
Frontiers in Oncology | www.frontiersin.org

Edited by:
Nar Singh Chauhan,

Maharshi Dayanand University,
India

Reviewed by:
Xiaotao Zhang,

University of Texas MD Anderson
Cancer Center, United States

Yaping Shao,
Dalian Medical University, China

*Correspondence:
Xiaoyu Wu

wuxiaoyu_gfyy@sohu.com
Hanwen Xu

121316777@qq.com

Specialty section:
This article was submitted to

Thoracic Oncology,
a section of the journal
Frontiers in Oncology

Received: 06 October 2021
Accepted: 21 March 2022
Published: 03 May 2022

Citation:
Wang S, Chen H, Yang H, Zhou K,
Bai F, Wu X and Xu H (2022) Gut

Microbiome Was Highly Related to the
Regulation of Metabolism in Lung

Adenocarcinoma Patients.
Front. Oncol. 12:790467.

doi: 10.3389/fonc.2022.790467

ORIGINAL RESEARCH
published: 03 May 2022

doi: 10.3389/fonc.2022.790467
Gut Microbiome Was Highly Related
to the Regulation of Metabolism in
Lung Adenocarcinoma Patients
Sheng Wang, Huachun Chen, Huizhen Yang, Kejin Zhou, Fan Bai , Xiaoyu Wu*
and Hanwen Xu*

Department of Respiratory, Jinhua Guangfu Hospital, Jinhua, China

Background: Lung adenocarcinoma (LUAD) is one of the most predominant subtypes of
lung cancer. The gut microbiome plays a vital role in the pathophysiological processes of
various diseases, including cancers.

Methods: In the study, 100 individuals were enrolled. In total 75 stool and blood samples
were analyzed with 16s-rRNA gene sequencing and metabolomics (30 from healthy
individuals (H); 45 from LUAD patients). In addition, 25 stool samples were analyzed with
metagenomics (10 from H; 15 from LUAD). The linear discriminant analysis (LDA) effect
size (LefSe) and logistic regression analysis were applied to identify biomarkers’ taxa and
develop a diagnostic model. The diagnostic power of the model was estimated with the
receiver operating characteristic curve (ROC) by comparing the area under the ROC
(AUC). The correlation between biomarker’s taxa and metabolites was calculated using
the Spearman analysis.

Results: The a and b diversity demonstrated the composition and structure of the gut
microbiome in LUAD patients were different from those in healthy people. The top three
abundance of genera were Bacteroides (25.06%), Faecalibacterium (11.00%), and
Prevotella (5.94%). The LefSe and logistic regression analysis identified three biomarker
taxa (Bacteroides, Pseudomonas, and Ruminococcus gnavus group) and constructed a
diagnostic model. The AUCs of the diagnostic model in 16s-rRNA gene sequencing and
metagenomics were 0.852 and 0.841, respectively. A total of 102 plasma metabolites
were highly related to those three biomarkers’ taxa. Seven metabolic pathways were
enriched by 102 plasma metabolites, including the Pentose phosphate pathway,
Glutathione metabolism.

Conclusions: In LUAD patients, the gut microbiome profile has significantly changed. We
used three biomarkers taxa to develop a diagnostic model, which was accurate and
suitable for the diagnosis of LUAD. Gut microbes, especially those three biomarkers’ taxa,
may participate in regulating metabolism-related pathways in LUAD patients, such as the
pentose phosphate pathway and glutathione metabolism.
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INTRODUCTION

Lung cancer (LC) is one of the most commonly diagnosed
malignancies and the leading origin of disease-related mortality
throughout the world (1). It was estimated that, in 2020, more than
2.2 million new cases were diagnosed as LC, and over 1.8 million
people died of LC globally (2, 3). According to histopathological
differences, LC could be divided into Non-small cell lung cancer
(NSCLC) and Small cell lung cancer (SCLC). Lung adenocarcinoma
(LUAD) is one of the most predominant subtypes of NSCLC,
accounting for approximately 40% of cases of LC (3). Surgery,
chemotherapy, targeted therapy, and immunotherapy are the main
treatments for LC and are developing continuously, which have
greatly improved the long-term survival rate of LC patients (4, 5).
However, the 5-year survival rate of LC patients is still less than 20%
(6, 7). To make matters worse, nearly 75% of LC patients are in the
advanced stage at the initial visit, and for these the 5-year survival
rate is only 2.8%-14.6% (6, 7). Therefore, it is urgent to identify the
underlying mechanisms, diagnostic biomarkers, and therapeutic
targets of LC, which is helpful for the diagnosis and therapy of LC.

