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Abstract: Osteoarthritis (OA) is a degenerative joint disease resulting in limited mobility and severe
disability. Type II diabetes mellitus (T2D) is a weight-independent risk factor for OA, but a link
between the two diseases has not been elucidated. Adipose stem cells (ASCs) isolated from the
infrapatellar fat pad (IPFP) may be a viable regenerative cell for OA treatment. This study analyzed
the expression profiles of inflammatory and adipokine-related genes in IPFP-ASCs of non-diabetic
(Non-T2D), pre-diabetic (Pre-T2D), and T2D donors. Pre-T2D ASCs exhibited a substantial decrease
in levels of mesenchymal markers CD90 and CD105 with no change in adipogenic differentiation
compared to Non-T2D and T2D IPFP-ASCs. In addition, Cyclooxygenase-2 (COX-2), Forkhead box G1
(FOXG1) expression and prostaglandin E2 (PGE2) secretion were significantly increased in Pre-T2D
IPFP-ASCs upon stimulation by interleukin-1 beta (IL-1β). Interestingly, M1 macrophages exhibited
a significant reduction in expression of pro-inflammatory markers TNFα and IL-6 when co-cultured
with Pre-T2D IPFP-ASCs. These data suggest that the heightened systemic inflammation associated
with untreated T2D may prime the IPFP-ASCs to exhibit enhanced anti-inflammatory characteristics
via suppressing the IL-6/COX-2 signaling pathway. In addition, the elevated production of PGE2 by
the Pre-T2D IPFP-ASCs may also suggest the contribution of pre-diabetic conditions to the onset and
progression of OA.

Keywords: osteoarthritis; COX-2; FOXG1; adipose stem cell; infrapatellar fat pad; diabetes

1. Introduction

Symptomatic osteoarthritis (OA) in the knee is one of the leading global causes of
physical disability. It affects approximately 14 million people in the USA and millions
more across the globe [1,2]. The knee joint comprises multiple tissues, including cartilage,
subchondral bone, synovial membrane, and the infrapatellar fat pad (IPFP). OA results
from the disruption of cartilage homeostasis and osteophyte formation within the synovial
capsule [3]. Disease pathology extends beyond the articular cartilage and subchondral bone
to include chronic inflammation. Thus, OA is described as a whole joint disorder [4–6].
Furthermore, age-associated overuse or traumatic injury are often the initiators of OA [7,8].
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Still, long-term inflammation is often highlighted as the driving force behind ECM degra-
dation [9].

A primary hallmark of OA is the presence of chronic inflammation within the synovial
joint and surrounding tissues [4,6,10]. While the exact tissue source(s) and the composition
of the proinflammatory factors in knee OA are still under investigation, focusing primarily
on the synovium, other joint tissues, such as the IPFP, are also hypothesized to play a
critical role [10]. Increased levels of proinflammatory cytokines, in particular interleukin
(IL)-1β, IL-6, and tumor necrosis factor α (TNFα), are found in the synovial fluid of OA
patients [11,12]. Moreover, IL-1β and TNFα stimulate their production and induce the ex-
pression of IL-6, IL-8, and prostaglandin production by chondrocytes [13,14]. The increased
expression of mediators of inflammation induces the expression of matrix metalloproteases
(MMPs) in chondrocytes. The MMPs drive the destruction of the ECM, as indicated by
elevated collagen and proteoglycan breakdown [13,15].

Additionally, inflammation inhibits the chondrocytes’ production of collagen type
II and proteoglycans. Most patients with knee OA also exhibit synovitis, suggesting
synovial inflammation is central in OA progression [16]. The synovium is a source of
circulating immune cells that direct cartilage breakdown in OA. While inflammation of
the cartilage and synovium is well characterized in OA, it is not evident that the high
levels of proinflammatory mediators found in the synovial fluid of OA patients result
from production by the synovium and chondrocytes exclusively. Many OA patients have
detectable inflammation in other joint tissues. The IPFP may be one potential source of
proinflammatory mediators in knee OA [17].

Studies have demonstrated that adipose tissue reservoirs throughout the body are
active endocrine production sites that contribute to systemic inflammation [18]. Patients
diagnosed with type II diabetes mellitus (T2D) have elevated IL-6 and TNFα in their
serum [19]. T2D is classified as a weight-independent risk factor for OA, suggesting
a link between T2D-mediated adipose dysfunction and OA [20,21]. OA patients also
exhibit elevated synovial concentrations of adipokines, such as adiponectin (ADIPOQ) and
leptin (LEP) [22,23]. When exposed to LEP, cartilage explants and isolated chondrocytes
demonstrated heightened expression of IL-1β, MMP-9, and MMP-13 [23,24]. Cartilage
does not produce ADIPOQ or LEP, making it unclear what tissue is responsible for their
increased concentration in synovial fluid. Due to its adjacency to the synovial fluid, the
IPFP could be the source of OA modifying cytokines; however, to our knowledge, this
direct link has not been established, nor has the IPFP from T2D patients been investigated.

