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OBJECTIVE—Vitamin D deficiency (25-hydroxyvitamin D
[25(OH)D] ,50 nmol/L) is commonly reported in both children
and adults worldwide, and growing evidence indicates that vita-
min D deficiency is associated with many extraskeletal chronic
disorders, including the autoimmune diseases type 1 diabetes and
multiple sclerosis.

RESEARCH DESIGNANDMETHODS—Wemeasured 25(OH)D
concentrations in 720 case and 2,610 control plasma samples and
genotyped single nucleotide polymorphisms from seven vitamin D
metabolism genes in 8,517 case, 10,438 control, and 1,933 family
samples. We tested genetic variants influencing 25(OH)D metabo-
lism for an association with both circulating 25(OH)D concen-
trations and disease status.

RESULTS—Type 1 diabetic patients have lower circulating
levels of 25(OH)D than similarly aged subjects from the British
population. Only 4.3 and 18.6% of type 1 diabetic patients reached
optimal levels ($75 nmol/L) of 25(OH)D for bone health in the
winter and summer, respectively. We replicated the associations
of four vitamin D metabolism genes (GC, DHCR7, CYP2R1, and
CYP24A1) with 25(OH)D in control subjects. In addition to the
previously reported association between type 1 diabetes and
CYP27B1 (P = 1.4 3 1024), we obtained consistent evidence of
type 1 diabetes being associated with DHCR7 (P = 1.2 3 1023)
and CYP2R1 (P = 3.0 3 1023).

CONCLUSIONS—Circulating levels of 25(OH)D in children and
adolescents with type 1 diabetes vary seasonally and are under
the same genetic control as in the general population but are
much lower. Three key 25(OH)D metabolism genes show
consistent evidence of association with type 1 diabetes risk,
indicating a genetic etiological role for vitamin D deficiency in
type 1 diabetes. Diabetes 60:1624–1631, 2011

V
itamin D deficiency is commonly reported in both
children and adults (1), and the well-established
musculoskeletal consequences include osteoma-
lacia, a softening of bones caused by defective

bone mineralization (known as rickets in children), and
osteoporosis, a reduced bone mineral density and de-
terioration in structural bone strength. Other more recently
reported consequences are the extraskeletal conditions,
which include common cancers (2,3) and coronary artery
(4) and autoimmune diseases. The autoimmune or immune-
mediated diseases include type 1 diabetes, multiple sclero-
sis, Crohn’s disease, and rheumatoid arthritis (5–8). In type 1
diabetes, vitamin D supplementation has been shown to
be protective against this chronic disorder (5), caused by
T-cell–mediated destruction of insulin-producing b-cells in
the pancreas.

The main source of vitamin D is through the action of
sunlight (ultraviolet B irradiance) on the skin, which
results in the endogenous production of vitamin D3 (cho-
lecalciferol). The only other source is exogenous, through
diet as either vitamin D2 (ergocalciferol) or D3. Vitamin D
enters the circulation bound to vitamin D–binding proteins
(DBPs) and lipoproteins and is released to the liver and
hydroxylated to form 25-hydroxyvitamin D [25(OH)D]. A
subject’s vitamin D status is routinely determined by their
levels of 25(OH)D, the inactive circulating form of vitamin
D and an established marker of vitamin D availability (7),
which has a half-life of 2 weeks (9). 25(OH)D is hydrox-
ylated in the kidneys or in cells of the immune system by
the CYP27B1 enzyme (CYP1a) to form 1,25-dihydrox-
yvitamin D [1,25(OH)2D, calcitriol], the biologically active
form responsible for maintaining calcium and phosphorus
homeostasis (9).

