 data points, focusing on a

certain category of polymers, such as polyacrylates and polysty-

renes. It is very difficult to generalize these models for other



Table 1. Summary of theoretical, QSPR, and machine learning (ML) models investigated in the literature

Database Features Model R2 Ref.

600 chemical groups group contributions approach N/Aa 18

32 an effective mobility value single adjustable parameter N/Ab 28

113 quantum chemical descriptors artificial neural networks 0.955c 42

37 quantum chemical descriptors support vector regression 0.97 43

251 Descriptors computational neural networks 0.96 51

389 descriptors support vector regression 0.78 52

133 descriptors random forest N/Ad 53

88 descriptors multi-layer perceptron neural network 0.96 54

77 descriptors support vector machine (SVM) 0.92 55

54 descriptors artificial neural network 0.91 56

52 descriptors artificial neural network 0.978e 57

451 hierarchy fingerprint Gaussian process regression 0.94 38

751 hierarchy fingerprint Gaussian process regression 0.87 37

1,321 hierarchy fingerprint Gaussian process regression 0.92 39

5,917 combined fingerprint Bayesian linear model 0.916f 41

331 SMILES-based binary images convolutional neural network N/Ag 49

234 SMILES-based binary images fully connected neural networks N/Ah 50

6,923 + 5,690 +

1 million

descriptors

Morgan fingerprint

SMILES-based binary images

lasso regression

deep neural network

convolutional neural network

0.80

0.85

0.87

this work

N/A, not applicable.
aAbout 80% of the calculated Tg values differed less than 20 K from the experimental values.
bOnly root-mean-square error of 13�C was reported for all 32 alkylated conjugated polymers.
cR = 0.955 was reported for the prediction set.
dOnly root-mean-square error of 4.76 K was reported for the test set of the model.
eR = 0. 978 was reported for the test set.
fR = 0. 916 was reported for the test set.
gThe model performance was evaluated by relative error of 3%–8%.
hThe model performance was evaluated by average relative errors of �3%.
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classes of polymers due to the limited range of chemical space.

Secondly, it is challenging to choose appropriate feature repre-

sentations to describe the chemical structures of polymers. Mo-

lecular descriptors, fingerprints, and images have been adopted

to represent the chemical structures of polymers. It is not clear

which feature representation is the most appropriate, leading

to a predictive ML model for exploring a large chemical space

of polymers. Finally, it is not straightforward to associate ML pre-

dictions on a polymer’s Tg with physically meaningful quantities.

Since most ML models are highly nonlinear with complicated ar-

chitectures, it is difficult to pinpoint a specific set of physical

quantities or chemical groups that are important in the prediction

and design of a polymer’s Tg.

To overcome the above challenges, we manually collected

about 13,000 homopolymers structures from the largest polymer

database, PoLyInfo.58 Copolymers that are formed by two types

of monomers are not collected here as the effect of their different

components on Tg requires extra consideration,59,60 and poly-

mer composites are not included either when their Tg is affected

by polymers interplaying with nanomaterials.61,62 Focusing on

homopolymers allows us to put our focus mainly on revealing

the correlation of a polymer’s chemical structure and its Tg.

Among the around 13,000 homopolymers, 6,923 experimental

Tg values are available, which form dataset-1, as shown in
Figure 1. The remaining 5,690 polymers without reported Tg

values form dataset-2. Also, a benchmark database, named

PI1M63, with nearly one million hypothetical polymers generated

by a recurrent neural network (RNN) model, is taken as dataset-

3, while the corresponding Tg values are unknown. Note that

dataset-3 covers a similar chemical space as dataset-1 and da-

taset-2 because the RNN models are also trained on the PoLy-

Info database, but significantly populate regions where PolyInfo

data are sparse.63 Such a large and diverse dataset allows us to

develop four representative ML models based on dataset-1,

namely Lasso_Descriptor, Lasso_Fingerprint, DNN_Fingerprint,

and CNN_Image, by using the molecular descriptors, Morgan

fingerprints, or images as inputs, and Lasso (least absolute

shrinkage and selection operator), DNN (deep neural network)

or CNN as the ML models. The predictivity and transferability

of these ML models are tested on dataset-2 with distinct chem-

ical substructures (Figure 1), in comparison with MD simulations

and experimental results. Interestingly, our study reveals that the

DNN_Fingerprint model can reasonably predict the Tg values of

polymers from dataset-2, as the Morgan fingerprinting method64

can take into account the chemical connectivity and appearance

of different substructures of a polymer’s repeating unit. More

importantly, we use these ML models to identify key molecular

descriptors and chemical substructures that can significantly
Patterns 2, 100225, April 9, 2021 3



A B Figure 1. Chemical space visualization of

dataset-1, dataset-2, and dataset-3

(A) 2D visualization based on descriptors and fin-

gerprints using the t-SNE algorithm. Dataset-1 has

reported Tg values, and each data point is colored

based on the corresponding Tg value. Dataset-2

and dataset-3 do not have reported Tg values,

colored with yellow and red, respectively.