As an extension of this concept, stem/progenitor cells isolated from adipose depots
have also shown variation in differentiation potential and inflammation-related proper-
ties [25]. Due to their inherent anti-inflammatory properties and heightened chondrogenic
potential compared to subcutaneous derived ASCs, ASCs derived from IPFP (IPFP-ASCs)
are often highlighted as a potential therapeutic cell source for OA [26,27]. However, treat-
ment of OA with the injection of ASCs has resulted in mixed outcomes, often demonstrating
only transient therapeutic benefits, such as pain alleviation and improved mobility [28].
Therefore, it is plausible to think that the characteristics of the ASC donor may influence
their therapeutic benefits. In general, stem cell differentiation potential and immunomodu-
lation properties are susceptible to donor physiologic factors, such as tissue site, age, obesity,
disease (e.g., T2D) and gender [25,29–32]. While IPFP-ASCs from OA patients maintain
their chondrogenic differentiation potential, the impact of T2D on their differentiation
potential or their immunomodulatory properties is unknown [33].

Chronic inflammation of the IPFP, often associated with OA, is characterized by
fibrosis, hyperplasia and neural ingrowth [17,34,35]. However, little is known about the
inflammatory microenvironment of OA IPFP and the effect of intercellular interaction and
communication (direct or paracrine) on ASC differentiation potential. Studies have shown
that IPFP-ASCs have increased chondrogenic potential compared to subcutaneous ASCs
and no OA impact on the chondrogenic potential of IPFP-ASCs has been noted [36,37].
However, another study by Stocco et al. demonstrated changes in the immunotypic profile
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of IPFP-ASCs isolated from OA patients, suggestive of an impaired ability by IPFP-ASCs
to modulate OA-related inflammation. To our knowledge, no study has investigated the
combined impact of OA and T2D on IPFP-ASCs. Thus, investigating the impact of T2D on
the biologic properties of IPFP and IPFP-derived ASCs is essential for understanding their
therapeutic potential in the setting of OA.

The goals of the research studies presented in this paper were to (a) characterize the
stemness properties of IPFP-ASCs isolated from non-diabetic (Non-T2D), pre-diabetic (Pre-
T2D), and diabetic (T2D) patients and (b) determine the levels of expression of inflammatory
mediators and adipokines in IL-1B stimulated IPFP-ASCs and adipocytes and in a co-culture
system with monocyte-derived macrophages.

2. Materials and Methods
2.1. IPFP-ASC Isolation and Expansion

A total of nine IPFP explants were collected from patients undergoing total knee
arthroplasty at Stanford Hospital. The samples were collected with Institutional Review
Board approval and the patient’s knowledge and consent. The patient characteristics and
diabetic status are listed in Table 1. Their primary care physician determined the diabetic
status of each donor. IPFP-ASCs were isolated as previously described [38]. Briefly, IPFP
samples were minced in 30 mL sterile 1X phosphate-buffered saline (PBS, Hyclone, Logan,
UT, USA). An equal volume of digestion solution, 0.1% type I collagenase (Worthington
Biochemical, Lakewood, NJ, USA) and 1% bovine serum albumin (Sigma-Aldrich, St. Louis,
MO, USA) in 1X PBS, was added and samples were incubated at 37 ◦C. After one hour,
growth medium consisting of Dulbecco’s Modified Eagle’s Medium Nutrient Mixture F-12
Ham (1:1 mixture) (DMEM/F-12, Gibco, Gaithersburg, MD, USA), supplemented with
10% fetal bovine serum (FBS, Hyclone, Logan, UT, USA) and 1% antibiotic/antimycotic
(Anti/Anti, Gibco) was added to the samples. After centrifugation at 300× g for 5 min,
the resulting cell pellets were suspended in growth medium and plated on 150 cm2 Nunc
plates (ThermoFisher Scientific, Pittsburgh, PA, USA). After 48 h, the plates were washed
with 1X PBS, and the adherent cells were expanded in growth medium to 70% confluency
before being passaged at 400 cells/cm2. Sub-confluent ASCs (<~70%) from passages 3–4
were used for all experiments.

Table 1. Information on IPFP Donors.

Group Age Body Mass Index (BMI)

Non-Diabetic (Non-T2D, n = 3) 65.7 ± 8.7 32.1 ± 9.0
Pre-Diabetic (Pre-T2D, n = 3) 65.7 ± 4.50 36.6 ± 6.0

Diabetic (T2D, n = 3) 53.3 ± 11.3 32.1 ± 3.6

2.2. Flow Cytometry

The expression of ASC cell surface markers was assessed by flow cytometry. IPFP-
ASCs were washed in 1X PBS before being blocked in Fc block (ThermoFisher Scientific).
Cells were immunostained for 30 min. with conjugated antibodies against CD90 (Ext/Em:
488/530) (Cat #: 11-0909-42) (EBioscience, San Diego, CA, USA), CD73 (Ext/Em: 488/560)
(Cat #: 550257) (BD Pharmingen), CD105 (Ext/Em: 633/670) (Cat #: 17-1057-41) (EBio-
science), CD3 (Ext/Em: 488/630) (Cat #: 61-4724-82) (EBioscience), CD14 (Ext/Em: 488/670)
(Cat #: IM2640U) (Beckman Coulter), CD31 (Ext/Em: 488/770) (Cat #: 25-0349-41) (EBio-
science), CD45 (Ext/Em: 630/710) (Cat #: A71117) (Beckman Coulter). All antibodies were
diluted 1:1000 from commercial concentrations. Samples were analyzed with a Gallios Flow
Cytometer (Beckman Coulter, Brea, CA, USA) with Kaluza software (Beckman Coulter). A
minimum of 10,000 events were captured and analyzed for each sample.
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2.3. Colony-Forming Unit Assay (CFU)

The ASCs were analyzed for self-renewal activity by a colony-forming unit fibroblast
(CFU-F) assay. The cells were seeded onto a 6-well NUNC cell culture plate at 100 cells/well.
The cells were cultured in growth medium for 14 days, with the medium being refreshed
once after seven days. After 14 days, the wells were washed with 1X PBS and stained
with 3% (w/v) crystal violet (Sigma-Aldrich). To monitor the number of cells capable of
self-renewal, the number of colonies greater than 3 mm2 in diameter was counted and
divided by the total number of cells seeded.

