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Abstract

Fungi are abundant in the environment, causing our lungs to be constantly exposed to a

diverse range of species. While the majority of these are cleared effectively in healthy indi-

viduals, constant exposure to spores (especially Aspergillus spp.) can lead to the develop-

ment of allergic inflammation that underpins and worsen diseases such as asthma. Despite

this, the precise mechanisms that underpin the development of fungal allergic disease are

poorly understood. Innate immune cells, such as macrophages (MΦs) and dendritic cells

(DCs), have been shown to be critical for mediating allergic inflammation to a range of differ-

ent allergens. This review will focus on the crucial role of MΦ and DCs in mediating antifun-

gal immunity, evaluating how these immune cells mediate allergic inflammation within the

context of the lung environment. Ultimately, we aim to highlight important future research

questions that will lead to novel therapeutic strategies for fungal allergic diseases.

Introduction

Fungi are abundant in our environment, which leads to a large amount of fungal material

being breathed into lungs on a daily basis [1]. Many individuals clear these fungi with no

apparent sign of disease, but can trigger the development of allergic inflammatory diseases [2–

4] such as severe fungal sensitised asthma [5–7] estimated to impact 10 million people world-

wide [8]. Despite this, the underlying mechanism(s) that cause fungi to mediate these chronic

diseases are poorly understood.

A variety of cell types in the lung have been shown to trigger responses to environmental

allergens that causes allergic inflammation. In particular, myeloid innate immune cells such as

macrophages (MF) and dendritic cells (DCs) have been shown to be essential [9–11]. How-

ever, these cells are also crucial for the clearance of fungal spores, to prevent tissue penetration

leading to invasive disease [12]. The underlying events that cause MF and DCs to switch from

orchestrating spore clearance (maintaining a “healthy environment”), to mediating diseases

such as severe asthma are poorly defined.

Several excellent reviews have previously highlighted the clinical burden of fungal asthma

and the general immune mechanism(s) that underpin the development of allergic inflamma-

tion to fungi [12–15]. Therefore, the aim of this review is to assess our current understanding
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of the unique role MFs and DCs play in directing and maintaining fungal allergic inflamma-

tion. We will reflect how this improves our appreciation of fungal allergic inflammation and

highlight the challenges that remain.

The global health impact of fungal driven asthma

There are approximately 300 million people with asthma worldwide, and this is expected to

rise to 400 million by 2025, placing a huge burden on global health [16,17]. Fungi such as

Aspergillus spp. can trigger a spectrum of allergic airway inflammatory diseases, ranging from

asthma, allergic fungal rhinosinusitis (AFRS), allergic bronchopulmonary aspergillosis

(ABPA), and severe asthma with fungal sensitisation (SAFS) (Table 1) [3,18]. It is estimated

that up to 10 million people globally suffer from severe asthma, as a direct result of hypersensi-

tivity towards Aspergillus fumigatus (Af) [8]. Typically 1000s of spores are inhaled daily [19–

21], and if spore clearance fails (typically in immunocompromised situations), fungi can grow

and invade the lung tissue, causing invasive Aspergillosis [22,23]. Therefore, a delicate balance

of appropriate responses to clear fungal spores, while avoiding hypersensitivity, is required to

maintain a healthy lung barrier.

The fungal spores themselves are a crucial aspect in initiating host defence mechanisms.

Ungerminated fungal spores are coated with a hydrophobic outer layer of rodlet proteins and

melanin upon germination, disruption of this layer reveals numerous fungal motifs on the fun-

gal cell wall (e.g., β-glucan and chitin) that can activate immune responses [24]. If they are not

cleared from the airway, spores develop into hyphae secreting numerous components (e.g.,

glycans, proteases, metabolites, etc.) that aid fungal tissue invasion and can also stimulate

immune responses [12]. Mouse models of repeat fungal exposure have shown that spore ger-

mination is a crucial factor in the development of allergic inflammatory responses [25,26],

demonstrating that fungal motifs are crucial in actively mediating allergic inflammatory

Table 1. List of abbreviations and acronyms.

Abbreviation Name

ABPA Allergic bronchopulmonary aspergillosis

Af Aspergillus fumigatus
AFRS Allergic fungal rhinosinusitis

Alp 1 Alkaline protease 1

AlvMF Alveolar macrophage

Aspf13 Aspergillus protease allergen

BATF(number) Basic leucine zipper ATF-like transcription factor

Ca2+ Calcium ion

CCR(number) C-C motif chemokine receptor

CD(number) Cluster of differentiation (number)

cDC Conventional dendritic cells

CLC Charcot–Leyden crystals

CLEC (number) C-type lectin domain containing (number)

CLR C-type lectin receptors

CXCL(number) Chemokine (C-X-C motif) ligand

DAMP Damage-associated molecular pattern

DC Dendritic cell

DNGR (number) CLEC9A

FAO Fatty acid oxidation

(Continued)
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Table 1. (Continued)

Abbreviation Name

FCP Fibrinogen cleavage products

FcεR(number) Fc epsilon receptor (number)

FleA A. fumigatus lectin

HDM House dust mite

IFN-(type) Interferon (type)

IFNAR Interferon-α/β receptor

IgE Immunoglobin E

IL-(number) Interleukin-(number)