(B) Set diagram showing representative sub-

structures in dataset-1 (green circle), dataset-2

(yellow circle), and dataset-3 (red circle) based on

Morgan fingerprint. Some substructures are com-

mon for all datasets, while some others are unique

to certain datasets.
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affect the polymer’s Tg, providing physical insights into the pre-

diction and design of the Tg for polymeric materials. We further

examine the chemical functional groups of high-/low-Tg poly-

mers and their common characteristics through Checkmol.65

We also identify strong correlations between these common

functional groups with the key chemical substructures revealed

by our ML models. Eventually, we apply the validated DNN_Fin-

gerprint model for rapid screening of one million hypothetical

polymers in PI1M (dataset-3), and identify more than 65,000

promising candidates for high-temperature polymers with Tg >

200�C. We then use MD simulations to validate the predicted

Tg values of the top four high-temperature polymers, which are

previously unexplored and have not been tested to date. Thus,

our study demonstrates thatML is a powerful method for the pre-

diction and rapid screening of high-temperature polymers,

particularly with growing large sets of experimental and compu-

tational data for polymeric materials. The key molecular descrip-

tors and chemical substructures informed by ML models,

combined with identified chemical functional groups, are impor-

tant design motifs for the molecular engineering of high-temper-

ature polymers.

RESULTS AND DISCUSSION

Dataset, feature representation, and chemical space
To formulate robust and predictable MLmodels for diverse poly-

mers, we need to consider a larger dataset in contrast to previ-

ous studies (cf. Table 1). Dataset-1 contains 6,923 polymers

from the largest polymer database, PoLyInfo,58 as listed in Table

2. They are real polymers with experimentally measured

Tgvalues reported in literature. Thus, it is ideal to use dataset-1
4 Patterns 2, 100225, April 9, 2021
as a labeled dataset for MLmodel training.

For experimentally measured Tg values,

they depend on conditions, such as the

cooling or heating rate, or even curing pro-

cess and moisture content, thus there

cannot be an exact value for Tg.
66–69

Although there are variations in experi-

mental measurements, the reported Tg

with a common experiment practice can

be considered characteristic only of the

polymer and not of the measuring

method.70 If measurement conditions are

so extreme that the obtained Tg is not a
proper representative of the real value, such records will mislead

all analysis, including ML model training.

A total of 5,690 real polymers of dataset-2 were collected from

the same data source as dataset-1, but their Tg values were not

previously reported. Dataset-3 is based on an ML-generated

database PI1M63 with approximately one million hypothetical

polymers. Note that PI1M is enumerated using a generative ML

model, RNN, based on PolyInfo (dataset-1 plus dataset-2).

These three datasets are regarded as similar to each other in

terms of chemical space.63 The collected three datasets in Table

2 are more than one order of magnitude of most datasets from

the kinds of literature in Table 1, making up a broader range of

chemical space involving various categories of polymers. The

challenge of havingMLmodels that can be generalized to all cat-

egories of polymers then becomes straightforward to address

with the collected large datasets.

All polymers’ chemical formulas and structures are repre-

sented by the SMILES notation,71 which is a line notation for

describing the structure of chemical species using short ASCII

strings. For example, ‘‘*C(C*)C’’ represents the repeating

unit for ‘‘poly(prop-1-ene).’’ It is worth noting that a special sym-

bol ‘‘*’’ is used to indicate the polymerization points for the

repeating unit. From the same molecular block, such as

‘‘CCC,’’ the polymerization positions in *C(C*)C take into account

the bonding information between repeating units, and determine

the spatial structure of the polymer chain. The chemical species

contained in these three datasets include C, O, N, Cl, F, Br, I, S,

Si, B, P, Sn, Fe, Na, Li, Ge, Se, K, Co, Ni, Ca, Cd, Pb, Zn, and Te.

One challenge when creating ML models for evaluation of a

polymer’s Tg is choosing appropriate feature representation to

describe the chemical structures being studied. Representation



Table 2. Comparison of three datasets

Dataset No. of polymers Tg (oC) Source

Dataset-1 6,923 �118�495 real polymers from PoLyInfo58

Dataset-2 5,690 unknown real polymers from PoLyInfo58

Dataset-3 1 million unknown hypothetical polymers from PI1M63
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options include descriptors, fingerprints, molecular graph, mo-

lecular embedding, quantum chemical quantities, images, etc.

The effect of using different representations on Tg estimation

has been demonstrated through systematic representation eval-

uation72 or separate model development.37–39,42,43,50–57 In addi-

tion, the development of new representations remains critical for

the development of high-performanceMLmodels. To carry out a

thorough study considering different types of representations,

we explore three types of feature representation based on the

SMILES notation of each polymer: molecular descriptors, Mor-

gan fingerprints, and images, as presented in Figure 2. In terms

of molecular descriptors, the feature-generating engine alva-

Desc73 supports the calculation of about 5,305 descriptors

within 32 categories, ranging from constitutional indices and

ring descriptors to chirality descriptors.73,74 The ensemble of de-

scriptors represents the physical and chemical characteristics of

polymers/molecules being studied, which have been widely

adopted in the QSPR and ML models (Table 1). Thus, these mo-

lecular descriptors can provide physical information regarding

charges, topological indices, functional groups, etc., of poly-

mers. Among these 5,305 descriptors, 3,579 descriptors are all

available for real polymers in dataset-1 and dataset-2. However,

not all 3,579 descriptors are available to the onemillion hypothet-

ical polymers in dataset-3. Around 5% of hypothetical polymers

in dataset-3 cannot be processed using the alvaDesc. But it

does not affect toomuch the chemical space visualization based

on molecular descriptors for dataset-3. We should emphasize

that the alvaDesc cannot process the * symbol in the SMILES no-

tation and, thus, it misses the chemical connectivity of the

repeating units.