A substantial proportion of 25(OH)D variation has been
attributed to genetic factors, with heritability estimates of
28.8% (10) and 43% (11) reported. A recent genome-wide
association (GWA) meta-analysis of circulating levels of
25(OH)D in 33,996 samples of European descent from 14
cohorts reported convincing evidence for four loci, namely
GC/4p12 (rs2282679 P = 1.9 3 102109), DHCR7/11q12
(rs12785878 P = 2.1 3 10227), CYP2R1/11p15 (rs10741657
P = 3.33 10220), and CYP24A1/20q13 (rs6013897 P = 6.03
10210) (12). These single nucleotide polymorphisms
(SNPs) are within or near genes involved in vitamin D
transport (GC), cholesterol synthesis (DHCR7), and hy-
droxylation (CYP2R1 and CYP24A1). No loci linked to
skin pigmentation were detected, despite being a major
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factor in determining 25(OH)D concentrations. More re-
cently, vitamin D receptor (VDR)-binding sites were re-
ported to be overrepresented near genes associated with
type 1 diabetes, Crohn’s disease, and rheumatoid arthritis
(13).

Recent evidence indicates that the production and deg-
radation of 1,25(OH)2D is a major signaling component in
both the innate (14) and adaptive (15) immune systems.
Vitamin D signaling plays an essential role in the activation
of monocytes/macrophages in response to infection (14)
and possibly in naïve T-cell activation (15,16). These cell
populations are central to the development of the auto-
immune disease type 1 diabetes (17). However, the re-
lationship between circulating levels of 25(OH)D and
immune responsiveness is largely undefined (14).

Type 1 diabetes is a strongly inherited autoimmune
disease that affects ~0.4% of European ancestry pop-
ulations, and incidence has been increasing at 3% per year,
with a decreasing trend in age at diagnosis since the 1950s
(18). A large number of potential environmental exposures
correlate with type 1 diabetes incidence, including viral
infection, sanitation and improvements in health care,
and dietary intake. The effect of the vitamin D hormone
[1,25(OH)2D] in type 1 diabetes was first proposed based
upon the observation that incidence rates of type 1 di-
abetes were negatively correlated with sunlight exposure,
resulting in higher incidence at higher latitudes (1), and
the distinctive seasonal pattern in type 1 diabetes in-
cidence, with the largest proportion of cases diagnosed
during the winter and the lowest during the summer (19).
Subsequent evidence includes that type 1 diabetic patients
have lower levels of 25(OH)D than age- and sex-matched
control subjects (20,21), type 1 diabetic patients have de-
creased bone mineral density and a greater risk of frac-
tures compared with the general population (22), vitamin D
supplementation is reported to be protective against type 1
diabetes (5), the vitamin D hormone has widespread effects
in the immune system (14,15,23), and the gene CYP27B1,
which encodes the enzyme CYP1a that converts precursor
25(OH)D to 1,25(OH)D, shows association with type 1 di-
abetes (24,25) and multiple sclerosis (13,26) risk.

In the current study, we investigate the genetic re-
lationship between vitamin D and type 1 diabetes. This
includes a comparison between the vitamin D status of
similarly aged type 1 diabetic patients and subjects from
the British population and testing genetic variants influ-
encing 25(OH)D metabolism for an association with both
circulating levels of 25(OH)D and type 1 diabetes status.

RESEARCH DESIGN AND METHODS

A total of 8,517 British type 1 diabetic case subjects were recruited from pe-
diatric and adult diabetes clinics at 150 National Health Service hospitals across
the U.K. as part of the Genetic Resource Investigating Diabetes collection of
the Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and
Inflammation Laboratory (www.childhood-diabetes.org.uk/grid.shtml). The
British control subjects consisted of 7,320 subjects drawn from the British
1958 Birth Cohort (www.cls.ioe.ac.uk/studies.asp?section=000100020003) and
3,118 subjects drawn from the U.K. Blood Services Common Control Collec-
tion (UKBS-CC) (27,28).