ILCs Innate lymphoid cells

infDC Inflammatory dendritic cell

IntMF Interstitial macrophage

IRF(number) Interferon regulatory factor (number)

KLF(number) Kruppel-like factor

LN Lymph node

LPS Lipopolysaccharide

M. tuberculosis Mycobacterium tuberculosis
MAC Macrophage integrin

Mbd(number) Methyl-CpG binding domain protein (number)

MelLEC Clec1a

Mgl2/CD301b Macrophage galactose N-acetyl-galactosamine specific lectin 2/Cluster of differentiation 301b

moDC Monocyte-derived dendritic cell

Muc(number) Mucin (number), oligomeric mucus/gel-forming

MF Macrophage

NFAT Nuclear factor of activated T cells

NK-kB Nuclear factor kappa-light-chain-enhancer of activated B cells

NLR Nod-like receptor

Nlrx(number) NLR family member X (number)

NOD(number) Nucleotide-binding oligomerisation domain-containing protein (number)

Nos(number) Nitric oxide synthase (number)

Nrf(number Nuclear factor-erythroid factor (number)

OVA Ovalbumin

OX40L Tumour necrosis factor receptor superfamily, member 4/OX40 ligand

pDC Plasmacytoid dendritic cells

PDL(number) Programmed death ligand (number)

ROS Reactive oxygen species

SAFS Severe asthma with fungal sensitisation

scRNA-seq Single-cell RNA sequencing

SP-(letter) Surfactant protein (letter)

STAT (number) Signal transducer and activator of transcription (number)

TAM Tyro, Axl, MertK receptors

Tfh T follicular helper cells

TGFβ Transforming growth factor beta

TLR Toll-like receptor

TNF Tumour necrosis factor

TNFR (number) Tumour necrosis factor receptor (number)

Treg Regulatory T cell

TSLP Thymic stromal lymphopoietin

Zeb (number) Zinc finger e-box binding homeobox (number)

https://doi.org/10.1371/journal.ppat.1010608.t001
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responses. Despite this, the role of fungi are less studied in comparison to other allergens such

as house dust mite (HDM) [27]. Indeed, murine models of allergic inflammation commonly

utilise repeat doses of HDM or use of model antigens in the presence and absence of adjuvants

(e.g., OVA and Alum [28]) rather than fungi. Interestingly, fungal components are an under-

appreciated factor within HDM preparations and can further exacerbate allergic inflammation

[29].

Upon sensitisation to allergens, the immune response and resultant cytokine environment

mediates many of the features of chronic asthmatic disease [4]. Elevation of type 2 cytokines in

the lung (e.g., IL-4, IL-5, and IL-13) is a feature of many asthmatic patients, which orchestrate

increases of granulocytes in the airway (e.g., eosinophils and mast cells), activate B cell class

switching to IgE and directly activate mucus overproduction, airway hyperresponsiveness and

tissue remodelling/fibrosis [28]. However, some asthmatic patients have a lower type 2

response and instead have abundant levels of type 17 cytokines (IL-17 and IL-22) that mediate

pathology [30]. Various cell types have been identified as being sources of these cytokines dur-

ing asthma, including several innate cell populations, e.g., innate lymphoid cells (ILCs), granu-

locytes, and γδ T cells in addition to adaptive immune cells including CD4+ and CD8+ T cells

[31]. The precise relationship between these responses and the role that MF and DCs have in

mediating these processes upon fungal exposure are poorly understood, limiting our ability to

improve therapeutic strategies.

Lung macrophages: Promotors or inhibitors of fungal allergic

inflammation?

MF are widespread throughout the body and are essential for uptake/clearance of foreign

pathogens while maintaining tissue homeostasis and development, through clearance of dead

cells and debris/particles [32–34]. Upon activation, MFs are capable of orchestrating down-

stream effector responses by secreting a wide array of inflammatory mediators (e.g., cytokines

and chemokines) and even acting as antigen presenting cells [35]. However, the types of MF

and their capabilities to elicit inflammatory responses varies depending on their tissue loca-

tion. In the lung, there are 2 major populations; alveolar MFs (AlvMF) located in the airway

(particularly the alveolar sacs) and interstitial MFs (IntMF), which reside within the tissue

(Fig 1). These distinctions translate to differences of origin between these MF populations

[36,37]. AlvMF are established by a distinct foetal monocyte population that colonise the

lungs rapidly at birth, in steady state conditions these cells self-maintain and comprise the

dominant macrophage population in the lung [38]. Conversely, several different populations

within the Int MF have been identified, the origins of which are still debated, but have been

reported to reside in different parts of the lung, e.g., close to lymphatic versus vascular vessels

[39,40]. This section will discuss the role of these different macrophage populations in the con-

text of fungal allergic inflammation.

One of the major roles of AlvMF populations is maintaining a “healthy” lung environment

by removing foreign microbes, particles, and host secreted factors, e.g., MFs catabolise surfac-

tant secreted by epithelial cells, thus avoiding pulmonary alveolar proteinosis [41,42]. There-

fore, AlvMF have been proposed to be the dominant cell type that acquires and clears Af
spores inhaled into the airway [43,44]. There are several reported mechanisms that have been

shown to be crucial for this process. Firstly, the spores are able to interact with secretory factors

present in the airway which boost MF uptake. Melanin on the spore surface interacts with sur-

factant (particularly surfactant protein D), which boosts macrophage uptake of spores [45].