In addition to molecular descriptors, we also choose the

fingerprinting method (extended connectivity fingerprinting

[ECFP])64 to numerically represent the chemical connectivity in

a repeating unit of the polymer. Specifically, the fingerprinting

method has a significant advantage over the traditional group

contribution and molecular descriptor methods, where all the
possible build blocks and molecule descriptors have to be

defined a priori and remain static. However, the fingerprinting

method ismore dynamic, and it can evolve to include new chem-

ical structures and connectivities.64 Essentially, to derive the

ECFP of the repeating unit, we need to: (1) assign each atom

with an identifier, (2) update each atom’s identifiers based on

its neighbors, (3) remove duplicates, and (4) fold list of identifiers

into a 2,048-bit vector (a Morgan fingerprint). In this case, we

transform each polymer’s SMILES notation into a binary ‘‘finger-

print,’’ by using the Daylight-like fingerprinting algorithm as im-

plemented in RDKit75 with radius 3 and 2,048 bits. Note that

radius 3 is large enough to identify/encode large fragments of

the chemical structure, with more than 45,000 distinct substruc-

tures detected from all datasets. Such a topological-based

approach analyzes the various substructures of a molecule

within a certain number of chemical bonds (here it is 3), and

then hashes each substructure into a 2,048-bit vector, as shown

in Figure 2. If the 45,000 distinct substructures are hashed into

2,048 buckets, collisions are inevitable. Then, the 1/0 (on/off)

bit of a bucket does not indicate the occurrence of a specific

substructure but represents the occurrence of several substruc-

tures. Besides, the number of occurrences for a substructure is

not recorded through these buckets. To avoid the drawbacks of

using buckets, we directly record each substructure and its num-

ber of occurrences. This dictionary of substructures is further

used for the training of our ML models. We should emphasize

that our fingerprinting method is different from previous studies

using the ECFP and Morgan fingerprinting,41,76,77 as we need

to consider the number of occurrences for certain substructures

in the training of ML models, to be discussed in the following

section.

Based on the SMILES notation of polymers, we further define

an ordered list of SMILES characters as a dictionary [‘‘c’’, ‘‘n’’,

‘‘o’’, ‘‘C’’, ‘‘N’’, ‘‘F’’, ‘‘ = ‘‘, ‘‘O’’, ‘‘(‘, ‘)’’, ‘‘*’’, ‘‘[‘, ‘]’’, ‘‘1’’, ‘‘2’’,

‘‘3’’, ‘‘#’’, ‘‘Cl’’, ‘‘/’’, ‘‘S’’, ‘‘Br’’]. This dictionary creates a binary

column for each character, with which one-hot encoding
Figure 2. Three types of feature representa-

tion calculated based on the polymer’s

SMILES notation for ML models: molecular

descriptor, Morgan fingerprint, and image

Patterns 2, 100225, April 9, 2021 5



Table 3. Four ML models trained on dataset-1

Name ML model Features R2 (train/test)

Lasso_Descriptor Lasso regression model 3,579 descriptors 0.80/0.71

Lasso_Fingerprint Lasso regression model 2,048 fingerprints 0.74/0.73

DNN_Fingerprint deep neural network 2,048 fingerprints 0.85/0.83

CNN_Image convolutional neural network 310 3 21 binary images 0.87/0.80
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algorithm78 transforms each polymer’s SMILES into a sparse

matrix (a 2D binary image in Figure 2). The dimensions of all im-

ages are 21 (the number of characters in the dictionary) 3 310

(the length of the longest SMILES code in the dataset). The key

points of the one-hot encoding algorithm are: (1) defining a

reasonable dictionary is the premise of a good model; (2) simple

polymers (represented by a short SMILES code) return much

sparser matrices than complex polymers (represented by a

long SMILES code). Obviously, any change of dataset could

lead to changes in the dictionary and corresponding images,

significantly influencing the performance of a CNN model.

In view of the molecular descriptors and Morgan fingerprints,

similarities between different datasets can be compared from

their chemical space. To better visualize this space, the high-

dimensional chemical spaces are reduced to a low-dimensional

representation. By t-distributed stochastic neighbor embed-

ding,79 the chemical spaces can be shown in 2D plots as shown

in Figure 1A. The top row of Figure 1A is for dataset-1, whose Tg

values are marked with a color bar. The middle and bottom rows

are for dataset-2 and dataset-3, respectively. We can see that,

on both descriptor and fingerprint space, dataset-1 and data-

set-2 distribute randomly on similar regions. The random distri-

bution suggests that dataset-1 and dataset-2 are across similar

chemical spaces. Dataset-3 is also found filling up a similar

chemical space but significantly populate regions where PoLy-

Info data (dataset-1 plus dataset-2) are sparse. Although Fig-

ure 1A shows similarities between dataset-1, dataset-2, and

dataset-3, disparities still exist. For example, using Morgan fin-

gerprints, we show some substructures of these polymers in da-

taset-1, dataset-2, and dataset-3 (Figure 1B). Besides the

shared substructures enclosed in the overlapped area of the cir-

cles, all three datasets have their own unique substructures. As

MLmodels are trained based on dataset-1, when they encounter

a polymer in other datasets with new substructures, it is difficult

to make an accurate prediction. Compared with the perfor-

mance on dataset-1, whether the ML model can be well trans-

ferred to new dataset-2 and dataset-3 is more worthy of

concern. ML models with good transferability and generalization

ability are of significant importance for the discovery and design

of high-temperature polymers.