A collection of 1,933 families (2,152 parent-child trios) were also genotyped,
consisting of 472 multiplex families from the Diabetes U.K. Warren Collection,
80 simplex families from Yorkshire (U.K.), 263 multiplex and simplex families
from Northern Ireland (U.K.), 423 simplex families from Romania, 335 multi-
plex families from the Human Biological Data Interchange (U.S.), and 360
simplex families from Norway. All subjects were of white European ancestry.
Genotyping and 25(OH)Dmeasurements. Before the GWAmeta-analysis of
25(OH)D concentrations (12), we (J.D.C., D.J.S., H.S., E.H., T.D.S., and J.A.T.)
genotyped 10 SNPs using TaqMan assays from six genes that encode proteins

that were established as major components of vitamin D metabolism (2), to
test for an association between vitamin D metabolism genes and circulating
levels of 25(OH)D and between vitamin D metabolism genes and type 1 diabetes.
The six vitamin D metabolism genes were CYP27A1/2q35 (rs17470271), GC/4p12
(rs4588 and rs7041), CYP2R1/11p15 (rs10741657 and rs12794714), VDR/12q13
(vitamin D receptor; rs2228570, rs1544410, and rs11568820), CYP27B1/12q14
(rs10877012), and CYP24A1/20q13 (rs2296241); severe mutations in these
genes cause rickets, affect bone metabolism, or, in the case of CYP2R1, can
cause 25(OH)D deficiency (24,29). The six vitamin D metabolism genes in-
cluded three of four loci subsequently discovered in the meta-analysis (12) to
be associated with circulating levels of 25(OH)D, although the SNPs geno-
typed were different, except for CYP2R1 (rs10741657). We genotyped the 10
SNPs in the case/control and family collections.

After the results were obtained for the GWA meta-analysis of 25(OH)D
concentrations (12), we also genotyped the loci DHCR7/11q12 (rs12785878) in
the case/control and family collections and CYP24A1/20q13 (rs6013897) in the
case/control collection. We did not genotype rs2282679 in GC because we had
already genotyped the nonsynonymous SNPs rs4588 (Thr→Lys; r2 = 0.85 with
rs2282679 in 60 CEU parents; www.1000genomes.org) and rs7041 (Asp→Glu;
r2 = 0.35 with rs2282679) from this gene.

We measured 25(OH)D concentrations for a subset of 2,610 UKBS-CC
control samples with the Wellcome Trust Case-Control Consortium (30)
Affymetrix version 6.0 chip (www.affymetrix.com) genotype data. We also
measured 25(OH)D concentrations for a subset of 720 type 1 diabetic case
subjects. 25(OH)D concentrations were determined by DiaSorin radioim-
munoassay (31). Blood samples were taken from the UKBS-CC control
subjects, who had a median age of 45 years (age range 17–65 years), between
September 2005 and February 2006, and from the type 1 diabetic patients,
who had a median age of 13 years (age range 3–72; median 12 years, range 4–
18) between March 2001 and November 2004. We used the mean of two 25
(OH)D concentrations, duplicates on the same plate, and read against the
same standard curves for type 1 diabetic patients. In addition, 25(OH)D
concentrations were available for 1,105 samples representative of the U.K.
from the 1997 National Diet and Nutrition Survey (NDNS) of young people
aged 4–18 years, carried out between January 1997 and January 1998 (32).
We analyzed 1,002 NDNS young people of white European ancestry and
a median age of 12 years. NDNS 25(OH)D concentrations were also de-
termined by DiaSorin radioimmunoassay.

25(OH)D concentrations were converted from ng/mL to nmol/L, for consis-
tency between studies, by multiplying by 2.496. We defined circulating levels of
25(OH)D as being severely deficient (,25 nmol/L) (15), deficient [25 nmol/L #
25(OH)D ,50 nmol/L], insufficient [50 nmol/L # 25(OH)D , 75 nmol/L], or
optimal ($75 nmol/L) for bone health (33). We defined U.K. seasons as winter
(December to February), spring (March to May), summer (June to August), and
autumn (September to November).
Statistical analyses. All statistical analyses were performed in either Stata
(www.stata.com) or R (www.r-project.org). The type 1 diabetic case subjects
with 25(OH)D concentrations were analyzed using linear regression models.
The 25(OH)D concentrations were natural log transformed to better approx-
imate a normal distribution, and covariates were selected using forward re-
gression. We note that we had a limited number of covariates available for
the type 1 diabetic patients; for example, BMI was not available. The log-
transformed 25(OH)D concentrations for the type 1 diabetic patients were
adjusted for age at bleed, month of bleed, age at diagnosis, and batch, and for
the UKBS-CC control subjects were adjusted for age at bleed, sex, BMI, month
of bleed, and geographical region (see below). We note, first, that despite the
correlation between age at bleed and age at diagnosis (r = 0.4, age at bleed
increases with age at diagnosis) in type 1 diabetic patients, both covariates
added to the model (P = 9.5 3 1028 and 0.016, respectively). Second, age at
bleed and duration of type 1 diabetes at bleed were highly correlated (r = 0.9;
age at bleed increases with duration of type 1 diabetes at bleed), as expected.