The intestinal tract is the main place for digestion and
absorption. It is also an important endocrine and immune
organ, playing a crucial role in maintaining the normal
physiological function of the body (8). In the past decade, one
inspiring finding in medicine was the vital role that the gut
microbiome played in the pathophysiological processes of
various diseases, such as neurodegenerative diseases, metabolic
diseases, immune and inflammatory diseases, mental diseases,
and cancer (9–11). The gut microbiome refers to the microbial
community living in the intestine, including bacteria, fungi,
protozoa, and viruses, counting over ten times the number of
total host cells (12). In the long-term evolution process, the gut
microbiome and the host have formed a mutually beneficial
symbiotic relationship: on the one hand, the gut microbiome
obtains nutrients necessary for survival from the host; on the
other hand, it could exert a variety of biological functions to
contribute to the host digest and absorb nutrients, activate and
stabilize the immune system (12, 13).

In recent years, a novel viewpoint, “Gut-lung axis”, was
proposed, which means the long-distance cross-talk between
lung and intestine (14). Numerous studies have shown that the
gut microbiome could influence lung homeostasis and
susceptibility to lung diseases by regulating the metabolic,
endocrine, and immune system (15). Although few kinds of
research have been reported on the characteristics of the gut
microbiome in LC patients, similar acknowledgments have been
achieved. Compared with healthy individuals, the evenness and
richness of the gut microbiome in LC patients have changed
significantly, with a decrease in the relative abundance of
beneficial bacteria and an increase in harmful bacteria (16). In
addition, studies have demonstrated that the changes in the
composition and structure of the gut microbiome also evidently
affect the therapeutic effects of LC patients (17, 18).

In the study, we collected 60 stool samples from LUAD
patients. Then, the stool samples were subjected to 16s-rRNA
gene sequencing or metagenomics to investigate the gut
microbiome profile in LUAD and construct a diagnostic model
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for LUAD. Next, we predicted the functions of the gut
microbiome through bioinformatics and found the gut
microbiome enriched several metabolic-related pathways.
Finally, we verified the results by metabonomics.
MATERIALS AND METHODS

Patients
The study was permitted by the ethics committee of Guangfu
hospital. In the study, 100 participants were collected, including 40
healthy individuals (H) and 60 LUAD patients. All participants
were from Guangfu hospital and signed relevantly informed
consent. Among them, 30 healthy individuals and 45 LUAD
patients were analyzed with 16s-rRNA gene sequencing and
metabonomics; the others with metagenomics. The basic
information of all subjects was presented in Table 1.

Patients were diagnosed as LUAD according to the TNM
staging system (8th edition) and judged by two pathologists. The
inclusion and exclusion criteria were as follows:

Inclusion criteria: 1) 18 ≤ Age ≤ 75 years; 2) Pathological
diagnosis or cytological diagnosis; 3) The patients have never been
treated, including surgery, chemotherapy, radiotherapy, targeted
therapy, and immunotherapy; 4) KPS ≥ 60 and ECOG ≤ 2; 5) Life
expectancy ≥ 6 months.

Exclusion criteria: 1) With other acute and chronic diseases
influencing the composition of the gut microbiome, such as
metabolic diseases, mental illness, other cancers; 2) Women were
in pregnancy or breastfeeding; 3) Abnormal blood test, including
white blood cell < 4*109/L, neutrophils < 2*109/L, hemoglobin <
100 g/L, platelet < 100 g/L, Hemobilirubin > 1.5 ULN (upper
limit of normal value), ALT, AST > 2.5 ULN, and serum
creatinine >1.5 ULN; 4) Treated with antibiotics in the past
3 months.

Stool and Blood Sample Collection
Fecal samples were collected using Fecal Collection Kit
(Beyotime, China). DNA was extracted from fecal samples
with E.Z.N.A. ®Stool DNA Kit (Omega, USA) and eluted with
50 mL of elution buffer, and stored at −80°C.

Blood samples of 5 mL were gathered from a subject with an
anticoagulation tube (Ethylene Diamine Tetraacetic Acid) and
then centrifuged at 3500 rpm (15 min, 4°C). The supernatant was
collected as the plasma samples and stored at − 80°C.

16s-rRNA Gene Sequencing
Seventy-five stool samples (30 H; 45 LUAD) were analyzed with
16s-rRNA gene sequencing. The primers that targeted the V3-V4
region of 16s-rRNA gene were as follows:

341F: 5′-CCTACGGGNGGCWG- CAG-3′;
805R: 5′-GACTACHVGGGTATCTAATCC-3′.