2.4. Osteogenic and Adipogenic Differentiation

Each IPFP line was differentiated along adipogenic and osteogenic lineages to assess
the differentiation potential of each line. Briefly, 20,000 cells/cm2 were seeded onto a
6-well NUNC cell culture plate. The cells were allowed to reach 100% confluency in the
growth medium before being replaced with an osteogenic or adipogenic differentiation
medium (AdipoQual (AQ); Obatala Sciences, New Orleans, LA, USA). Osteogenic Media
(OM) consisted of 89% DMEM-F12, 10% FBS, and 1% Anti/Anti supplemented with 10 nM
Dexamethasone, 20 mM β-glycerophosphate, 50 µM L-Ascorbic Acid 2-phosphate (Sigma-
Aldrich). The differentiation medium was replaced every 3–4 days for 28 days.

After differentiation in adipogenic medium, each well was washed with 1X PBS,
fixed for 1 h in 4% Paraformaldehyde (PFA) and then stained in a 0.5% filtered solution
of Oil Red O (Sigma-Aldrich) for 10 min. Oil Red O was extracted from the cultures
using 100% isopropanol to quantify staining. The absorbance at 584 nm was measured
using a SynergyTM HTX Multi-Mode Microplate Reader (BioTek, Winooski, VT, USA).
Absorbance values were normalized to total protein content and determined using a Pierce
BCA kit (ThermoFisher Scientific). RNA and conditioned media were collected and stored
at −80 ◦C·for future analysis.

After differentiation in osteogenic media, each well was washed with deionized water
and fixed for 1 h in 4% PFA before being stained with 5% Alizarin Red for 20 min (Sigma-
Aldrich). Images were then acquired at 20× magnification on a Nikon Eclipse TE200
microscope equipped with Nikon Digital Camera DXM1200F and Nikon ACT-1 software
version 2.7 (Nikon, Melville, NY, USA).

2.5. Co-Culture of ASCs with Monocyte-Derived Macrophages

Human whole blood was purchased from the Stanford Blood Center. Monocytes were
isolated from these samples using EasySep Human Monocyte Isolation (STEMCELL Tech-
nologies, Vancouver, BC, Canada), according to the manufacturer’s protocol. Macrophage
differentiation of monocytes was carried out by plating the cells at 1 × 105 cells/cm2 in the
bottom well of a Corning Transwell and culturing them in growth medium supplemented
with 100 ng/mL macrophage colony-stimulating factor (MCSF, R&D Systems, Minneapolis,
MN, USA) for six days. A pro-inflammatory (M1) phenotype was induced by treating the
macrophages with both 20 ng/mL interferon-gamma (INF-γ, R&D systems and 10 ng/mL
lipopolysaccharides (LPS, R&D systems) for 48 h. An anti-inflammatory (M2) phenotype
was induced by treating the macrophages with 20 ng/mL IL-4 (R&D Systems). All ex-
periments were conducted with pooled IPFP ASC lines from three patients. A total of
0.25 million IPFP-ASCs were seeded on the 0.4 µm pore insert of Transwell culture plates
and allowed to acclimate for 24 h in growth medium before the inserts were placed in
co-culture with the M0, M1, or M2 macrophages. Then, the co-cultures were cultured for
72 h before the media and RNA were collected from the IPFP-ASCs and the macrophages
for analysis by RT-PCR.

2.6. IL-1β Induction

IPFP-ASCs were cultured to 70% confluency in growth medium for six days, with
the medium refreshed after three days. The medium was then replaced with growth
medium supplemented with 10 ng/mL IL-1β and the cells were cultured for an additional
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24 h (PeproTech, Rocky Hill, NJ, USA). RNA and conditioned media were collected for
future analysis.

2.7. Quantitative Polymerase Chain Reaction (qPCR)

RNA extraction of all samples was done using RNeasy Microkit (Qiagen, Germantown,
MD, USA) according to the manufacturer’s protocol. Then, reverse transcription was done
with 1 µg of RNA using a High-Capacity cDNA Reverse Transcription Kit containing
RNase Inhibitor (ThermoFisher Scientific).

qPCR was performed with SsoAdvanced Universal SYBR Green Supermix (Bio-Rad,
Hercules, CA, USA) with custom primers purchased from Integrated DNA Technologies
(IDT, Newark, NJ, USA). Gene-specific primer sequences are listed in Table 2. The fold
change in gene expression was calculated using the -∆∆CT method and the expression of
the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as a housekeeping
gene. The reference group for all experiments was Non-T2D IPFP-ASCs.

Table 2. Primer Sequences for RT-PCR.