We imputed unobserved genotypes in the UKBS-CC control Affymetrix
version 6.0 data using IMPUTE (34,35) and the reference panel of known CEU
haplotypes provided by the International HapMap Project (36). We then tested
for an association with 25(OH)D concentrations using SNPTEST (35).

The case/control collection was analyzed using a logistic regression model,
adjusted for 12 geographical regions within the U.K. (southwestern, southern,
southeastern, London, eastern, Wales, midlands, northmidlands, northwestern,
east, West Riding, northern, and Scotland) to exclude the possibility of con-
founding by geography. These regions corresponded to the place of collection
for case and control subjects. Because the case and control subjects were well
matched for region, this stratification resulted in little loss of power (37). The
family collection was analyzed using the transmission disequilibrium test.

When testing for an association between type 1 diabetes and an SNP, we
performed a 1-degree of freedom (df) likelihood ratio test to determine whether
a 1-df multiplicative allelic-effects model or a 2-df genotype-effects model (no
specific mode of inheritance assumed) was more appropriate. We assumed
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a multiplicative allelic-effects model because it was not significantly different
from the genotype model for any of the SNPs analyzed. The scores and their
variances were summed to pool case/control and family information.

RESULTS

Seasonality of type 1 diabetes diagnosis.We confirmed
in 4,127 British type 1 diabetic patients with known month
of diagnosis, the previously reported (19) distinct seasonal
variation in the incidence of type 1 diabetes (Fig. 1), with
the largest proportion (14.0%) of patients diagnosed in
January and the lowest (6.4%) in May.
Vitamin D status in type 1 diabetic case subjects
compared with the general population. As an indication
of vitamin D status within type 1 diabetic patients com-
pared with the general population, we compared 618 type
1 diabetic patients aged 4–18 years with 1,002 NDNS young
people aged 4–18 years (32). Figure 2 shows that there was
seasonal variation in 25(OH)D concentrations in both
NDNS young people and type 1 diabetic patients (P = 3.93
10233 and 1.2 3 10225, respectively), with higher levels in
summer and autumn compared with winter and spring.

The majority of NDNS young people surveyed from the
general population had suboptimal levels of 25(OH)D (,75
nmol/L) even in the summer months, when only 46.4% had
optimal levels of 25(OH)D for bone health ($75 nmol/L;
Table 1). The suboptimal vitamin D status of the type 1
diabetic patients was even more pronounced with only
18.6% of patients having optimal levels of 25(OH)D in the
summer. The lowest proportion of subjects with optimal
levels of 25(OH)D was in spring (10.4% of NDNS young
people and 3.9% of type 1 diabetic patients). At the health-
threatening lower extreme, the highest proportion of
subjects with severely deficient levels of 25(OH)D (,25
nmol/L) (12,15) was in winter (6.9% of NDNS young people
and 16.5% type 1 diabetic patients), and the lowest pro-
portion in the summer (0.4% of NDNS young people and
1.1% of type 1 diabetic patients) (Table 1).