As described previously (19), PCR amplification was
performed. The PCR products were then purified and
quantified with AMPure XT beads (Beckman Coulter
Genomics, USA) and Qubit (Invitrogen, USA), respectively.
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The size and quantity of the PCR products were evaluated using
the Library Quantification Kit (Kapa Biosciences, USA), and to
develop the amplicon pools following the manufacturer’s
recommendations, which were applied for sequencing with the
Illumina NovaSeq platform (Illumina, USA). Then, 250 bp
paired-end reads were generated and merged to raw reads with
FLASH. The high-quality clean tags were produced through
screening raw reads using the fqtrim (v0.94). Then, we
removed repeated sequences and chimeric sequences with
Vsearch software (v2.3.4) and DADA2. The features were
classified at 99% identity using QIIME2. Taxonomy
determination was carried out with SILVA and NT-16S. The
alpha (a) diversity, including Shannon and Simpson index, was
calculated with QIIME2. Also, the beta (b) diversity was acquired
with QIIME2 and presented with Principal coordinate analysis
(PCoA) based on Bray–Curtis dissimilarity and Principal
Component Analysis (PCA). The functional prediction was
based on the Kyoto Encyclopedia of Genes and Genomes
(KEGG) and performed with PICRUSt (v1.1.2).

Metagenomics
A total of 25 stool samples (10 H; 15 LUAD) were subjected to
metagenomics. The DNA extraction and PCR amplification were
as 16s-rRNA gene sequencing. The metagenome was
fragmented, tagged, and quantified to generate the pooled
library and paired-end reads. Then, low-quality paired-end
reads were removed, and high-quality paired-end reads were
mapped to the human genome to filter out chimeric sequences.
The left high-quality paired-end reads were aligned using IGC
bowtie2 (v 2.3.0) and mapped to metaphlan2 to perform species
annotation. The a and b diversity, as well as functional
prediction, were explored as 16s-rRNA gene sequencing.

Plasma Metabolic Profiling
The methanol precipitation method was used for metabolite
extraction. Firstly, 200 mL plasma was mixed with 400 mL
methanol, vortexed for 60 s, sonicated for 10 mins, and
Frontiers in Oncology | www.frontiersin.org 3
incubated for 1 h to precipitate protein. Then, samples were
centrifuged at 12000 g (10 mins, 4°C), and vacuum concentration
drying. Next, 150 mL 2-chlorophenylalanine and 50 mL 80%
methanol solution were added to the tube. All the operations are
performed on ice.

The mixed liquids were filtrated to generate samples for the
analysis of HPLC-MS. Detailed conditions for HPLC-MS analysis
were reported in SupplementaryMaterial. The peaks identification,
peaks filtration, and peaks alignment were performed with XCMS
(Version 3.7.1, https://xcmsonline.scripps.edu/) to obtain mass to
charge ratio (m/z), retention time (rt), and intensity. Metabolite
identification was performed with HMDB (Human Metabolome
Database; http://www.hmdb.ca) and KEGG (Kyoto Encyclopedia of
Genes and Genomes; https://www.kegg.jp) via matching mass,
MS/MS information, and rt. The functional enrichment analysis
of metabolites was based on MetaboAnalyst (Version:5.0; https://
www.metaboanalyst.ca/).

Statistical Analysis
Wilcoxon rank-sum test and Chi-square test were used for group
comparison between two groups. The evenness and richness of
the gut microbiome were assessed by the a diversity. The extent
of the similarity of fecal microbial communities was assessed
by the b diversity. With Galaxy online platform (http://
huttenhower.sph.harvard.edu/galaxy/), Linear discriminant
analysis (LDA) effect size (LEfSe) was applied to determine
biomarker’s taxa. The cut-off value was the log value> 3.0 and
Wilcoxon rank-sum test: P< 0.01. The biomarker’s taxon at the
genus level was subjected to the logistic regression analysis to
develop a diagnostic model. The diagnostic power of the model
was estimated with the receiver operating characteristic curve
(ROC) by comparing the area under the ROC (AUC) and the
calibration plots. The correlation between the two indexes was
calculated using the Spearman analysis. The canonical
correspondence analysis (CCA) was performed to investigate
the effect of clinical parameters on the distribution of the
gut microbiome.
TABLE 1 | The basic information of all participants.

16s-rRNA gene/Metabonomics Metagenomics

H(n=30) LUAD (n=45) P H(n=10) LUAD (n=15) P

Age 58.5 ± 7.02 59.7 ± 10.20 0.453 57.9 ± 8.02 60.1 ± 11.10 0.632
Gender (F/M) 14/16 21/24 0.123 5/5 8/7 0.342
Height (cm) 166.1 ± 5.52 164.5 ± 6.74 0.263 164.7 ± 6.42 163.5 ± 7.74 0.462
Weight (kg) 62.2 ± 11.13 60.2 ± 10.81 0.376 61.8 ± 11.43 58.9 ± 11.81 0.453
BMI 21.1 ± 2.63 20.10 ± 3.01 0.563 20.9 ± 3.46 21.34 ± 4.01 0.745
Site (Right/Left) – 23/22 – – 6/9 –