ML models for the chemistry-Tg relation of polymers
Four ML models trained on dataset-1 (listed in Table 3) involve

the Lasso model, the DNN model, and the CNN model. Lasso

is a least-squares regression model with a shrinkage penalty,

through which it performs variable selection by forcing the coef-

ficients of trivial variables to become zero. Thus, the variables

that are strongly associated with the output are identified in a

variable selection process. DNN consists of connected units

called nodes or neurons. Each node receives signals and
6 Patterns 2, 100225, April 9, 2021
triggers a process function to output new signals. Several nodes

are grouped into layers and constructed into a complicated

network architecture, which is processed between the input

and output layers. DNN is capable of learning complex relation-

ships between input and output. CNN is distinguished from DNN

by its superior performance on image input. The convolutional

layers with filters or kernels are the core building blocks of

CNN. The optimized weights and biases in convolutional layers

can identify the presence of various features in the input,

showing an advanced performance, particularly in image pro-

cessing. Although the ML algorithms are applicable for various

kinds of problems, such as video recognition, image analysis,

or natural language processing, their suitability and reliability

are actually highly domain dependent. For the task of estimating

a polymer’s Tg based on structure features, MLmodels require a

proper feature representation that depicts polymer physics and

chemistry to the greatest extent.

Here, descriptors or fingerprints are used as the input features

for Lasso regression models or DNN models. They have clear

chemical or physical meanings for an organic molecule, but

the time-consuming calculation is usually required considering

a very large database of polymers. When representing polymers

from the perspective of 2D images, the input is much easier to

calculate.49,50 Therefore, a CNN model using images is also

investigated for comparison. Through these ML models, we

aim to discover critical physical and chemical features affecting

Tg, and to establish a reliablemodel for Tg screening of high-tem-

perature polymers. Lasso regression is suitable for feature selec-

tion, while DNN and CNNmodels are more powerful to establish

a correlation between chemical structure and Tg of polymers.76

The performances of these four ML models are illustrated by

parity plots in Figures 3A–3D (see the supplemental experimental

procedures Figures S1–S3 for model training details). Based on

dataset-1, they all show good performances. The best one is the

CNN_Image model, which produces an R2of 0.87/0.80 for

training/test sets. It indicates that, although there is no explicit

physical meaning in the image representation, the CNN model

is still able to establish a correlation between the image input

and the physical property Tg of polymers. The DNN and Lasso

models also lead to high R2 values of 0.74–0.87. Their perfor-

mances are satisfactory, considering the large chemical diversity

of 6,923 polymers involved in dataset-1.

To examine the transferability of MLmodels on new polymers,

these four ML models are applied to dataset-2 to predict their

Tgvalues. The prediction accuracy of ML models is further vali-

dated with MD simulations (see Figure S4 and Table S2 for the

MD simulation details and results). Twenty polymers are

randomly selected from dataset-2. Their MD-simulated Tg and

ML-predicted Tg values are compared in Figure 3E. Four ML

models show different prediction performances on these
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Figure 3. Performance of four ML models

(A) The Lasso regression model using descriptors

as input features (Lasso_Descriptor model).

(B) The Lasso regression model using fingerprints

as input features (Lasso_Fingerprint model).

(C) The DNN model using fingerprints as input fea-

tures (DNN_Fingerprint model).

(D) The CNN model using images as input features

(CNN_Image model).

(E) The comparison between the MD-simulated Tg

and the ML-predicted Tg on 20 polymers randomly

selected from dataset-2. Three dashed lines are a

unity line and lines with a mean absolute error of

40�C. The chemical structure of these 20 polymers

is followed by their MD-simulated Tg value.
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polymers of dataset-2 (see Table S3 in the supplemental exper-

imental procedures). The performances of CNN_Image model

and Lasso_Descriptor model degrade remarkably to R2 of

�0.52 and 0.39, respectively, indicating poor transferability

from dataset-1 to dataset-2. These two previously well-trained

ML models on dataset-1 are found to be no longer accurate

when giving a new and different dataset. Due to their worse

generalization capabilities, the CNN_Image model and Lasso_-

Descriptor model are not considered for high-temperature poly-

mer screening in the following sections.

On the contrary, the Lasso_Fingerprint and the DNN_Finger-

print models demonstrate good performance on these randomly

selected polymers, with R2of 0.63 and 0.53, respectively. Their

small changes of R2 from dataset-1 to dataset-2 suggest good

transferability. Although with a little degradation, the prediction

performances are still satisfactory considering: (1) dataset-2 is

not exactly the same as dataset-1 in terms of substructures

(cf. Figure 1), and (2) uncertainties may exist as the reference
Tg values obtained by MD simulations

can be higher than the true values due to

the high cooling rate.31,32,80,81 To avoid

the uncertainties from MD simulations,

validation using experimental results is

more preferred. Thus, a newly reported

experimental dataset is further utilized to

verify the transferability of these two ML

models. The experimental dataset con-

tains 32 semiflexible (mostly conjugated)

polymers28 that are new to ourMLmodels.