We fit a logistic regression model to test for an associ-
ation between vitamin D status and type 1 diabetes risk.
We adjusted for season, and the vitamin D status reference
group consisted of subjects with optimal levels of 25(OH)D
concentrations. The odds ratio (OR) for insufficient sub-
jects was 3.31 (95% CI 2.40–4.56), for deficient subjects
was 5.50 (3.89–7.77), and for severely deficient was 8.40
(4.74–14.90) (3-df P = 1.1 3 10225).
Vitamin D metabolism genes and 25(OH)D concen-
trations. We replicated the associations of the four
25(OH)D concentration loci (12) (GC [rs2282679, P = 8.93
10213], DHCR7 [rs12785878, P = 9.9 3 1024], CYP2R1
[rs10741657, P = 4.4 3 1023] and CYP24A1 [rs6013897, P =
0.016]), validating both our measurement of vitamin D
concentrations and SNP imputation (rs10741657) in 2,610
UKBS-CC control samples (Table 2). In the smaller sample
of 720 type 1 diabetic patients, we did not conduct SNP
imputation and, consequently, analyzed a proxy SNP for
rs2282679 (rs4588, see RESEARCH DESIGN AND METHODS) in GC.
We replicated the association of GC (rs4588 P = 5.23 10213)
and found some evidence for DHCR7 (rs12785878 P = 0.036)
and CYP24A1 (rs6013897 P = 0.054), thereby validating
our measurement of vitamin D concentrations. The SNP
effects on 25(OH)D concentrations were consistent be-
tween UKBS-CC control and type 1 diabetic patient sam-
ples. No evidence was found for CYP2R1 (rs10741657
P = 0.14) in the type 1 diabetic patients and for the re-
maining three vitamin D metabolism genes in UKBS-CC
control or type 1 diabetic patient samples (Table 2).
Vitamin D metabolism genes and type 1 diabetes. We
tested the four 25(OH)D concentration loci (12) for an
association with type 1 diabetes and found evidence of an
association with DHCR7 (rs12785878 T.G; OR for minor
allele 1.07 [95% CI 1.02–1.13]; P = 6.8 3 1023) in case/
control collections and some evidence (relative risk [RR]
1.10 [95% CI 0.99–1.21]; P = 0.067) in family collections
(combined P = 1.2 3 1023). There was consistent evidence
in the case/control and family collections for an association

FIG. 1. A bar chart of month of type 1 diabetes (T1D) diagnosis for
4,127 type 1 diabetic patients from the U.K.

FIG. 2. Box plots of 25(OH)D concentrations (nmol/L) in 618 type 1
diabetic (T1D) patients aged 4–18 years and 1,002 NDNS young people
aged 4–18 years, by season. Aut, autumn; Spr, spring; Sum, summer; and
Win, winter.
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with type 1 diabetes at both SNPs in CYP2R1 (combined
P # 3.6 3 1023; Table 3). We also found some evidence for
one of the GC SNPs (rs4588 C.A, OR 0.95 [95% CI 0.91–
1.00]; P = 0.050) in the case/control collection but not in
the family collection (P = 0.71). No evidence of an asso-
ciation was found in the case/control collection for
CYP24A1 (rs6013897 T.A; 1.00 [0.95–1.05]; P = 0.96).

In the remaining three vitamin D metabolism genes
(Table 3), there was only the previously reported asso-
ciation between type 1 diabetes and CYP27B1 (24)
(rs10877012 G.T; combined P = 1.4 3 1024).

DISCUSSION

We observed, as have others, the concordance between
seasonality of both type 1 diabetes diagnosis (Fig. 1) and
25(OH)D concentrations (Fig. 2), with the highest disease
incidence and lowest 25(OH)D concentrations in the
winter. We found that type 1 diabetic patients have lower
circulating levels of 25(OH)D than similarly aged subjects
from the British population (Table 1; Fig. 2), which is
consistent with the findings of two previous studies in Italy
(21) and Sweden (20). Importantly, the two previous
studies compared 25(OH)D concentrations of type 1 di-
abetic patients measured soon after diagnosis with age-
and sex-matched control subjects and, here, 25(OH)D
concentrations were measured at a median time of 5 years
(lower and upper quartiles 2 and 8 years, respectively)
after diagnosis. This indicates that the circulating levels of
25(OH)D are lower than in the general population soon
after diagnosis and remain lower several years after di-
agnosis, suggesting that the lower levels are not a conse-
quence of the proinflammatory immune system that exists
before and shortly after diagnosis (38). In addition, be-
cause the two previous studies (20,21) measured 25(OH)D
soon after diagnosis, the lower levels are unlikely to be
a consequence of treatment with insulin or dietary changes
following type 1 diabetes diagnosis.