TNM (I,II/III,IV) – 20/25 – – 7/8 –

Size (cm) – 2.5 ± 1.91 – – 3.1 ± 2.34 –

Lymph node (N0/N1-3) – 14/31 – – 6/9 –

Metastasis (M0/M1) – 30/15 – – 11/4 –

CEA (ng/ml) – 6.1 ± 9.72 – – 7.3 ± 7.62 –

NSE (ng/ml) – 19.1 ± 30.53 – – 9.9 ± 18.46 –

CYFRA211 (ng/ml) – 4.6 ± 6.74 – – 8.4 ± 9.35 –

CA153 (U/ml) – 5.9 ± 2.42 – – 4.3 ± 3.13 –

CA125 (U/ml) – 3.2 ± 3.69 – – 4.1 ± 2.15 –
May 202
2 | Volume 12 | Article 7
H, healthy individual; LUAD, Lung adenocarcinoma; F, Female; M, Male; CEA, Carcinoembryonic antigen; NSE, Neuron-specific enolase. CYFRA211, Tokeratin 19 fragment; CA125;
Carbohydrate antigen 125; CA153, Carbohydrate antigen 153.
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In metabonomics analysis, if a variable is missing in more
than 80% of samples in each group, it should be eliminated; if the
variable is missing in below 80% of all samples, the missing data
should be replaced with the minimum value. The way for batch
normalization was the total peak area normalization method; the
standardization method was Par-scaling. After data processing,
using the SIMCA-P (Version: 11.5), multivariate statistical
analyses were executed, including the unsupervised analysis
method: PCA, and supervised analysis methods: partial least-
squares discrimination analysis (PLS-DA) and orthogonal partial
least-squares discrimination analysis (OPLS-DA). In OPLS-DA,
we calculated variable importance in projection (VIP). The
differential metabolites were defined as FDR (False discovery rate)
<0.05; Log2FC (Fold change) >1; VIP> 1. Functional enrichment
analysis of metabolites was implemented with MetaboAnalyst 5.0
(https://www.metaboanalyst.ca/MetaboAnalyst/home.xhtml).
Benjamini–Hochberg procedure was used to calculate the
FDR value.
RESULTS

16s-rRNA Gene Sequencing
The Assessment of the a and b Diversity
A total of 6,043,552 raw reads were acquired from 75 stool
samples (30 H; 45 LUAD). In all, 9716 features were identified
(7073 ± 112 features/sample). To characterize the diversity of the
bacterial community, we assessed the a diversity for each sample.
As shown in Figure 1A, the Shannon (P<0.001) and Simpson
(P<0.001) indexes of the LUAD groups were significantly lower
than that of the H group. In addition, we also took advantage of
the Observed species, ACE, and Chao1 index to reflect the a
diversity and got similar results (Supplementary Figure 1A).
The curve of each sample in rarefaction analysis based on the
Shannon index approached saturation, suggesting the
sequencing depth was enough (Supplementary Figure 1B). To
Frontiers in Oncology | www.frontiersin.org 4
measure the extent of the similarity of fecal microbial
communities, we presented the b diversity with PCA and
PCoA analysis. In PCA and PCoA analysis, samples in
different groups displayed significantly tighter clustering
(Figures 1B, C).

Taxonomy Comparison of the Gut Microbiome
Then, we analyzed the composition and structure of the gut
microbiome at phylum, class, order, family, and genus levels.
There were 19 and 22 phyla identified in the H and LUAD
groups at the phylum level, respectively (Figure 2A). The top
three abundant phyla in the LUAD group were Firmicutes
(48.67%), Bacteroidetes (32.92), and Proteobacteria (12.61)
(Figure 2B). Compared to the H group, the abundance of
Bacteroidetes (P= 0.044), Proteobacteria (P= 0.003),
Cyanobacteria (P= 0.006), and Acidobacteria (P< 0.001) were
increased, whereas that of Firmicutes (P< 0.001), and
Tenericutes (P< 0.001) were decreased (Figure 2C and
Supplementary Table 1).

At genus levels, 475 genera were found in the LUAD group and
320 in the H group (Figure 2D). In the LUAD group, the most
abundant genus was Bacteroides (25.06%), followed by
Faecalibacterium (11.00%) and Prevotella (5.94%) (Figure 2E).
There were significant differences in the proportion of 42 genera
between the H and LUAD groups (Figure 2F and Supplementary
Table 1).

The Influence of Clinical Parameters on the
Distribution of Gut Microbiome
To explore the influence of clinical parameters on the
distribution and structure of the gut microbiome, we
implemented CCA analysis, which could reflect the overall
relationship between two groups of variables. The CCA
analysis revealed that Carcinoembryonic antigen (CEA), Body
Mass Index (BMI), and metastasis had a significant effect on the
distribution of the gut microbiome (Figure 3).
A B C

FIGURE 1 | The assessment of the a and b diversity. (A) The a diversity was evaluated by Shannon and Simpson index. (B) The b diversity was evaluated by PCA
analysis. (C) The b diversity was evaluated by PCoA analysis. H, healthy individuals; LUAD, Lung adenocarcinoma; PCA, Principal Component Analysis; PCoA,
Principal coordinate analysis.
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Identification of Biomarker’s Taxa and Construction
of a Diagnostic Model
For investigating the biomarker’s taxa between those two groups,
we performed LefSe analysis. As shown in Figure 4A, at genus
levels, seven floras were markedly enriched in the LUAD group,
including Bacteroides, Phenylobacterium, Sphingomonas,
Ralstonia, Brevundimonas, Pseudomonas, and Ruminococcus
gnavus group. Then, we applied the logistic regression analysis
to further analyze those seven genera and screen out three genera
as the biomarker’s taxa (Bacteroides, Pseudomonas, and
Ruminococcus gnavus group) to construct a diagnostic model
for LUAD. The diagnostic formula was presented as follows.