Name Forward (5′-3′) Reverse (5′-3′)

GAPDH TGGTGCTCAGTGTAGCCCAG GGACCTGACCTGCCGTCTAG
PPARγ AGGCGAGGGCGATCTTG CCCATCATTAAGGAATTCATGTCATA

ADIPOQ AACATGCCCATTCGCTTTAC AGAGGCTGACCTTCACATCC
LEP GAAGACCACATCCACACACG AGCTCAGCCAGACCCATCTA

FABP4 AGCACCATAACCTTAGATGGGG CGTGGAAGTGACGCCTTTCA
PL1N ACAAGTTCAGTGAGGTAG CCTTGGTTGAGGAGACAG
LPL GAGATTTCTCTGTATGGCACTG CTGCAAATGAGACACTTTCTC

FOXG1 GGCAAGGGCAACTACTGGAT CTGAGTCAACACGGAGCTGT
IRS2 TCTCAGGAAAAGCAGCGAGG TCACGTCGATGGCGATGTAG
IL-33 GCCTTGTGTTTCAAGCTGGG CCAAAGGCAAAGCACTCCAC

ICAM-1 ACCATCTACAGCTTTCCGGC CAATCCCTCTCGTCCAGTCG
IGFBP5 AAGCCTCCCTCACTCTCCAT TTCCTCCCCACATCGACTCT

IL-1β TCCCCAGCCCTTTTGTTGA TTAGAACCAAATGTG
TNFα TCTTCTCGAACCCCGAGTGA CCTCTGATGGCACCACCA
CCL-5 CCCCATATTCCTCGGACACC TCCTTGACCTGTGGACGACT
COX-2 TTGCTGGCAGGGTTGCTGGTGGTA CATCTGCCTGCTCTGGTCAATCGAA

2.8. Enzyme-Linked Immunosorbent Assay (ELISA)

The conditioned cell culture media samples were cleared by centrifugation at 1000× g
for 1 min and stored at −80 ◦C until use. Then, the media samples were brought to
room temperature before analysis using a PGE2 ELISA kit according to the manufacturer’s
protocols (Pierce BCA kit, ThermoFisher Scientific). Absorbance at 450 nm was measured
using a SynergyTM HTX Multi-Mode Microplate Reader. The ELISA data were expressed
as a function of total protein content.

2.9. Statistical Analysis

Statistical analyses were performed using GraphPad 8.3 software (GraphPad). Statisti-
cal significance between 7-day confluent control and experimental groups was determined
using two-tailed Student’s t-tests. Statistical significance between non-T2D, pre-T2D, and
T2D experimental groups was determined using ordinary one-way ANOVA with Tukey
posthoc analysis. All data represent the mean ± standard error, and all experiments were
performed in triplicates. Significance was assessed as p < 0.05 and is denoted by *, with
** for p < 0.01, *** for p < 0.001, and **** for p < 0.0001.

3. Results
3.1. Altered Cell Surface Antigen Expression in Pre-T2D IPFP ASCs

Standard ASC characterization methods were used to assess the stemness of IPFP-
ASCs. All groups of IPFP-ASCs exhibited fibroblastic cell morphology similar to subcuta-
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neous ASCs (data not shown) after the first passage. The profiling of cell surface markers
by flow cytometry demonstrated robust expression of CD90 and CD105 (~95%) and re-
duced CD73 (~75%) expression in Non-T2D and T2D IPFP-ASCs (Figure 1A) along with
undetectable expression of CD3, CD14, CD31, and CD45 cell surface markers (Figure 1A,
Supplementary Figure S1). Pre-T2D IPFP-ASCs demonstrated a significant reduction in
CD90 and CD105 compared to Non-T2D and T2D IPFP-ASCs without a corresponding
increase in CD3, CD14, CD31, or CD45 expression (Figure 1A, Supplementary Figure S1).
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Figure 1. Decreased expression of CD90, CD73, and CD105 on Pre-T2D IPFP-ASCs. (A) Flow
cytometry for CD90 and CD105 demonstrated decreased expression in Pre-T2D IPFP-ASCs compared
to those from Non-T2D and T2D groups (n = 3, * p < 0.05). (B) CFU assay illustrated increased
self-renewal properties in T2D IPFP-ASCs compared to Non-T2D (n = 3, * p < 0.05). (C–F) RT-qPCR
for common adipokines in ASCs and adipocyte differentiated ASCs demonstrated no significant
difference in adipogenic potential between Non-T2D, Pre-T2D, and T2D IPFP-ASCs (n = 3, * p < 0.05,
*** p < 0.001, **** p < 0.0001). Non-T2D IPFP ASCs 7-Day is the control Group set as 1. Non-T2D: IPFP-
ASCs from donors without Type II diabetes mellitus, Pre-T2D: IPFP-ASCs from donors with pre-Type
II diabetes mellitus, T2D: IPFP-ASCs from donors with type II diabetes mellitus, 7D: Confluent ASCs,
AQ: Adipocyte Differentiated ASCs.
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Furthermore, Pre-T2D IPFP-ASCs tended to exhibit increased CFU activity compared
to Non-T2D IPFP-ASCs, while T2D IPFP-ASCs showed significantly elevated CFU activity
compared to Non-T2D IPFP-ASCs (Figure 1B). Adipogenic differentiation of all samples
for 28 days resulted in the expected increase in expression of peroxisome proliferator-
activated receptor (PPARγ), glucose transporter type 4 (GLUT4), adiponectin (ADIPOQ),
and perilipin (PL1N) (Figure 1C–F). No differences in the expression levels of PPARγ,
GLUT4, ADIPOQ, or PL1N were noted among the groups. Oil Red O staining of adipogenic
differentiated IPFP-ASCs illustrated accumulation of neutral lipid droplets after culture
for 28 days (Figure 2A–C). Quantification of the Oil Red O staining revealed no signifi-
cant differences in the levels of lipid accumulation among adipocytes differentiated from
Non-T2D, Pre-T2D, and T2D cells (Figure 2D). In addition, there were no notable differ-
ences in osteogenic differentiation between Non-T2D, Pre-T2D, and T2D sample groups
(Supplementary Figure S2).
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Figure 2. No significant differences in adipogenesis between IPFP-ASCS isolated from Non-T2D,
Pre-T2D, and T2D donors. (A–C) Oil Red O representative image of IPFP-ASC cultured in AdipoQual
media for 28 Days (Scale Bar: 100 µm). (D) Isopropanol destaining of IPFP-ASCs cultured for 28 days
in growth media or AdipoQual Media for 28 days (n = 3, * p < 0.05, ** p < 0.01,). Non-T2D: Non-Type
II diabetes mellitus, Pre-T2D: Pre-Type II diabetes mellitus, T2D: Type II diabetes mellitus.