Furthermore, AlvMF express C-type Lectin receptors (CLRs) (e.g., Dectin-1 and 2), which rec-

ognise fungal motifs (e.g., β-glucan) revealed on germinating spores, triggering phagocytosis

PLOS PATHOGENS

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1010608 July 14, 2022 4 / 22

https://doi.org/10.1371/journal.ppat.1010608


of spores and antifungal immune-based killing [46–48] through phagolysosome acidification

and production of reactive oxygen species (ROS) [43,49].

While in health AlvMF clear spores without eliciting significant inflammatory responses,

they can also mediate significant downstream antifungal pro-inflammatory responses, by

secreting large amounts of cytokines/chemokines (e.g., IL-1α, IL-1β, IL-6, and TNFα) upon

activation of CLR (e.g., Dectin-1), Toll-like receptor (TLR) (e.g., TLR4), and inflammasome

signalling pathways [50–53]. The precise factors that govern whether AlvMFs balance spore

clearance, with minimal inflammation or significant inflammatory responses when required

remains unclear. Recent evidence has shed some light by showing that Af spores can elicit dif-

ferential AlvMF responses, measured through secretion of CXCL2 (a neutrophil

Fig 1. The influence of the lung environment and fungal spores on MF responses during allergic inflammation. In a “healthy lung environment” (left), (1)

the majority of inhaled fungal spores are rapidly removed from the airways by AlvMF [43]. (2) Some AlvMFmay not acquire spores and generate an anti-

inflammatory environment [54]. (3) Spore uptake and killing, facilitated by the aid of components of the lung environment including epithelial cell secreted

surfactants (SP-A, SP-D) and mucus (particularly the mucin glycoproteins, e.g., Muc5b) [45,159]. (4) Other features of the airway include a low nutrient airway

environment (maintained by airway epithelial active transporters [170]) that maintain an immunoregulatory MF environment [144]. Upon allergic

inflammation (right), (5) repeat spore exposure causes apoptosis or necrosis of resident AlvMF [183]. These are replaced by inflammatory IntMFs [26] or

recruited monocytes [37,76]. Both express altered inflammatory transcriptional and epigenetic profiles, leading to differential inflammatory responses upon

subsequent spore exposure [71,73]. (6) Epithelial cell sensing of fungal material and/or damage to epithelial cell barrier (via fungal proteases), triggers the

release of “alarmins” (e.g., TSLP, IL-33, IL-6, IL-22, and CCL2) [173–175]. (7) These epithelial signals can recruit and activate other immune cells such as mast

cells, basophils and ILC2s inducing a type 2 cytokine environment directly impacting MF responses (potentially reducing spore killing) [135–138]. (8)

Persistence of spores, disrupted epithelial barrier, immune cell infiltration (including CD4+ T cells) leads to a type 2 and 17 cytokine environment, alteration of

airway nutrient concentrations and hyper secretion of mucus (including Muc5ac) and surfactants [151,158]. These further promote pro-inflammatory MF

antifungal responses, possibly sustaining allergic inflammation. Figures were created with BioRender.com. AlvMF, alveolar macrophage; CCL, chemokine

ligand; DAMP, damage-associated molecular pattern; IL, interleukin; IntMF, interstitial macrophage; ILC, innate lymphoid cell; MF, macrophage; SP,

surfactant protein; TSLP, thymic stromal lymphopoietin.

https://doi.org/10.1371/journal.ppat.1010608.g001
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chemoattractant). This heterogeneity has functional relevance as CXCL2+ AlvMFs were the

dominant population that acquired spores and exhibited higher levels of metabolic activity,

compared to CXCL2− counterparts which displayed a more anti-inflammatory profile (charac-

terised by expression of IL-10 and complement C1q component) [54]. The authors also

observed plasticity between these AlvMF subsets, as instillation of bacterial ligands pushed all

AlvMF towards a CXCL2+ phenotype. This heterogeneity of AlvMF responses to fungi, and

the impact on allergic inflammation upon frequent exposure to Af spores, is an important

question for future studies.

In their steady-state role, AlvMFs can also induce regulatory T cells (Treg) generating a

regulatory cytokine milieu (e.g., IL-10 and TGFβ) in the lung [55–59] (Fig 1). This has been

attributed as preventing, rather than promoting, the development of allergic inflammatory dis-

ease [60,61]. For example, in murine asthma models, depletion of AlvMF (via clodronate lipo-

somes) exacerbated inflammation, while adoptive transfer of AlvMF from naive mice reduced

airway hyperresponsiveness [62]. In contrast, others suggest a role for AlvMFs in contributing

to the development of allergic inflammation via pathogenic IL-17 signalling, as well as hyperse-

cretion of pro-inflammatory cytokines (TNF, IL-6, IFN-β, and CXCL2) [56,63]. These conflict-

ing results could reflect functional heterogeneity of lung AlvMFs, and divergent outcomes are

dependent on the context and timing of allergen exposure. Surprisingly, given its importance

in anti-spore responses, it is unclear whether AlvMF CLR-signalling is important in triggering

allergic inflammation. Studies have suggested that Dectin1−/− mice have disrupted allergic

inflammation in response to Af spores, although the relative role of MFs was not assessed [64].