Y =
1

1 + e− −1:4431+0:0414 ∗Bacteroides+4:7998 ∗Pseudomonas+0:5941 ∗Ruminococcus gnavus groupð Þ

To evaluate the accuracy of the model, we depicted the ROC
and the calibration plots. The AUC of the model was 0.852
(Figure 4B), more excellent than that of Bacteroides (0.767),
Pseudomonas (0.781), and Ruminococcus gnavus group (0.746)
(Figure 4C). In addition, the calibration plot demonstrated that
the model curve and ideal curve could fit well (Figure 4D).

Metagenomics
Next, we analyzed 25 fecal samples (H: 10; LUAD: 15) with
metagenomics to confirm the results of 16s-rRNA gene
sequencing. In line with previous findings, the Shannon (P=
Frontiers in Oncology | www.frontiersin.org 5
0.005) and Simpson (P= 0.004) indexes in the LUAD group
were decreased (Figure 5A). Moreover, we also pictured the
PCA and PCoA analysis. The results were presented in
Figures 5B, C. At the phylum level, the top three most
abundant bacteria in the LUAD group were Firmicutes,
Bacteroidetes, and Proteobacteria (Supplementary Figure 2A).
At genus levels were Bacteroides, Faecalibacterium, and Prevotella
(Supplementary Figure 2B). We also analyzed the composition of
the gut microbiome at a species level, and the results were
presented in Supplementary Figure 2D.

We developed a diagnostic model with three indicator species
(Bacteroides, Pseudomonas, and Ruminococcus gnavus group).
Herein, we extracted the abundance of those three bacteria to
validate the diagnostic model. Similar to previous results, the
abundance of Bacteroides (P< 0.001), Pseudomonas (P= 0.037),
and Ruminococcus gnavus group (P= 0.048) in the LUAD group
were enhanced (Supplementary Figure 2C). As a result, the
AUC in metagenomics was 0.841 (Figure 5D), higher than that
of those three genera (Bacteroides: 0.812, Pseudomonas: 0.786,
and Ruminococcus gnavus group: 0.770) (Figure 5E). The
calibration plot was presented in Figure 5F.

Functional Properties of the
Gut Microbiome
We predicted the functional properties of the gut microbiome
with PICRUSt (v1.1.2) in both 16s-rRNA gene sequencing and
A B C

D E

F

FIGURE 2 | Taxonomy comparison of gut microbiome. (A) 19 and 22 phyla were identified in H group and LUAD group, respectively. (B) The distribution of top 10
phyla in two groups. (C) Differential phyla between two groups. (D) 320 and 475 genera were identified in H group and LUAD group, respectively. (E) The
distribution of the top 10 genera in two groups. (F) Differential genera between two groups. *P < 0.05, **P < 0.01, ***P < 0.001.
May 2022 | Volume 12 | Article 790467
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metagenomics. There were 99 and 84 pathways identified
between H and LUAD groups in 16s-rRNA gene sequencing
and metagenomics, respectively (Wilcoxon rank-sum test: FDR<
0.05, Supplementary Figures S3A, B). Among them, 34
pathways were overlapping (Supplementary Figure 3C).
Furthermore, most of those pathways were metabolic-related
pathways. Then, we sought the relation between 34 pathways and
3 indicator species with the Spearman analysis, which
demonstrated several pathways were highly related to those
three genera (Supplementary Figure 3D).

Plasma Metabolic Profiling
In functional annotations of gut microbiota, we found numerous
metabolic-related pathways were closely associated with gut
microbiota, hinting that gut microbiota may function via
regulating host metabolism in LUAD patients. Therefore, to
prove the results, we investigated the plasma metabolic
profiling of LUAD patients. A total of 1174 metabolites were
determined, including 732 in positive ionization mode and 442
in negative ionization mode. Multivariate statistical analyses
(PCA, PLS-DA, and OPLS-DA) were performed to obtain a
global overview of the differences in metabolites between the two
groups. As can be seen in Figures 6A–C, samples in different
groups were well distinguished and clustered. Subsequently, we
identified 96 differential metabolites with the cut-off value: FDR<
0.05; Log2FC> 1; VIP> 1 (Figure 7A), and 4 metabolic pathways
enriched by them, including Pentose phosphate pathway (P<
0.001), Glutathione metabolism (P= 0.012), Tyrosine
Frontiers in Oncology | www.frontiersin.org 6
metabolism (P= 0.037), and Arginine and proline metabolism
(P= 0.042) (Figure 7B).