3.2. Decreased COX-2 and IL-6 Gene Expression in Adipogenically Differentiated IPFP-ASCs

Analysis of the levels of gene expression for inflammatory mediators and diabetes-
associated signaling factors, including COX-2, chemokine ligand 5 (CCL-5), IL-6, LEP,
intercellular adhesion molecule 1 (ICAM-1), insulin-like growth factor-binding protein 5
(IGFBP5), insulin receptor substrate 2 (IRS-2), forkhead box G1 (FOXG1), and IL-33 in Non-
T2D, Pre-T2D, and T2D IPFP-ASCs demonstrated significant increases in the mRNA levels
for both COX-2 and CCL-5 in undifferentiated Pre-T2D samples compared to non-T2D and
T2D samples (Figure 3A,B). After adipogenic differentiation, a significant decrease in IL-6
and COX-2 gene expression was noted in all groups compared to their undifferentiated
state (Figure 3A,C). Substantial reductions in mRNA expression levels were detected for
LEP, CCL-5, ICAM-1, and IGFBP5, and an increase in IRS-2 in differentiated Non-T2D
IPFP-ASCs compared to Non-T2D IPFP-ASCs (Figure 3B,D–G) was detected. Interestingly,
FOXG1 gene expression increased in undifferentiated and differentiated Pre-T2D IPFP-
ASCs compared to Non-T2D and T2D ASCs (Figure 3H). Finally, significantly suppressed
expression of both IL-33 and IGFBP5 was noted in differentiated T2D IPFP-ASCs compared
to undifferentiated T2D-IPFP ASCs (Figure 3F,I).
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Figure 3. (A–I) Decreased expression of pro-inflammatory cytokines by IPFP-ASCs after adipocyte
differentiation. (n = 3, * p < 0.05, ** p < 0.01, **** p < 0.0001). Non-T2D: Non-Type II diabetes mellitus,
Pre-T2D: Pre-Type II diabetes mellitus, T2D: Type II diabetes mellitus.

3.3. Increased COX-2, IL-6 and FOXG1 Gene Expression in IL-1β Stimulated Pre-T2D
IPFP-ASCs

Exposure of ASCs to IL-1β is a standard technique to induce proinflammatory de-
generative features in vitro models. It was used in these studies to simulate an OA-like
inflammatory environment [39]. After IL-1β stimulation, IPFP-ASCs exhibited significant
increases in the expression of both IL-6 and COX-2 in all three groups compared to their
respective unstimulated counterparts (Figure 4A,C). Additionally, there was a significant in-
crease in IL-1β expression and a decrease in TNFα expression in IL-1β stimulated Non-T2D
and T2D IPFP-ASC sample groups (Figure 4D,E). T2D IPFP-ASCs exhibited a significant
increase in the expression of IL-33 compared to their undifferentiated controls (Figure 4I).
Interestingly, the expression of IL-10, considered a potent anti-inflammatory cytokine, was
significantly reduced in IL-1β stimulated Non-T2D IPFP-ASCs compared to IPFP-ASC con-
trol. However, IL-1β significantly stimulated IL-10 expression in T2D IPFP-ASCs compared
to their non-IL-1β treated controls (Figure 4F). Furthermore, after IL-1β stimulation, there
was a significant increase in IL-10 expression in T2D IPFP-ASCs compared to Non-T2D
and Pre-T2D IPFP-ASCs (Figure 4F). Expression levels of COX-2, IRS-2, and FOXG1 were
also significantly elevated in IL-1β stimulated Pre-T2D IPFP-ASCs compared to IL-1β
stimulated Non-T2D and T2D IPFP-ASCS (Figure 4A,G,H). In addition, TNFα expression
was significantly increased in IL-1β stimulated Pre-T2D IPFP-ASCs compared to Non-T2D
IPFP-ASCs (Figure 4D).
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Figure 4. (A–I) Increased expression of COX-2 in Pre-T2D IPFP-ASCs compared to Non-T2D and
T2D IPFP-ASCs before and after IL-1β treatment. (n = 3, * p < 0.05, ** p < 0.01, *** p < 0.001). Non-T2D:
Non-Type II diabetes mellitus, Pre-T2D: Pre-Type II diabetes mellitus, T2D: Type II diabetes mellitus.