In contrast, TLR signalling on lung MFs has been proposed to instigate allergic inflammatory

responses against spores. Fungal protease cleavage of host fibrinogen (generating fibrinogen

cleavage products, FCPs) activate MF via TLR4 and the macrophage integrin (Mac-1), boost-

ing macrophage fungistatic responses and triggering allergic inflammation [65,66]. These

FCPs can also activate other cell types such as epithelial cells, mast cells, and DCs [67,68].

While it is clear that AlvMFs are crucial for spore clearance, much remains unknown about

how this role changes, and the relative contribution of AlvMF in development of allergic

inflammation against fungi.

The role of IntMF, in mediating allergic inflammatory responses to inhaled fungi, is largely

unexplored. In the context of bacterial lung infection and lung fibrosis, IntMF have been sug-

gested to exhibit both pro- and anti-inflammatory capabilities [69]. A recent study utilised sin-

gle-cell RNA sequencing (scRNA-seq) on lung MFs from mice infected with transgenic M.

tuberculosis to identify the fitness of the bacterial cells inside the MF population. This revealed

3 IntMF populations induce different bacterial responses; a monocyte origin MF subset (iden-

tified via Nos2) induced bacterial stress responses, and anti-inflammatory MF (expressing

Nrf2) subset caused bacterial sensing of environmental stress and a Zeb2-expressing MF sub-

set appear to be involved in resolving inflammation [70]. Whether these IntMF populations

are present and mediating similar responses in the lung following fungal exposure is an impor-

tant point to address with future studies. When considering MF responses in the lung, it is

important to reflect that upon inflammation, the AlvMF and IntMF tissue niches can be

repopulated with MF of monocyte origin with markedly altered functional capabilities [26]

(Fig 1). In the context of bacterial infection or viral infection during asthma, the replacement

of AlvMFs with monocyte-derived AlvMFs resulted in markedly altered function, with

impaired phagocytosis and responsiveness reducing allergic inflammation [71,72]. Conversely,

murine asthma models have demonstrated monocyte-derived AlvMFs display a higher

inflammatory potential, driving development of allergic inflammation [60,73]. This suggests

monocyte replacement of AlvMFs could be heavily influenced by the inflammatory environ-

ment of the lung. For example, LPS has been found to expand IL-10 secretion of IntMFs
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reducing DC-mediated induction of allergic responses [74]. In the context of invasive aspergil-

losis, recruitment of CCR2+ monocytes have been shown to be crucial for orchestrating clear-

ance of fungal spores [75,76]. The relative role of monocytes in replacing MF populations and

the potential impact this has in the context of fungal allergic inflammation remains unclear.

The role of dendritic cells in mediating, sustaining, and dampening fungal

allergic inflammation

DCs, which bridge innate and adaptive immune responses, are essential in eliciting, sustaining,

and dampening lung allergic inflammation [10,77]. In the lung, DCs acquire potential aller-

gens and migrate to the draining lymph nodes (LNs) activating antigen specific T cell

responses [78,79]. However, DCs can also be “tolerogenic” and halt the progression of allergic

inflammation, predominately via promoting Tregs [80]. In the context of anti-fungal allergic

inflammation, earlier literature suggested that differential uptake of Af conidia versus hyphae

mediates DCs to elicit type 1 (IFNγ mediated) anti-fungal immunity or type 2 associated aller-

gic inflammation, respectively [81]. Also it has been suggested that fungal exposure can cause

DCs to dampen allergic inflammation by driving tolerogenic responses [82]. Yet, the precise

mechanisms that DCs employ to initiate and/or dampen chronic fungal allergic inflammation

are poorly understood. This is partially due to the fact that the DC population is heteroge-

neous, consisting of multiple separate subsets and each with differing functional capabilities. It

has proved technically challenging to definitively identify these subsets, making manipulation

of these different populations difficult. This section will explore the role that different DC sub-

sets have in mediating antifungal immunity and chronic allergic inflammation.

Broadly, DCs are grouped into 2 major DC subsets, conventional DCs (cDCs) and plasma-

cytoid DCs (pDCs) [83]. Based on differences in development, marker expression and func-

tional capabilities, cDCs can be further classified as cDC1s (dependent on BATF3 and IRF8)

or cDC2s (dependent on IRF4 and KLF4) [84,85]. Lung resident cDC1s are potent at mediat-

ing CD8+ T cell activation via cross presentation [86] and type 1 CD4+ T cell responses against

viral and bacterial pathogens [87,88]. In comparison, cDC2s have been proposed to directly

mediate type 2 and type 17 CD4+ T cell responses to a range of pathogens (including helminth

parasites, fungi, and bacteria) [89,90]. Understanding the role of these subsets in inflammatory

environments has proven challenging. For example during allergic inflammation, cDC2s can

adopt an “inflammatory-like profile” (infDC2) and contribute to antiviral type 1 responses

[91]. Others have proposed a presence of an “inflammatory” DC3 subset, which do not appear

to express traditional markers of cDC1 and cDC2 cells but potentially can induce different

types of T cell responses [92]. In addition to cDC subsets, recruited monocytes have been

reported to develop into monocyte-derived DCs (moDCs) with capabilities of mediating

inflammatory responses [93] (Fig 2). The complexity of accurately defining these subsets has

made it difficult to understand the relative roles of these varying subsets in allergic

inflammation.