These 32 polymers differ drastically in the

aromatic backbone and alkyl side-chain

chemistry (Table S4 in the supplemental

experimental procedures), serving as an

ideal experimental dataset to test our ML

models. The predictions of the Lasso_Fin-

gerprint model and the DNN_Fingerprint

model lead to R2 values of 0.20 and 0.68

(see Figure S5 in the supplemental exper-

imental procedures for detailed results).

Thus, the performance of the Lasso_Fin-

gerprint model is found to be degrading

on this new experimental dataset. Accord-

ing to these results, we find that the
DNN_Fingerprint model has a consistent performance on

different datasets with excellent transferability through the vali-

dations by MD simulations and experimental results. Also, Mor-

gan fingerprints are identified to be more appropriate as feature

representation for the ML model of polymer Tg in comparison

with molecular descriptors and images.

As mentioned above, both molecular descriptors and images

are representations of all the possible building blocks of a poly-

mer’s repeating unit, which must be defined a priori and remain

static. However, Morgan fingerprints are an inherent more

dynamic representation, as they can evolve to include new

chemical substructures once encountered. Also, according to

the previous theoretical models on Tg values of polymers,18 we

know that the number of occurrences for these substructures

also plays an important role. Therefore, our Morgan fingerprints

explicitly consider more than 45,000 distinct substructures and

their frequency of occurrence, which allows us to study the ef-

fects of various substructures and their linkages on polymer Tg
Patterns 2, 100225, April 9, 2021 7



Table 4. The top 10 physical descriptors and their absolute weight ratio from the Lasso model

Name Description Block Ratio

AVS_B(i) average vertex sum from Burden matrix

weighted by ionization potential

2D matrix-based descriptors 0.0684

NssCH2 number of atoms of type ssCH2 atom-type E-state indices 0.0272

F02[C-N] frequency of C–NA topological distance 2 2D atom pairs 0.0181

nHM number of heavy atoms constitutional indices 0.0145

BIC2 bond information content index

(neighborhood symmetry of 2-order)

information indices 0.0138

NsCH3 number of atoms of type sCH3 atom-type E-state indices 0.0137

B03[F-F] presence/absence of F–F at topological

distance 3

2D atom pairs 0.0120

nCq number of total quaternary C(sp3) functional group counts 0.0113

nCrs number of ring secondary C(sp3) functional group counts 0.0098

C-006 CH2RX atom-centered fragments 0.0097
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values. Combined with the powerful and transferable DNN

model,82 the DNN_Fingerprint model trained from dataset-1

demonstrates the best performance on dataset-2 and a new

experimental dataset of 32 conjugated polymers. We should

emphasize that, if we only derive the Morgan fingerprints by

hashing all the substructures into 2,048-bits, without considering

their number of occurrences, the trained DNN model cannot

reasonably predict the Tg values of these 32 conjugated poly-

mers (see Figure S6 the supplemental experimental procedures

for detailed results). Extensive studies using molecular descrip-

tors, fingerprints, or images alone (Table 1) lead to well-trained

MLmodels that are applicable for a certain category of polymers,

but how well thesemodels are suitable to predict other polymers

is not getting much attention. Here, we demonstrate an appro-

priate feature representation through large dataset training, MD

simulations, and experimental dataset verification, particularly

from a perspective of themodel’s good transferability and gener-

alization. The Morgan fingerprints with their number of occur-

rences are found most suitable in terms of Tg prediction, due

to the encoded information of substructures and polymerization.

Machine learns physical rules for polymer Tg values
One of the challenges in using ML models for property predic-

tions of organic molecules and polymers is correlating these pre-

dictions with meaningful physical quantities.16,83 This is the

major driving force of current research activities in interpretable

artificial intelligence and ML methods.84–86 Although our

DNN_Fingerprint model demonstrates the best predictivity and

transferability, it uses the fingerprinting representation of poly-

mers, leading to the difficulty of pinpointing a specific set of

physical quantities that are important in the prediction of a

polymer’s Tg. On the contrary, the performances of Lasso_De-

scriptor and Lasso_Fingerprint models are not as ideal as

DNN_models, but they are still useful to establish reasonable

correlations between a polymer’s chemical structure and Tg

with R2 > 0.7 (cf. Figure 3). Furthermore, the Lasso method has

an advantage for feature selection and extraction.76,87 By

applying L1-norm regularization on the weights, unimportant

features are shrunk, and only important features are left. The

feature importance is directly indicated by the obtained weight

for each feature.87,88
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Focusing on molecular descriptors, the Lasso_Descriptor

model finds 444 descriptors having non-zero weights. More

than 50% of the total absolute weight is contributed by 61 fea-

tures. These features are considered important in determining

Tg. The top 10 physical descriptors are listed in Table 4 (see

the full list in Table S1 of the supplemental experimental proced-

ures). Descriptors, such as ‘‘frequency of C-N at topological dis-

tance 2,’’ ‘‘number of heavy atoms,’’ ‘‘number of total quaternary

C(sp3),’’ etc., are revealed to be principle features associated

with the Tg of polymers. These structural and chemical parame-

ters are expected to be the essential constituents of polymers in

terms of Tg.