3.4. Reduced Expression of TNFα and IL-6 in M1 Macrophages Co-Cultured with Pre-T2D
IPFP-ASCs

The activity of synovial macrophages is a crucial component in OA progression, and
ASCs are known to modulate their activity [4]. Decreased levels of expression of both TNFα
and IL-6 mRNAs were detected in M1 macrophages co-cultured with Pre-T2D and T2D
IPFP-ASCs (Figure 5A,C). However, when co-cultured with Pre-T2D IPFP-ASCs, TNFα
and IL-6 mRNA expression levels in M1 cells were equivalent to the levels observed in M0
and M2 macrophages (Figure 5A,C). Conversely, there was a significant decrease in IL-10
gene expression by M1 macrophages co-cultured with Pre-T2D IPFP-ASCs, compared to
co-cultured M0 or M2 macrophages (Figure 5D).
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Figure 5. Decreased TNFα and IL-6 expression by M1 macrophages after co-culture with Pre-T2D
IPFP-ASCs. (A–D) Macrophage mRNA expression determined by RT-qPCR (n = 3, * p < 0.05,
** p < 0.01, *** p < 0.001, **** p < 0.0001). Control Group: M0 Macrophages Co-cultured with Non-
T2D-IPFP ASCsNon-T2D: Non-Type II diabetes mellitus, Pre-T2D: Pre-Type II diabetes mellitus, T2D:
Type II diabetes mellitus.

3.5. Decreased Expression of Leptin and IL-10 and Increased Expression of COX-2 and FOXG1 in
Pre-T2D IPFP-ASCs Co-Cultured with M1 Macrophages

When co-cultured with M1 macrophages, Pre-T2D and T2D IPFP-ASCs exhibited a sig-
nificant decrease in LEP expression and a significant increase in IL-6 expression compared
to naïve IPFP-ASCs (Figure 6C,E); Pre-T2D IPFP-ASCs also demonstrated a significant
decrease in IL-10 and IRS-2 expression compared to naïve IPFP-ASCs (Figure 6B,G). Addi-
tionally, IL-10 expression levels in Pre-T2D IPFP-ASCs decreased significantly compared to
Non-T2D and T2D IPFP-ASCs when co-cultured with M1 macrophages (Figure 6B). The
Non-T2D IPFP-ASCs and T2D IPFP-ASCs showed a significant decrease in TNFα expression
compared to their naïve control when co-cultured with M1 macrophages (Figure 6D). COX-
2 expression by Non-T2D, Pre-T2D, and T2D IPFP-ASCs was significantly increased after
co-culture with M1-induced macrophages (Figure 6A). Moreover, ICAM1 expression was
significantly elevated in Non-T2D IPFP-ASCs co-culture with M1 macrophages (Figure 6F).
FOXG1 expression was increased in Pre-T2D IPFP-ASCs compared to Non-T2D and T2D
IPFP ASCs (Figure 6H). After co-culture with M2-induced macrophages, IPFP-ASCs exhib-
ited a significant decrease in TNFα, IL-1β, and IL-6 (Supplementary Figure S3).
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Figure 6. Increased IL-6 and Cox-2 expression by Pre-T2D and T2D IPFP-ASCs after co-culture with
M1 Macrophages. (A–H) IPFP-ASC mRNA expression determined by RT-PCR (n = 3, * p < 0.05,
** p < 0.01, *** p < 0.001, **** p < 0.0001). Reference Group: Non-T2D, 7 Day. Non-T2D: Non-Type II
diabetes mellitus, Pre-T2D: Pre-Type II diabetes mellitus, T2D: Type II diabetes mellitus.

3.6. Increased PGE2 Secretion by Pre-T2D IPFP-ASCs

COX-2, a synthase for PGE2, is a common target for nonsteroidal anti-inflammatory
drugs (NSAIDs) prescribed to OA patients [39,40]. A significant decrease in PGE2 levels
was detected in the conditioned medium of T2D IPFP-ASCs, whereas Non-T2D IPFP-ASCs
and Pre-T2D IPFP-ASCs showed increased PGE2 production (Figure 7A). Adipogenic
differentiation of the three cell types revealed no significant difference in the production of
PGE2 (Figure 7B). However, IL-1β stimulation of Pre-T2D IPFP-ASCs showed significantly
more PGE2 production than stimulated Non-T2D and T2D IPFP-ASCs (Figure 7C). No
significant differences were detected when co-cultured with M1 macrophages; however,
Pre-T2D IPFP-ASCs showed higher concentrations (Figure 7D). All samples co-cultured
with M2-induced macrophages had undetectable levels of PGE2 (data not shown).
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Figure 7. Increased PGE2 concentration in Pre-T2D IPFP-ASC conditioned media after induction with
IL-1β. (A–D) PGE2 Concentration as determined by ELISA per total protein content as determined
by BCA (n = 3, * p < 0.05). Non-T2D: Non-Type II diabetes mellitus, Pre-T2D: Pre-Type II diabetes
mellitus, T2D: Type II diabetes mellitus.