Context-dependent role of pDCs in allergic inflammation. While pDCs are crucial for

anti-viral immunity, they have also been proposed to have a protective role during invasive

fungal disease [94]. CLR expression on human pDCs (e.g., Dectin-2) enables them to recognise

Af and suppress hyphal growth through secretion of protective pro-inflammatory cytokines

(IL-12, TNF-α, and IFN-α [95,96]) and release of extracellular traps [97]. This is underlined

with a recent study that showed in response to Af spores, recruitment of pDCs via CXCL9 and

CXCL10 enhances neutrophil spore killing [94].

On the observations in HDM- and OVA-induced asthma models, pDCs have been reported

to dampen allergic inflammation (utilising depletion and cell transfer strategies) [98–100]. In
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the context of fungi, transfer of pDCs from Af sensitised mice successfully suppressed allergic

inflammation via IL-10 secretion in recipient mice [101]. Furthermore, pDCs can mediate

Treg generation leading to dampening of airway hyperreactivity [102]. In contrast, other stud-

ies have observed that pDC may exacerbate allergic inflammation [103]. For example, comple-

ment C3a component reduces pDC expression of PDL1 and PDL2 leading to the promotion of

fungal allergic inflammation [104]. These discrepancies may suggest that the timing of pDC

recruitment and activation, as well as subsequent signals from the lung environment upon

their arrival govern their ability to direct fungal allergic disease.

Are cDC1s important in fungal allergic inflammation?. The cDC1 subset is crucial for

initiating type 1 protective immune responses (e.g., targeting pathogens and cancer) and tissue

homeostasis, via uptake and clearance of apoptotic cell antigens (e.g., via the CLR and

DNGR1) [105,106]. In the context of allergic inflammation, the majority of studies suggest

that cDC1s appear to dampen, rather than initiate, these responses [10,92] (Fig 2). This is

Fig 2. Understanding how DC induction of fungal allergic inflammation is shaped by the lung environment. In health (left), DCs predominantly reside in

the tissue but can project dendrites into the airway to sample antigen. (1) As AlvMFs predominantly clear inhaled spores [43], exposure of DCs to fungal

antigen is minimal reducing potential for inflammatory responses. (2) DC subsets, especially cDC1s, assume housekeeping duties (e.g., clearance of apoptotic

cells) maintaining a tolerogenic phenotype. (3) Upon migration to draining LN lung DCs, in concert with other subsets such as pDCs, induce T-reg generation

further maintaining an immuno-regulatory lung environment. (4) Fungal allergic inflammation is initiated upon cDC2 acquisition of Af spores and migration

to the draining LN where they can prime adaptive CD4+ T cell responses (right). (5) While the precise mechanisms by which cDC2 mediate these responses to

spores is unclear, the lung environment is known to directly influence this process. Fungal secretory products (including proteases) in the airway lumen can

not only activate DCs directly, but also damage the epithelial barrier. This allows spores to move beyond the epithelial barrier and potentially activate cDC2s in

the deeper underlying tissue. Furthermore, epithelial cell responses to fungi and/or barrier damage triggers the release of alarmins, chemokines, cytokines, and

DAMPs (e.g., CCL2, IL-6, IL-33, and TSLP173, [174,175]), which can further activate DCs to promote allergic response. In addition, ILCs and mast cells (which

can be activated by epithelial signals) further promote type 2 and type 17 cytokine which further conditions DCs to exacerbate allergic inflammation

[68,145,180,184]. Other lung environmental factors such as altered nutrient availability and increased surfactant/ mucus concentrations [45,158] can further

shape DC responses. (6) These features can lead to the formation of several inflammatory DC states (infDC1, infDC2, and infDC3) and possibly DCs

differentiated from monocytes (moDCs) which further amplify and sustain fungal allergic inflammatory disease. Figures were created with BioRender.com.

AlvMF, alveolar macrophage; CCL, chemokine ligand; DC, dendritic cell; IL, interleukin; moDC, monocyte-derived dendritic cell TSLP, thymic stromal

lymphopoietin.

https://doi.org/10.1371/journal.ppat.1010608.g002
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based on the fact that cDC1 deficient mice (e.g., CD103−/− and Batf3−/−) mount greater allergic

inflammation in both OVA and HDM based models [107,108]. This restraining allergic airway

inflammation is mediated via cDC1 secretion of IL12 limiting type 2 inflammation [107].