As the musculoskeletal consequences of vitamin D de-
ficiency are well established, the proportion of young peo-
ple with severely deficient circulating levels of 25(OH)D is
of major concern. Based on the 1997 NDNS of young
people aged 4–18 years, .5% (26 of 453; Table 1) of young
people in winter and spring are severely deficient.

The comparison of 25(OH)D levels do not take into ac-
count covariates such as BMI. Bryden et al. (39) reported,
based on 76 type 1 diabetic patients aged 11–18 years (43
male and 33 female), that the BMI of female type 1 diabetic
patients was significantly greater than that of the general
population, which could be associated with a reduction in
25(OH)D concentrations (40). However, the observed dif-
ferences between 25(OH)D concentrations in type 1 di-
abetic patients and the general population are unlikely to
be explained by BMI differences alone because we found
no difference between 25(OH)D concentrations and type 1
diabetic patient sex (P = 0.42), and both male and female
type 1 diabetic patients have lower 25(OH)D concen-
trations than the general population (Table 1).

We replicated the associations of the four 25(OH)D
concentration loci in the UKBS-CC control subjects (P =
0.016 to 8.9 3 10213; Table 2), and three of four showed
evidence of disease association in the type 1 diabetic
patients (P = 0.054 to 5.2 3 10213; Table 2), despite the
small sample size (720 type 1 diabetic patients). The con-
sistency of the 25(OH)D concentration loci effects in type
1 diabetic patients and the UKBS-CC control subjects in-
dicate that type 1 diabetes itself is unlikely to confound or
mask these genetic associations, a valid concern given that
theoretically its treatment and renal complications (41)
could effect 25(OH)D concentrations. We note, however,
that inconsistent evidence of an association between gly-
cosylated hemoglobin and 25(OH)D levels has been
reported (20,40,42).

The four 25(OH)D concentration loci provide an un-
biased instrument to test the hypothesis that circulating

TABLE 1
Vitamin D status in 618 type 1 diabetic patients aged 4–18 years compared with 1,002 NDNS young people aged 4–18 years

Vitamin D status
Winter

(December to February)
Spring

(March to May)
Summer

(June to August)
Autumn

(September to November)

Severely deficient
Group
Type 1 diabetes 23 (16.5) 9 (5.9) 2 (1.1) 5 (3.3)
NDNS 18 (6.9) 8 (4.1) 1 (0.4) 4 (1.3)

Deficient
Group
Type 1 diabetes 79 (56.8) 72 (47.4) 45 (25.4) 57 (38.0)
NDNS 108 (41.5) 87 (45.1) 27 (11.4) 47 (15.1)

Insufficient
Group
Type 1 diabetes 31 (22.3) 65 (42.8) 97 (54.8) 70 (46.7)
NDNS 91 (35.0) 78 (40.4) 99 (41.8) 137 (43.9)

Optimal
Group
Type 1 diabetes 6 (4.3) 6 (3.9) 33 (18.6) 18 (12.0)
NDNS 43 (16.5) 20 (10.4) 110 (46.4) 124 (39.7)

Total number of subjects
Group
Type 1 diabetes 139 152 177 150
NDNS 260 193 237 312

We defined circulating levels of 25(OH)D as being severely deficient (,25 nmol/L) (15), deficient [25 nmol/L # 25(OH)D , 50 nmol/L],
insufficient [50 nmol/L # 25(OH)D , 75 nmol/L], or optimal [$75 nmol/L] for bone health (33).
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levels of 25(OH)D are linked to type 1 diabetes or, indeed,
to any other disease or trait in which a relationship with
vitamin D has been proposed. Consequently, we tested the
four 25(OH)D concentration loci along with the three
remaining vitamin D metabolism genes for an association
with type 1 diabetes. In addition to the previously reported
association between type 1 diabetes and CYP27B1 (24),
we found consistent statistical evidence of type 1 diabetes
being associated with DHCR7 (P = 1.2 3 1023) and
CYP2R1 (P = 3.0 3 1023) in both case/control and family
collections (Table 3). Importantly, the coefficients of both
of these 25(OH)D concentration loci show that the alleles
associated with lower levels of 25(OH)D have an increased
type 1 diabetes risk (Tables 2 and 3). There was some
evidence for GC (rs4588 P = 0.050) in the case/control
collection but not in the family collection (P = 0.71). A
study from Germany has also reported an association with
rs10741657/CYP2R1 in 203 type 1 diabetic families (RR
0.64 [95% CI 0.48–0.87]; P = 4 3 1023) and in 284 case and