Correlation Analysis Between Plasma
Metabolism and Biomarker’s Taxa
For further exploring the correlation between plasma
metabolism and gut microbiome, we performed the Spearman
analysis. The thresholds were set as |cor|> 0.40 and P< 0.05. The
results showed that 102 plasma metabolites were highly related
to three biomarkers’ bacteria (Supplementary Table 2), among
which, 72 plasma metabolites were differential metabolites
between the H and LUAD groups. Furthermore, functional
enrichment analysis indicated that seven metabolic pathways
were enriched by 102 plasma metabolites, such as the Pentose
phosphate pathway (P< 0.001), Glutathione metabolism (P<
0.001), Glycine, serine, and threonine metabolism (P= 0.004),
Valine, leucine, and isoleucine biosynthesis (P= 0.024),
Ascorbate and aldarate metabolism (P= 0.024), Nicotinate and
nicotinamide metabolism (P= 0.031), and Histidine metabolism
(P= 0.039) (Figure 7C).
DISCUSSION

The study found that the profile of gut microbiota and the
plasma metabolic profiling in LC patients were significantly
different from those in healthy individuals. Moreover, the
Spearman analysis showed that gut microbes were highly
related to multiple plasma metabolisms, meaning that gut
microbes may participate in regulating metabolism-related
pathways in LUAD patients. Gut microbes are an essential part
of the intestinal microenvironment (8). They interact with host
cells in several ways. For example, they provided the pathogen-
associated molecular patterns (PAMPs) linking to Toll-like
receptors on the surface of the intestinal epithelial cells to
activate innate-adaptive immunity (20, 21). Thereby, the
immune cells secrete antimicrobial peptides, inflammatory
factors, and immunoglobulins to regulate the immune
response (20, 22). Moreover, regulating the production of
metabolites is also a vital way that commensal bacteria
function (23). For instance, gut microbes could modulate the
production of short-chain fatty acids, which can enter the lung
tissue through blood circulation and affect the differentiation and
maturation of immune cells in lung tissue (23, 24).

Previously, a study reported that in LC patients, the
composition and structure of the gut microbiome had a
significant change. The diversity of intestinal flora in LC
patients was significantly lower than that in healthy people (16,
24). At the same time, the relative abundance of beneficial
bacteria such as Bifidobacterium and Lactobacillus decreased
significantly, and the relative abundance of harmful bacteria such
as Enterobacter and Streptococcus increased significantly (16,
24). In addition, the changes in relative abundance of the gut
microbiome were closely related to tumor markers, such as CEA.
Meanwhile, the gut microbiome could influence the therapeutic
effect of LC. Patients undergoing immunotherapy with a high
response rate of immunotherapy had high microbial diversity
FIGURE 3 | The CCA analysis revealed the influence of clinical parameters on the
distribution and structure of the gut microbiome. CCA, The canonical correspondence
analysis; CEA, Carcinoembryonic antigen; BMI, Body Mass Index.
May 2022 | Volume 12 | Article 790467
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and a proportion of beneficial bacteria (18, 25). Furthermore,
after being treated with the antibiotic, the homeostasis of
intestinal flora was destroyed, and the diversity of intestinal
flora decreased, leading to a low response rate (25). Although
emerging evidence demonstrated the linking of the gut
microbiome to LC and cancer therapy, their detailed role in
LC has not been fully explicated.

In the study, we investigated the gut microbiota profile in LC
patients with 16s-rRNA gene sequencing and metagenomics.
Consistent with the previous findings, we found the Shannon
and Simpson index in LUAD groups was significantly lower than
that of the H group, indicating that the richness and evenness of
the bacterial community in LUAD patients were lower than in
healthy individuals. Moreover, the PCA and PCoA analysis
demonstrated that the similarity of fecal microbial
communities of LUAD patients was significantly different from
that of healthy individuals. In LUAD patients, the top three
abundant phyla were Firmicutes, Bacteroidetes, and
Proteobacteria. The top three abundant genera were
Bacteroides, Faecalibacterium, and Prevotella, which were in
line with the study reported by Zhang et al. (16) We identified
Frontiers in Oncology | www.frontiersin.org 7
three genera (Bacteroides, Pseudomonas, and Ruminococcus
gnavus group) as the biomarkers’ taxa with logistic regression
analysis and constructed a diagnostic model. The AUCs of the
diagnostic model were > 0.80 in both 16s-rRNA gene sequencing
and metagenomics. Additionally, the calibration plots
demonstrated consistency between the prediction by the model
and the actual observation. All data suggested that the
established diagnostic model is suitable for the diagnosis of
LUAD. Bacteroides are the most common bacteria in healthy
individuals, and the abundance of Bacteroides in LC patients is
enhanced (16), which was confirmed by our findings. In the
human body, Bacteroides are like a double-edged sword. On the
one hand, they can protect the intestinal mucosal barrier,
maintain intestinal homeostasis, mediate carbohydrate
metabolism and induce T lymphocyte-dependent immune
response (26, 27). On the other hand, it can also lead to
immune escape, the production of endotoxin, and local
inflammation in the intestine. Accumulating evidence has
illustrated that Bacteroides were closely associated with the
tumorigenesis and development of cancers (28–30). For
example, Bacteroides could promote colon cancer progression
A