4. Discussion

The data presented in this study demonstrate that IPFP-ASCs derived from Pre-T2D
patients have a distinct expression of the pattern of COX-2 when compared to IPFP-ASCs
isolated from Non-T2D and T2D patients. When co-cultured with M1 macrophages, Pre-
T2D IPFP-ASCs demonstrated an increase in IL-6 gene expression compared to Non-T2D
and T2D IPFP-ASCs. In addition, M1 macrophages showed reduced gene expression of
TNFα and IL-6 after exposure to Pre-T2D IPFP-ASCs. Traditionally, samples collected from
T2D patients represent the impact of type II diabetes mellitus on IPFP-ASCs [41]; however,
a requirement for knee replacement surgery is that each patient must have their diabetes
well controlled before surgery. Our data suggest that drugs administered to treat T2D could
potentially impact experimental outcomes. Goldman et al. found in a long-term patient
study that lifestyle changes and Metformin, a commonly prescribed treatment for T2D
patients, are associated with decreases in adiponectin, leptin, and IL-6 serum levels [42].

Furthermore, Jenkins et al. found that serum IL-10 and LEP levels decreased in a T2D
rat model after exercise treatment and delivery of Metformin [43]. Commonly, preparation
for total knee arthroplasty for T2D patients entails an aggressive treatment program to bring
their T2D symptoms under control, which raises concern over the effect of treatment on the
inflammatory properties of ASCs. Therefore, we included a third sample group of patients
diagnosed as pre-diabetic by their primary care physicians. This group was included
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because they have been diagnosed with heightened serum glucose levels, a potential
proinflammatory condition, but have not yet received extensive treatments for T2D.

Most of the disparate properties of IPFP-ASC were described when comparing the
Pre-T2D samples and the other two groups. While the cell surface markers CD73, CD90,
and CD105, are expressed by ASCs, the non-T2D and T2D cell populations exhibited robust
CD73, CD90 and CD105. However, a significant reduction in CD90 and CD105 was detected
in the pre-T2D cells without a corresponding increase in other markers. Nawrocka et al.
demonstrated that T2D ASCs isolated from subcutaneous adipose tissue (ScAT-ASCs) have
similar expression of CD90, CD73, and CD105 to Non-T2D ScAT-ASCs [44]. However,
Ferrer et al. found a decrease in CD90, CD73, and CD105 of ScAT-ASCs isolated from
a murine T2D model [45]. This is the first investigation into CD90, CD73, and CD105
expression of human ASCs derived from adipose collected from Pre-T2D patients. We
hypothesize that changes in cell surface markers by Pre-T2D IPFP-ASCs could result from
microenvironmental changes in the adipose tissue depot due to the onset of T2D. The
decrease in CD105 expression has been associated with the differentiation of ASCs [45].
Thus, changes in the cellular composition of the IPFP after T2D initiation could partially
be accounted for by IPFP-ASC differentiation. The sub-population of Pre-T2D IPFP-ASCs
negative for CD90, CD73, and CD105 could be in the beginning stages of differentiation.
Bi-lineage differentiation assays revealed no notable differences in adipogenic or osteogenic
differentiation potential of Pre-T2D IPFP-ASCs compared to Non-T2D IPFP-ASCs. How-
ever, a decrease in differentiation potential may have been detected if the changes in cell
surface markers indicated the beginning stages of differentiation.

Notably, COX-2 expression was increased in Pre-T2D IPFP-ASCs compared to Non-
T2D and T2D IPFP-ASCs in an unstimulated state and again after IL-1β stimulation.
The COX-2 enzyme is responsible for PGE2 synthesis [46,47]. When stimulated with
IL-1β, PGE2 concentrations in Pre-T2D conditioned media were significantly higher as
compared to media conditioned by Non-T2D and T2D IPFP-ASCs. Human cartilage
explants exhibited a PGE2 dose-dependent response towards the elevated expression of
MMP-13 and ADAMTS-5, typically found at elevated levels in OA synovial fluids [48,49].
For this reason, COX-2 inhibitors such as celecoxib are common medications prescribed to
OA patients to reduce local inflammation, and PGE2 function is largely considered catabolic
in cartilage tissue [47,48]. The increased expression of COX-2 and concentration of PGE2 by
Pre-T2D IPFP-ASCs suggests heightened concentrations of PGE2 in the IPFP that would
diffuse into the joint space. Long-term disruptive synovial PGE2 concentration in Pre-T2D
patients could induce a more catabolic state within cartilage and increase the risk of OA
after joint injury.

Synovial macrophages play an essential role in cartilage catabolism and the persis-
tence of the inflammatory state within cartilage in OA [4,50]. Macrophages are broadly
classified into three functional categories, a resting (M0) phenotype, a pro-inflammatory
(M1) phenotype and an anti-inflammatory (M2) phenotype [51]. It is commonly believed
that OA patients have increased M1 activity by synovial macrophages, which may be
linked to aberrant immunomodulation by IPFP-ASCs in T2D patients. When co-cultured
with M1 macrophages, Pre-T2D IPFP-ASCs exhibited increased expression of IL-6 and
a decrease in IL-10, suggesting they promote increased M1 induction of macrophages
in an inflammatory environment. In fact, after co-culture with Pre-T2D IPFP-ASCs, M2
macrophages exhibited an altered cytokine expression pattern towards an M1 phenotype.
In addition, PGE2 expression has been found to increase the anti-inflammatory properties
of ASCs through an IL-6-dependent pathway [52,53]. Although COX-2 expression levels
were not found to be different between Non-T2D, Pre-T2D, and T2D IPFP ASCs co-cultured
with M1 macrophages, there was a significant increase in IL-6 expression. The adjacency of
the IPFP to the synovium has led to the belief that the IPFP and the synovium may act as a
morpho-functional unit, as reviewed by Macchi [54].