In the context of fungal infection, there is limited research into the potential role of cDC1s

in shaping allergic inflammation. Upon invasive fungal disease, cDC1s secrete IL-2 upon rec-

ognition of germinated fungi via the Ca2+ calcineurin-NFAT pathway which is crucial for pro-

tective (not pathogenic) type 17 responses [109]. A recent study has highlighted that cDC1s

expression of Nlrx1 (NOD9, a negative regulator of downstream NK-kB–mediated responses)

limits ability to induce type 2 inflammation during invasive fungal disease [110]. In the context

of other fungi, cDC1s can be dispensable (e.g., against Candida albicans in the intestine) [111]

or essential (e.g., mediating type 1 protective responses to the dimorphic fungus Histoplasma)

[112]. Therefore, these studies suggest that cDC1 have the potential to play some role in shap-

ing type 1, 2, and 17 anti-Af responses (Fig 2). However, more investigations are needed to

define the specific role of pulmonary cDC1s in a setting of chronic exposure to fungal spores

and the ensuing allergic inflammation.

The role of cDC2 subsets in fungal allergic inflammation. Numerous studies have

highlighted that cDC2s are crucial in mediating allergic inflammation [85,89]. Indeed, they are

the major DC subset to acquire allergens from the airway (following HDM or OVA adminis-

tration) and subsequently migrate to draining LNs [88,89]. Upon arrival, cDC2 can mediate

type 2 [85,89], type 17 [113,114], and follicular (Tfh) CD4+ T cells [115] responses to allergens

(e.g., HDM). This was established via transfers of cDC2s and use of cDC2 deficient mice (Irf4fl/

flCd11ccre mice [85,116]) (Fig 2). In addition to the resident cDC2s during sensitisation,

repeated allergen exposure can also mediate significant expansion and/or recruitment of lung

cDC2s [117]. In the context of fungi elicited allergy, similar to MFs, DCs (likely cDC2s,

although not determined in study) have been shown to respond to FCPs and type 2 cytokine

(IL-13) via up-regulation of PDL2, boosting their ability to mediate type 2 inflammation [68]).

Interestingly, cDC2 were found to be crucial in mediating protective type 2 responses against

Cryptococcus infection [118], while cDC2s have also been identified in eliciting protective type

17 responses in response to invasive Af infection [90]. Whether the same cDC2 population is

important in driving over exuberant type 17 inflammation, in addition to type 2 responses, to

fungi during allergic inflammation has not been fully explored.

Despite a demonstrated role for cDC2s in mediating allergic inflammation, the mechanism

(s) that they utilise to orchestrate downstream inflammation is unclear. A range of cell surface

molecules (e.g., CD40, CD86, Dectin-2, IFNAR, Mgl2, OX40L, PDL1, and PDL2), intracellular

mediators (e.g., Mbd2 and Stat5) and secreted cytokines and chemokines (e.g., IL-10, IL-33,

CCL17, and CCL22) have been suggested [10,68,113,119,120]. In particular, a recent study

proposed that cDC2s expression of IFNAR1 and TNFR2 enables them to generate Tregs in

steady state conditions and type 2 responses upon HDM challenge [121]. Further work sug-

gested that IFNβ signalling can render cDC2s tolerogenic, ameliorating HDM allergic inflam-

mation [122]. This suggests that, similar to the other DC subsets, the timing of stimuli may

influence the mechanisms that cDC2 employ to mediate allergic inflammation.

In addition to cDC2s, moDCs (defined as CD64+FcεR1+) have been proposed to be impor-

tant to induce pulmonary allergic inflammation. This was shown as moDCs were able to initi-

ate allergic inflammation in the absence of lung cDC subsets [89]. Additionally, transfer of

moDCs induced type 2 allergic inflammation [123], indicating moDCs are important to

induce pulmonary allergic inflammation Others have proposed that moDCs are the main

mediators of the “effector” stage of the allergic response by producing the chemokine milieu

responsible for recruiting eosinophils, effector T cells and mononuclear cells (via secretion of

CCL2, CCL4, CCL9, and CCL24) to the lungs [89]. In response to invasive disease, moDCs
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have been reported to mediate fungal killing as well as secreting TNF and IL12p70 stimulating

neutrophil-mediated fungal clearance [75]. Also, moDC secretion of CXCL9/10 appears

important to the recruitment of pDCs, with this crosstalk crucial in mediating immunity to

invasive aspergillus infection [124]. Importantly, moDC secretion of TNFα has been proposed

to mediate type 17 inflammation following chronic Af exposure [125]. This suggests that

moDCs may play a crucial role either directly, or in collaboration with other DC subsets, to

mediate fungal allergic inflammation (Fig 2). However, when considering the potential role of

moDCs, it is important to reflect on recent studies that have identified previously unrecog-

nised subsets like infDC2s and DC3s [126,127]. Indeed, formation of these subsets are likely

dependent on the inflammatory context [91,128,129]. Definitively, separating these popula-

tions from cDC2 and moDC subsets is challenging. Indeed, scRNA-seq studies suggest that

previous strategies to identify moDCs actually contain infDC2s that also express higher levels

of CCR2 [91,130] and its these and not “moDCs” that mediate allergic inflammation91. There-

fore, the relative role for infDC2s, DC3s and moDCs, and the mechanism(s) they employ in

mediating fungal allergic inflammation is an important question for future studies to tackle.