Several topological descriptors, such as F02[C-N] and B03[F-

F], appear in the discovered top features as they encode the

spatial relationship of the polymer backbone, such as themolec-

ular size and free volume. Using topological descriptors alone is

considered to be enough for a Tgprediction model when dealing

with a very limited dataset of 251 polymers.44 However, our Las-

so_Descriptor model, dealing with a larger dataset, indicates the

same level of importance as other factors, such as the functional

group counts. Eleven functional groups (see the full list in Table

S1 of the supplemental experimental procedures), such as

‘‘number of ring secondary C(sp3),’’ ‘‘number of hydroxyl

groups,’’ and ‘‘number of primary amines (aromatic)’’ are identi-

fied key factors affecting the Tg of polymers. They demonstrate

no less significance than topological descriptors, and some crit-

ical functional groups are found to be good indicators to identify

high-Tg or low-Tgpolymers as shown later.

Focusing onMorgan fingerprints, the Lasso_Fingerprint model

examines local substructures in a similar way. Among the 124

most common substructures found in dataset-1, 85 substruc-

tures have non-zero weights, and 18 substructures contribute

more than 50% of the total absolute weight. These 18 substruc-

tures with the highest absolute weight are presented in Figure 4.

These substructures also provide us physical insights into the Tg

of polymers, including the importance of aromatic compounds89

(substructures 16406, 24417, 17135, 17618, 11337, 11881, and

4916) and functional groups containing oxygen and nitrogen

atoms (substructures 16406, 17748, 426, 24417, 770, 11337,

23586, 11881, 4916, 7305, and 24993), which indicates the pos-

itive influence of hydrogen bonds on Tg.
90 Also, some of these



Figure 4. Substructures with the highest ab-

solute weight based on Morgan fingerprint

and Lasso ML model

The central atom of the substructures is highlighted

in blue. Aromatic atoms are highlighted in yellow.

Connectivity of Atoms is highlighted in light gray.
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substructures are highly related to the important physical de-

scriptors shown in Table 4, providing cross-validations between

these two ML models.

Besides the physical insights revealed by the Lasso regression

models, critical functional groups can also be identified for their

contributions to polymer Tg values as a posteriori analysis. Here,

we can examine the polymers with high/low Tg values and their

common characteristics (functional groups), and thereby gain in-

sights into what physical quantities are important for enhancing/

reducing their Tg values. We process all the polymers in dataset-

1 through the Checkmol60 package, and identify the functional

groups only occurring in high-Tg (>200�C) and low-Tg (<50�C)
polymers. These functional groups are listed in Table 5, where

each functional group’s key atom is highlighted in the red circle.

For high-Tg polymers, we find that the functional groups, such as

oxohetarene, lactam, amine, and enamine, play critical roles in

their high-temperature property. In contrast, the functional

groups, such as disulfide, phosphoric acid, and acetal, are

only shown in the low-Tg polymers. These observations are

consistent with the key substructures discovered from the

fingerprint (Figure 4). For example, the substructures with oxy-

gen ‘‘O’’ atom are revealed to be highly correlated to a polymer’s

Tg, and the most exclusive functional groups also involve the ox-

ygen O atom in either high-Tg or low-Tg polymers, highlighting its

important contribution to the Tg. Therefore, it is evident that the

ML models indeed capture the critical features affecting a poly-

mer’s Tg.

These key features not only provide physical insights into un-

derstanding how the molecular structures influence a polymer’s

Tg, but also are design motifs that are important in the inverse

molecular design of high-temperature polymers. For instance,

the generative ML models, such as variational autoencoders

(VAE)91,92 and generative adversarial networks (GAN),93,94

when integrated with reinforcement learning (RL),95,96 can take

into account the importance of these physical and chemical fea-

tures. Such a strategy of combining the predictive MLmodel and

generative ML model has been utilized in the inverse molecular

design of small-drug-like molecules and organic molecules.97,98

Successful examples include the chemical VAE,99 ReLeaSE
(reinforcement learning for structural evo-

lution),100 and ORGANIC (objective-rein-

forced generative adversarial network for

inverse-design chemistry).101 The genera-

tiveMLmodel serves as an agent in gener-

ating molecules, while the predictive

model acts as an external world to monitor

the generation action taken by the agent.

According to the feedback, either a reward

or penalty can be assigned. Through

training, the agent or the generative model

learns to make good sequences of deci-
sions in molecular generation toward a maximum reward. There-

fore, our predictive ML model demonstrates its potential to be

integrated with an inverse molecular design framework for

high-temperature polymers or polymers with tailored Tg values.

High-throughput screening of high-temperature
polymers
Since the DNN_Fingerprint model demonstrates the best trans-

ferability from dataset-1 to dataset-2 and to a new experimental

dataset (32 conjugated polymers), we adopt this ML model for

high-throughput screening to identify promising candidates for

high-temperature polymers. Dataset-1, with 6,923 real poly-

mers, has nearly 2,000 polymers with Tg larger than 200�C, as
shown in Figure 5. These polymers have the great potential to

be used in a harsh environment with high temperatures, but

more candidates are still desired as many of these 2,000 poly-

mers might not be easily synthesized and processed.1 Data-

set-2 and dataset-3, with 5,690 real polymers and one million

hypothetical polymers, respectively, form a promising candidate

pool for the screening of high-Tg polymers. Here, we aim to iden-

tify the polymers with Tg values larger than 200�C, because the

Tg for high-temperature PEEK polymer is about 143�C.102

Almost all predicted Tg values for dataset-2 and dataset-3

remain in the same range of dataset-1 (�118�C to 495�C), as
shown in Figure 5. Excitingly, the population of potential prom-

ising candidates has been significantly increased. For example,

dataset-1 has about 2,000 known polymers with TgR 200�C.
Through our DNN_Fingerprint model, we find an additional