B C D

FIGURE 4 | Identification of biomarker’s taxa and construction of a diagnostic model. (A) The LefSe analysis identified taxa meeting thresholds: P < 0.01 and
LDA > 3. (B) The ROC of the diagnostic model. (C) The ROC of three biomarker’s taxa. (D) The calibration plot of the diagnostic model. LsfSe, Linear discriminant
analysis (LDA) effect size; ROC, The receiver operating characteristic curve; AUC, the area under the ROC.
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via inducing the stemness of colon cancer cells and activating
RHEB/mTOR signaling pathway (29). In addition, Bacteroides
could also increase the expression of cyclooxygenase 2 and the
release of prostacyclin 2 to induce local inflammation of
intestinal mucosa and regulate the survival and proliferation of
tumor cells (30). Up to now, no research has reported the specific
effect of Bacteroides on lung cancer, so a lot of research is still
needed to explore the role and mechanism of Bacteroides on lung
cancer. Pseudomonas is a Gram-negative, opportunistic,
bacterial pathogen associated with a wide range of infections.
Cancer patients are more vulnerable to invasive infection, due to
ulcerative lesions in mucosal surfaces and immune suppression
(31). The infection of Pseudomonas could increase E-cadherin
expression in colon cancer to promote cancer development (32).
In the study, we found that the abundance of Pseudomonas in
LUAD patients was ascending, especially in patients at TNM
stage III/IV (Supplementary Figure 4). However, many studies
reported that Pseudomonas could secret multiple substances
(Cyclodipeptides, Phenazine-1-carboxamide, Fucoxanthinol,
etc.) to anti-cancer by inducing the apoptosis of cancers (33–
35). Thence, it remains a depth exploration. Ruminococcus
gnavus is an anaerobic Gram-positive bacterial pathogen that
Frontiers in Oncology | www.frontiersin.org 8
can be found in the gastrointestinal tract of animals and humans
(36). It could stimulate intestinal mucosal inflammation, activate
local immunity, and regulate bile acid metabolism (36–38). Plus,
orally administered Ruminococcus gnavus may enhance
regulatory T-cell counts and short-chain fatty acids production
(39). However, up to now, there has been no research reporting
the role of Ruminococcus gnavus on LC.

We identified 34 overlapping differential pathways in 16s-
rRNA gene sequencing and metagenomics. Those 34 pathways
were the main metabolic-related pathways and highly related to
the three biomarkers’ taxa, hinting that those three biomarkers’
taxa may participate in the regulation of host metabolism. For
testing this conjecture, we analyzed the plasma metabolic profiling
of LUAD patients. Between the H and LUAD groups, 96
differential metabolites were determined, mainly involved in
four metabolic pathways. Then, we performed the Spearman
analysis and found 102 plasma metabolites were closely
associated with the three biomarkers’ taxa. Moreover, those 102
plasma metabolites significantly enriched seven metabolic
pathways. Interestingly, two metabolic pathways (Pentose
phosphate pathway, Glutathione metabolism) were significantly
enriched in each part of the study, suggesting that gut microbes,
A B