How the lung environment governs myeloid cells in mediating fungal

allergic disease

It has become clear that tissue microenvironments are critical in shaping the development and

functional capacity of MFs and DCs. Indeed, the role of the lung environment on shaping MF

function has been well explored [34,37,131,132], and recent work is now underlining the

importance of the environmental influence on shaping DC responses [36,133]. Moreover,

many aspects of the lung environment change during chronic lung inflammation, and it is

important to consider the differing impacts these may have on governing how MFs and DCs

mediate antifungal allergic disease.

Alteration of secretory mediators in the lung environment. One of the major changes

in the lung environment upon the onset of allergic inflammation is the increase in type 2 cyto-

kines. These can trigger “alternative” M(IL-4) activation of MF, associated with enhancing

fibrosis through aberrant wound repair responses [134]. These MF display elevated expression

of arginase-1 (diverting L-arginine metabolism away from nitric oxide production) and chiti-

nase-like proteins [135–138]. In addition to type 2 cytokine, others have suggested that surfac-

tant protein A, uptake of apoptotic cells via TAM receptors, and chitin (a crucial constituent of

the fungal cell wall) can mediate M(IL-4) activity [139–141] (Fig 1). The functional impact of

these M(IL-4) MF on fungal allergic inflammation is unclear, but it has been proposed to

boost MF ability to clear Af spores while others have suggested these exacerbate responses

[142,143]. Furthermore, AlvMF in the lung airway are less able to respond to type 2 cytokine

compared to IntMF, which reside in the tissue [144]. The impact of these environmental cyto-

kine and fungal signals on MF subset function during allergic inflammation is unknown.

Type 2 cytokine signals are also known to be crucial in shaping DC maturation and func-

tional capabilities (Fig 2), e.g., IL-13 and IL-33 released by ILC2s has been proposed to

enhance cDC2 generation of type 2 responses in the lung and skin [145,146]. A recent study

has further highlighted this by demonstrating that IL-13 in the skin environment shapes

cDC2s to mediate type 2 responses, and if absent DCs, elicit a type 17 response instead [147].

The impact that differing lung cytokine environments, induced during allergic inflammation,

have on governing DC subset development and capacity to respond in the context of antifun-

gal inflammation is an important question for further research.

Another critical change to the lung environment during allergic inflammation is increased

secretion of mucus and surfactant into the airway [148–154]. Indeed, mucus plugging is
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prominent in cases of severe asthma [155,156]. A major constituent of mucus are polymeric

mucin glycoproteins (e.g., Muc5b and Muc5ac) that can directly interact with immune cells as

evident by the fact that Muc5b-deficient mice are susceptible to bacterial infection due to

impaired MF responses [157]. Furthermore, Muc5ac has been proposed to be important for

mediating allergic airway hyperreactivity against Af extract [158]. Strikingly, FleA protein

expression on Af spore surface readily binds with mucin glycoproteins enhancing MF spore

uptake [159], while surfactant protein D, (elevated in allergic diseases) boosts fungal spore

uptake by MFs [45] (Fig 1). Recent work demonstrates that intestinal mucin proteins (Muc2)

shape DC activation and cDC2 development [160,161] (Fig 2). Additionally, seminal work has

shown that spontaneous protein crystallisation (Charcot–Leyden crystals, CLCs), which can

form in the airways of asthma patients, have the potential to drive cDC2s to mediate allergic

inflammatory responses [162]. The relative role of mucus and surfactant in shaping MF and

DC allergic inflammation in response to fungi remains poorly understood.

Metabolic activity within the lung environment. The metabolic state of MF and DC

populations greatly influences their functional capabilities. Both cell types can utilise distinct

metabolic pathways for energy production which governs their downstream activity, impact-

ing chronic lung disease [163,164]. For example, tolerogenic DCs and M(IL-4) MFs rely on

mitochondrial respiratory chain and fatty acid oxidation, whereas inflammatory DCs and

MFs rapidly up-regulate glycolytic activity [163,165,166]. Indeed, fungal stimulation of both

MF and DCs can lead to a rapid transition from utilising one metabolic pathway to another

(e.g., from fatty acid oxidation to glycolysis) as the main energy source for cellular activity

[167–169]. This can also be regulated by the tissue environment, with AlvMFs or transferred

MFs that reside in the airway exhibiting dampened glycolytic activity reducing their potential

to respond to type 2 inflammation [144]. While the precise factors in the airway that cause this

are unclear, an important aspect could be the amount and/or type of nutrients in the lung

which are altered in many chronic inflammatory lung disease [170]. Therefore, DC and MF

metabolic activity that is possibly regulated by nutrient availability maybe critical in governing

the downstream fungal allergic inflammation (Figs 1 and 2).