Furthermore, Stocco et al. demonstrated increased expression of HLA-DR, Fas, and
FasL by IPFP-ASCs isolated from OA patients, indicating a response of the IPFP to synovial
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inflammation [55]. We hypothesize that IPFP-ASCs are primed toward increasing COX-2
expression in Pre-T2D patients by exposure to chronic low-grade inflammation associated
with diabetes. While higher COX-2 expression increases the anti-inflammatory potential
of IPFP-ASCs, the elevated PGE2 concentrations in the IPFP may induce a more catabolic
state in cartilage. Future work will focus on balancing COX-2 expression in IPFP-ASC and
synovial PGE2 activity.

Pre-T2D IPFP ASCs also demonstrated a robust increase (fold change >1000) in FOXG1
expression compared to Non-T2D IPFP ASCs in all experimental conditions, reaching sig-
nificance after IL-1β stimulation. FOXG1 is a known inhibitor of FOXO and inhibits the
PI3K pathway, a major downstream pathway of insulin receptors [56,57]. Loss of FOXO
expression has been implicated in the maintenance of insulin resistance in T2D patients, as
reviewed by Maiese et al., but little is known about the mechanism of action [58]. Because
the FOXG1/FOXO mode of action in diabetes has yet to be elucidated, it is difficult to say
what functional role FOXG1 plays in IPFP-ASCs. However, increased FOXG1 expression
does imply that Pre-T2D IPFP-ASCs are exhibiting a diabetes-related genotype. In addition,
there is evidence of nerve ingrowth into the cartilage and osteochondral junction in mid to
late-stage OA, possibly in an attempt to regulate cartilage degradation [59]. The IPFP also
contains nociceptive receptors responsive to IL-1β, IL-6, and TNFα [34,60]. FOXG1 expres-
sion in ASCs is commonly studied as a transcription factor for neuronal differentiation [61].
Thus, the upregulation of FOXG1 may suggest an increase in neuronal Pre-T2D IPFP-ASC
differentiation potential that could account for increased pain and sensitivity experienced
by OA patients.

These studies have established critical transcriptional differences between Non-T2D
IPFP-ASCs, Pre-T2D IPFP-ASCs, and T2D IPFP-ASCs that suggest the Pre-T2D condition
increases the sensitivity of IPFP-ASCs to a proinflammatory environment. However, many
differences between Non-T2D IPFP-ASCs and Pre-T2D IPFP-ASCs were not found in T2D
IPFP-ASCs. As noted above, typical T2D treatments have successfully reduced serum levels
of LEP and IL-6. Similarly, T2D therapies appear to be effective in returning the expression
of LEP and IL-6 by IPFP-ASCs to levels found in Non-T2D, suggesting that earlier T2D
intervention may be required, especially in patients who also exhibit OA symptoms.

While all cell types exhibited clonogenic ability, the T2D IPFP-ASCs had significantly
increased clonogenic efficiency than the Non-T2D IPFP-ASCs. Nawrocka et al. demon-
strated that T2D ScAT-ASCs had suppressed clonogenic expression more than Non-T2D
Sc-AT-ASCs. In contrast, Cramer et al. found that long-term high glucose exposure does not
significantly impact the clonogenic ability of ASCs [29]. Previously, the same group demon-
strated that exposure to basic fibroblast growth factor (bFGF) ameliorates T2D-associated
changes in clonogenic ability by ScAT-ASCs; however, bFGF was not investigated in this
study [44] Other limitations include (1) lack of information from the clinician about the
patient’s treatment which might influence the stemness of IPFP-ASCs and (2) all cells were
isolated from patients undergoing knee arthroplasty in response to severe OA symptoms.
(3) OA-associated synovial inflammation may have obscured potential differences between
Non-T2D, Pre-T2D, and T2D patients due to the overlap of inflammatory pathways between
T2D and OA.

The data presented here demonstrate both catabolic and anabolic alterations in Pre-
T2D IPFP-ASCs, leading to uncertainty about the overall effect of T2D on OA. Future
studies will utilize these characterized IPFP-ASC populations co-cultured with osteoblasts,
chondrocytes, and synovial fibroblasts to investigate adipose-mediated diabetic compli-
cations associated with OA and the impact of diabetes on chondrocyte activity. This
can be done using standard transwell cultures and our previously published OA knee
microphysiological system [39,62,63].

5. Conclusions

The observations reported here suggest that IPFP-ASCs may contribute to an enhanced
immune response through the increased expression of COX-2 and IL-6 when stimulated with
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IL-1β or co-cultured with M1 macrophages. Moreover, Pre-T2D IPFP-ASCs have elevated
expression of COX-2 and enhanced production of PGE2 under inflammatory conditions.
Our data suggest that while IPFP-ASCs may have therapeutic potential due to their anti-
inflammatory and differentiation properties, exposure to a pro-inflammatory environment,
e.g., IL-1β stimulation and diabetic status, may reduce these therapeutic properties.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cells11152367/s1, Figure S1: Decreased expression of CD90, CD73,
and CD105 by Pre-T2D IPFP-ASCs; Figure S2: Alizarin Red representative image of IPFP-ASCs
cultured in pro-osteogenic media for 28 days; Figure S3: Decreased TNFα, IL-1β, and IL-6 expression
by M2 stimulated macrophages after co-culture with Pre-T2D IPFP-ASCs.
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