1,000 and 65,000 new candidates in dataset-2 and dataset-3

with Tg R 200�C, respectively. Thus, through this high-

throughput screening, we find 30 times more promising candi-

dates for high-temperature polymers, in comparison with the

2,000 known high-temperature polymers in dataset-1. If we

consider a harsher environment with required TgR 300�C (com-

parable with melting temperature of lead, 328�C), dataset-1, da-
taset-2, and dataset-3 have 309, 249, and 3,567 polymers,

respectively, that can potentially satisfy this requirement.1 Again,

our high-throughput screening method identifies 11 times more

promising candidates from dataset-2 and dataset-3 compared
Patterns 2, 100225, April 9, 2021 9



Table 5. Important functional groups recognized using the Checkmol package

Within low-Tg polymers (<50�C) Within high-Tg polymers (>200�C)

Orthocarboxylic acid derivative Oxohetarene

Disulfide Lactam

Phosphoric acid derivative Tertiary arom_amine

Phosphoric acid ester Secondary aromatic amine

Phosphoric acid amide Secondary mixed amine (aryl alkyl)

Acetal Enamine
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with dataset-1. The ML high-throughput screening for high-tem-

perature polymers overcomes the challenges from theoretical

analysis or MD simulations. Theoretical equations derived using

small groups of polymers have difficulties in handling polymers

of different categories, and are therefore not applicable to all

data points of the vast chemical space. MD simulations,

although capable of computing Tg vaues of various kinds of poly-

mers, are restricted by the computational cost considering the

vast amount of candidates to be screened. However, our high-

throughput screening method processes the one million hypo-

thetical polymers efficiently with proven reliability for Tg

estimation.

We then focus our attention on the top four high-tempera-

ture polymers, with ML-predicted Tg > 400�C. These four poly-

mers are unknown and hypothetical, although they share

similar chemical structures as the other known high-tempera-

ture polymers, e.g., aromatic rings, sulfone groups, oxygen

linkages, and amine groups. Each of these groups is high-

lighted during our analysis of the ML models as being related

to the high-temperature properties of polymers (Figure 4; Ta-

ble 5). Without making any assumptions or premises for the
10 Patterns 2, 100225, April 9, 2021
ML model, it is observed that the structures of the screened

top four high-temperature polymers well follow the general

rule controlling the Tg of polymers. The backbone structure

with rigid benzene rings contributes to the stiffness of the

chain, which is known to play a major role in determining the

Tg of a polymer.50,103,104 Also, there are no long alkyl chains

that lead to lower glass transition.105 Although the similar sul-

fur-containing polyimides, such as poly[(2,8-dimethyl-5,5-di-

oxodibenzothiophene-3,7-diamine)-alt-(biphenyl-3,3’:4,40-tet-
racarboxylic dianhydride)] (polymer ID: P130369 in PoLyInfo),

have been tested with Tg values as high as 490�C,106 the Tg

values of these hypothetical polymers have not yet been re-

ported. We take advantage of MD simulations to build all-

atom molecular models for these hypothetical polymers and

predict their Tg values (more details are given in the supple-

mental experimental procedures). As shown in Figure 5, our

physics-based MD simulations confirm that these hypothetical

polymers indeed have ultra-high Tg values. Furthermore, we

find that the MD-predicted and ML-predicted Tg values are

in relatively good agreement with each other (within the error

of the prediction), indicating that the ML model could be



Figure 5. High-throughput screening of high Tg polymers with the DNN_Fingerprint model

The Tg distribution of the dataset-1, dataset-2, and dataset-3 are plotted in green, yellow, and red, respectively. The polymer samples on the right are following by

their predicated Tg and true Tg values. For the sample in dataset-1 (green box), true Tg is the collected experimental value. For the samples in dataset-2 (yellow

box) and dataset-3 (red box), true Tg is the MD-simulated value. More than 1,000 real polymers and 65,000 hypothetical polymers were discovered with Tg

> 200�C.
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used as a predictive tool for screening of previously unex-

plored chemical spaces for high-temperature polymers.

The key substructures (Figure 4) and functional groups (Table

5) related to the high-Tg polymers are revealed based on data-

set-1. Their important roles are further confirmed on the identi-

fied high-Tg polymers with ML-predicted Tg > 200�C from

dataset-2 and dataset-3. The key substructures of high-Tg poly-

mers in dataset-1 (2,268 polymers), dataset-2 (1,155 polymers),

and dataset-3 (65,283 polymers) are compared in Figure 6A

(more details are given in Table S5 of the supplemental experi-

mental procedures). For example, the substructure "16406" (a

center carbon connected to aromatic compounds and oxygen)

is recognized with percentages of 15.04%, 16.54%, and

27.55% of high-Tgpolymers in dataset-1, dataset-2, and data-

set-3, respectively. This indicates that the contributions of this

substructure to the high-Tgpolymers are similar across these

different datasets. As mentioned above, one of the most impor-

tant contributions comes from substructure "23586"—a single

oxygen side chain, which consists of 53.40%, 53.16%, and

76.05% high-Tg polymers in dataset-1, dataset-2, and dataset-

3, respectively. Overall, most of these 18 key substructures’

contributions in different datasets are quite similar. Their
comparable influences also explain the good transferability of

the ML model based on the Morgan fingerprints. The frequency

of occurrence is also an important aspect because of the prob-

ability of a substructure emerging during the inverse molecular

design of high-Tg polymers. In terms of the functional groups,

the six key functional groups exclusive to high-Tg polymers are

compared in Figure 6B in a similar manner (also see Table S6

for detailed results). Interestingly, the six recognized functional

groups are special ones only found in a few high-Tg polymers.