Lung epithelial and innate cell crosstalk. The airway epithelial barrier itself has a crucial

role in governing MF and DCs responses [10]. Proteases secreted from germinating Af spores

(e.g., Aspf13 and Alp-1) disrupts the epithelial barrier, increasing permeability [171,172]. This

enables fungal allergens to cross the disrupted epithelial barrier into the lung tissue and stimu-

lates calcium flux (via calcineurin) within epithelial cells further activating DCs and IntMFs

[173]. This suggests that fungi are more likely to be exposed to pro-inflammatory cells (e.g.,

IntMF and inflammatory DCs) rather than normal regulatory AlvMFs and DCs, which reside

in the airway, and may trigger and sustain allergic inflammation (Figs 1 and 2). In addition to

this, epithelial cells can release various pro-allergy mediators such as IL-33, TSLP, IL-17, IL-6,

IL-8, IL-25, and CCL2 [73,174–176] and damage-associated molecules such as uric acid, cal-

cium, and calcineurin [173,177], all of which facilitates crosstalk that can trigger the activation

of lung resident MF [73,178] and DCs [146,179] to promote allergic inflammatory responses

(Figs 1 and 2). These epithelial-mediated signals (e.g., IL-33) can boost ILC2-mediated

responses, leading to the secretion of type 2 cytokines and triggering both MF and DC to

induce allergic inflammation [180,181] (Figs 1 and 2). Despite the evidence of epithelial cross-

talk with lung MFs, DCs and ILCs, the relative importance of these interactions in governing

fungal allergic inflammation is yet to be fully explored. In addition to epithelial cells, endothe-

lial cell recognition of Af, via the CLR MelLEC, has been shown to promote allergic inflamma-

tion. Although what impact endothelial cell recognition of spores has on MF and DC

induction of fungal allergic inflammation is unclear. Fungal material can also promote a type 2

cytokine environment by inducing mast cells to secrete IL-13 [68] and activated mast cells can
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trigger AlvMFs to promote allergic inflammation [63]. Therefore, it is clear that numerous cell

types in the lung can “interact” with MF and DC populations and alter downstream inflamma-

tory responses in response to fungi. Yet, in order to build an accurate model of on the patho-

genesis of allergic bronchopulmonary mycoses, further work is needed to understand which of

these cellular interactions are critical in governing MF and DC antifungal activity.

Concluding remarks

In summary, the recent advances in single cell approaches have resulted in vast improvements

in our understanding of how MF and DC subsets govern inflammation that underpins allergic

disease. This review has discussed the roles of MF and DC subsets in fungal allergic inflamma-

tion and highlighted several areas where our current understanding is limited. Future impor-

tant questions remain unanswered. For example, this review has mainly considered the impact

of Af spore exposure only on MF and DC responses. Whereas in the majority of cases, individ-

uals will be exposed to Af in combination with other well-known allergens (e.g., HDM) and

even other fungi which can promote allergic inflammation [182]. Understanding this com-

plexity and defining the dominant allergen signals could greatly inform future diagnostic

approaches. Finally, in addition to considering the host lung environmental factors we

highlighted, it is clear that the micro- and myco-biome in the airways and distal sites can pro-

foundly influence immune responses (e.g., the gut–lung and skin–lung axis). How these wider

diverse microbial interactions fit with intrinsic cues and epithelial innate immune cell crosstalk

in the lung microenvironment, and how they together influence MF and DC responses upon

fungal spore exposure, is an additional challenge for future research. Ultimately a better under-

standing of how MFs and DCs respond upon fungal exposure in the wider context of the lung

environment may yield novel therapeutic strategies to combat the growing problem of fungal

allergic disease.
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protein D is elevated in allergic patients. Clin Exp Allergy. 2004; 34:1827–33. https://doi.org/10.1111/j.

1365-2222.2004.02083.x PMID: 15663555

151. Cheng G, Ueda T, Numao T, Kuroki Y, Nakajima H, Fukushima Y, et al. Increased levels of surfactant

protein A and D in bronchoalveolar lavage fluids in patients with bronchial asthma. Eur Respir J. 2000;

16:831–5. https://doi.org/10.1183/09031936.00.16583100 PMID: 11153579

152. Erpenbeck VJ, Schmidt R, Günther A, Krug N, Hohlfeld JM. Surfactant protein levels in bronchoalveo-

lar lavage after segmental allergen challenge in patients with asthma. Allergy. 2006; 61:598–604.

https://doi.org/10.1111/j.1398-9995.2006.01062.x PMID: 16629790

153. Evans CM, Williams OW, Tuvim MJ, Nigam R, Mixides GP, Blackburn MR, et al. Mucin is produced by

clara cells in the proximal airways of antigen-challenged mice. Am J Respir Cell Mol Biol. 2004;

31:382–94. https://doi.org/10.1165/rcmb.2004-0060OC PMID: 15191915

154. Ordoñez CL, Khashayar R, Wong HH, Ferrando R, Wu R, Hyde DM, et al. Mild and moderate asthma

is associated with airway goblet cell hyperplasia and abnormalities in mucin gene expression. Am J

Respir Crit Care Med. 2001; 163:517–23. https://doi.org/10.1164/ajrccm.163.2.2004039 PMID:

11179133
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lenged by human dendritic cells: Metabolic and regulatory pathway responses testify a tight battle.

Front Cell Infect Microbiol. 2019; 9:168. https://doi.org/10.3389/fcimb.2019.00168 PMID: 31192161

168. Thwe PM, Fritz DI, Snyder JP, Smith PR, Curtis KD, O’Donnell A, et al. Syk-dependent glycolytic

reprogramming in dendritic cells regulates IL-1β production to β-glucan ligands in a TLR-independent

manner. J Leukoc Biol. 2019; 106:1325–35. https://doi.org/10.1002/JLB.3A0819-207RR PMID:

31509298
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