D E F

C

FIGURE 5 | Validation of the diagnostic model with Metagenomics. (A) The a diversity is evaluated by Shannon and Simpson index. (B) The b diversity was
evaluated by PCA analysis. (C) The b diversity was evaluated by PCoA analysis. (D) The ROC of the diagnostic model. (E) The ROC of three biomarker’s taxa.
(F) The calibration plot of the diagnostic model.
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especially those three biomarkers’ taxa, play a vital role in pentose
phosphate pathway and glutathione metabolism. Pentose
phosphate pathway, beginning with glucose 6-phosphate, is a
way of oxidative decomposition of glucose and a branch from
glycolysis (40). Unlike glycolysis, the Pentose phosphate pathway
does not supply energy. Instead, it mainly provides NADPH and
ribose 5-phosphate (R5P), which is critical for managing DNA
damage response, metabolism, proliferation, and metastasis of
cancer cells (40, 41). In LC, studies showed that regulating the
Pentose phosphate pathway could contribute to LC cells’ growth
and invasion (42, 43). The Spearman analysis revealed that nine
metabolites in the Pentose phosphate pathway were highly related
to three biomarker’s taxa, including alpha-D-Glucose 6-
phosphate, 2-Deoxy-D-ribose 1-phosphate, 2-Deoxy-D-ribose 5-
Frontiers in Oncology | www.frontiersin.org 9
phosphate, D-Ribose, D-Glyceraldehyde 3-phosphate, D-Ribulose
5-phosphate, D-Glycerate, beta-D-Glucose 6-phosphate, and 6-
Phospho-D-gluconate. In addition, nine metabolites in
Glutathione metabolism were also highly associated with three
biomarker’s taxa, such as glutathione, glutamate, and cysteine.
Previous research has proved that Bacteroides could influence the
homeostasis of host health and the production of glutathione (44,
45). Glutathione is a ubiquitous anti-oxidant involved in anti-
oxidation, exogenous detoxifying substances, maintaining cysteine
levels, maturation of protein iron-sulfur clusters, and regulation of
redox signal-related transcription factors (46, 47). Glutathione
plays a dual role in tumor cells: at normal levels, glutathione could
clear carcinogens maintaining normal cell survival; excessive
glutathione protects and promotes cancer cell proliferation,
A

B

C

FIGURE 6 | Multivariate statistical analyses to reveal the difference in plasma metabolic profiling between the H and LUAD groups. (A) Unsupervised analysis
method: PCA. Supervised analysis methods: (B) PLS-DA and (C) OPLS-DA. PLS-DA, Partial least-squares discrimination analysis; OPLS-DA, Orthogonal partial
least-squares discrimination analysis.
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metastasis, and resistance to chemotherapeutic drugs (46–49).
Animal experiments revealed that intestinal flora could regulate
glutathione metabolism in mice, and this regulation can promote
the production of oxidants and promote intestinal endothelial cell
abscission and local inflammation (50). In LC, glutathione could
affect the growth, metastasis, survival, and drug sensitivity of
cancer cells. Glutamate was a product of the metabolism of
glutathione (51–54). A study showed that the level of glutamate
in lung cancer was down-regulated (55). Furthermore, glutamate
suppressed tumor growth and prolonged survival of mice with
LC (56).

Limitations: 1. We only used 45 LUAD patients to develop a
diagnostic model and verified it with 15 LUAD patients.
Therefore, a large-scale clinical trial was needed. 2. All data
were obtained from costly and time-consuming omics
technology, leading to hardly any popularization in clinical
applications. Hence, a simple and efficient detection method is
still needed. 3. In the study, we excluded individuals with other
acute and chronic diseases influencing the composition of the gut
microbiome, which may lead to selection bias. 4. No basic
experiments were conducted to investigate the specific role of
gut microbiota, and further investigation is demanded. 5. Due to
only using healthy individuals as the control group and lack of
other types of cancer, Whether the three biomarkers’ taxa were
specific for LUAD patients still requires further investigation.
CONCLUSION

In conclusion, in this study, we investigated the composition and
structure of the gut microbiome in LUAD patients with 16s-
rRNA gene sequencing and screened out the taxa of three
Frontiers in Oncology | www.frontiersin.org 10
biomarkers to construct a diagnostic model, which was
confirmed with metagenomics. The ROC demonstrated the
model was accurate. Then, we predicted the potential functions
of the gut microbiome in LUAD patients and verified the results
with plasma metabonomics. Gut microbes may participate in
regulating metabolism-related pathways in LUAD patients, such
as the pentose phosphate pathway and glutathione metabolism.
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Supplementary Figure 1 | (A) The a diversity is evaluated by observed species,
ACE, and Chao1. (B) Rarefaction analyses based on the Shannon index. H, healthy
individuals; LUAD, Lung adenocarcinoma. ***P < 0.001.

Supplementary Figure 2 | Taxonomy comparison of the gut microbiome with
Metagenomics. (A) The distribution of the top 10 phyla in two groups. (B) The
distribution of the top 10 genera in two groups. (C) The differential distribution of
Frontiers in Oncology | www.frontiersin.org 11
three biomarkers’ taxa between two groups. (D) The distribution of the top 10
species in two groups.

Supplementary Figure 3 | Functional properties of the gut microbiome. (A) 99
pathways were identified between H and LUAD groups in 16s-rRNA gene
sequencing. (B) 84 pathways were identified between H and LUAD groups in
metagenomics. (C) The distribution of 34 overlapping pathways in all samples. (D)
The relation of three biomarker’s taxa to 34 overlapping pathways. *P < 0.05, **P <
0.01.

Supplementary Figure 4 | The differential distribution of three biomarkers’ taxa
(A) between Age ≥ 60 and < 60, (B) between female and male, (C) between BMI ≥
24 and < 24, (D) between TNM stage I/II and TNM stage III/IV. BMI, Body Mass
Index. *P < 0.05, **P < 0.01.
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