For instance, the secondary aromatic amine functional group is

identified in about 0.13% of the high-Tg polymers in dataset-1,

while 3.32% of the high-Tg polymers in dataset-3 are found to

have this functional group. Although training dataset-1 shows a

quite negligible 0.13% of this functional group, its importance

is successfully captured by the ML model using Morgan finger-

prints and then demonstrated in dataset-3. In addition, we

generally observe that polymers containing amine groups, oxy-

gen along the backbone, and/or nitrogen rings, demonstrate

high-temperature properties.1 In short, our ML models for the

chemistry-Tg relation of polymers seems to pinpoint meaningful

physical-chemistry insights that can be used to enhance high-

temperature performance and may be further utilized in the
Patterns 2, 100225, April 9, 2021 11
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Figure 6. Comparison of key substructures

and functional groups in high-Tg(>200
�C)

polymers

(A) Comparison of the 18 substructures recognized

in Figure 4.

(B) Comparison of the six high-Tg-related functional

groups recognized in Table 5.
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inverse molecular design of high-Tg polymers that have not been

experimentally studied.

Concluding remarks
Quantitatively predicting a polymer’s Tg from its chemical struc-

ture is a significant challenge in material science and engineer-

ing, chemistry, and polymer science fields. Here, we use an

ML-based approach to correlate a polymer’s chemical structure

with its Tg, taking advantage of a large and diverse dataset

collected from PoLyInfo. The transferability and generalization

ability of ML models are particularly focused and demonstrated

by utilizing a large dataset of different categories of polymers.

We consider three different feature representations of polymer’s

repeating unit, such as molecular descriptors, Morgan finger-

prints, and images, and three different ML models, e.g., Lasso,

DNN, and CNN. All of these ML models demonstrate compara-

ble performances in training and testing on the experimentally

available dataset-1. However, only the DNN_Fingerprint model

exhibits the best transferability to dataset-2 with distinct

substructures from dataset-1. We find that this excellent trans-

ferability is attributed to the dynamic representation of Morgan

fingerprints, as they can evolve to include new substructures

encountered. Furthermore, our Morgan fingerprints take into ac-

count the chemical connectivity between neighboring repeating

units and the frequency of occurrence of different substructures,

which play important roles in determining a polymer’s Tg.

Although Morgan fingerprints ignore all high-order polymer
12 Patterns 2, 100225, April 9, 2021
descriptors, e.g., stereoregularity, polarity,

and chain length, the DNN_Fingerprint

model gives satisfactory predictions on

the Tg values of unknown polymers from

dataset-2 and dataset-3. As we have dis-

cussed, choosing the appropriate feature

representation for polymeric materials re-

mains an open question in the ML field,

which is also highly dependent on the spe-

cific application.16,17,48,83

Our ML approaches are designed with

the specific goal to quickly predict a poly-

mer’s Tg from an extremely large set of

known (dataset-2) and hypothetical (data-

set-3) polymers. Such a high-throughput

screening allows us to perform posterior

correlations between high-Tg polymers

with common functional groups and

chemical substructures. These observa-

tions allow us to quantify physical quanti-

ties that are important in determining a

polymer’s Tg. For instance, our Lasso

regression models reveal principal
Tg-related features, including 61 molecular descriptors and 18

chemical substructures. Also, the functional groups exclusive

to high-Tg (>200
�C) or low-Tg (<50

�C) polymers are further iden-

tified, which can cross-validate our Lasso regression models. It

allows us to determine which chemical elements and molecular

structures are worth experimental studies in molecular engi-

neering and design of high-temperature polymers, leading to

a molecular understanding of a polymer’s Tg. With the

DNN_Fingerprint model for high-throughput screening of nearly

one million hypothetical polymers, we find more than 65,000

promising candidates with Tg > 200�C, which is 30 times

more than existing known high-temperature polymers (�2,000

from dataset-1). The discovery of this large number of prom-

ising candidates will be of significant interest in the develop-

ment and design of high-temperature polymers. The same

task is very difficult to accomplish by screening with either theo-

retical equations or MD simulation due to their limitations in

dealing with such large and diverse datasets. In summary, our

study demonstrates that ML is a powerful method for the pre-

diction and rapid screening of high-temperature polymers,

particularly with growing large sets of experimental and compu-

tational data for polymeric materials. The key molecular de-

scriptors and chemical substructures informed by ML models,

combined with identified chemical functional groups, are impor-

tant design motifs for the molecular engineering of high-temper-

ature or high-performance polymers in an inverse materials

design task.
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Resource availability
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Data and code availability

Data and code are available at https://github.com/figotj/Polymer_Tg_.
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