294 control samples (OR 0.78 [95% CI 0.61–1.00]; P = 0.05)
(42). We note that the analysis of CYP27B1 included the
case/control samples analyzed previously with an addi-
tional 196 case and 1,680 control samples and 1,933 of
2,774 families analyzed previously (24). Bailey et al. (24),
in the 2,774 families, obtained more evidence of an asso-
ciation between type 1 diabetes and CYP27B1 (2,774
family P 5 3.9 3 1023; 1,933 family P 5 0.011, Table 3).

The most associated 25(OH)D concentration locus, GC,
only showed some evidence of an effect on type 1 diabetes
in the case/control collection, despite the fact that type 1
diabetic patients have lower levels of 25(OH)D than the
general population and two other 25(OH)D concentration
loci, DHCR7 and CYP2R1, were associated with type 1
diabetes. One possible explanation is that the GC locus
may only affect the levels of 25(OH)D bound to the DBP,
without altering the amount of free and unbound 25(OH)D.
Most circulating 25(OH)D is bound to DBP (80–90%) and
to albumin (10–20%), with,1% unbound (43). An additional

TABLE 2
Association between SNPs from vitamin D metabolism genes and 25(OH)D concentration (nmol/L)

Genes, SNPs, alleles

720 Type 1 diabetic patients 2,610 UKBS-CC control subjects

Regression model of log vitamin D
concentrations adjusted for month of bleed,
age at bleed, age at diagnosis, and batch

Regression model of log vitamin D
concentrations adjusted for month of bleed,

age at bleed, sex, and BMI

Coefficient for
minor allele SE

Likelihood ratio
test P (1 df)

Coefficient for
minor allele SE

Likelihood ratio
test P (1 df)

CYP27A1, rs17470271, A.T 20.190 0.355 0.59 23.94 3 1023 0.0115 0.73
GC, rs2282679, A.C — — — 20.106 0.0149 8.9 3 10213

GC, rs4588, C.A 22.77 0.375 5.2 3 10213 20.0869 0.0124 2.9 3 10212

GC, rs7041, G.T 21.68 0.347 1.6 3 1026 20.0748 0.0118 2.5 3 10210

DHCR7, rs12785878, T.G 20.829 0.395 0.036 20.0432 0.0131 9.9 3 1024

CYP2R1, rs10741657, G.A 0.531 0.357 0.14 0.0325 0.0114 4.4 3 1023

CYP2R1, rs12794714, G.A 20.466 0.352 0.19 20.0280 0.0114 0.014
VDR (FokI), rs2228570, C.T 20.268 0.366 0.46 — — —

VDR (BsmI), rs1544410, G.A 0.401 0.396 0.31 20.0126 0.0113 0.27
VDR (Cdx2), rs11568820, G.A 20.0350 0.423 0.93 0.0202 0.0135 0.13
CYP27B1, rs10877012, G.T 20.0350 0.423 0.93 — — —

CYP24A1, rs2296241, G.A 20.349 0.353 0.32 26.02 3 1025 0.0111 0.99
CYP24A1, rs6013897, T.A 20.900 0.467 0.054 20.0338 0.0140 0.016

The SNPs rs7041, rs10741657, and rs12794714 were imputed in UKBS-CC control subjects. We report the maximum number of case and
control samples genotyped.

TABLE 3
Association between SNPs from vitamin D metabolism genes and type 1 diabetes

Gene, SNP, allele

8,517 Case and 10,438 control subjects 1,933 Families

Combined POR for minor allele (95% CI) P RR for minor allele (95% CI) P

CYP27A1, rs17470271, A.T 0.98 (0.93–1.02) 0.29 0.97 (0.89–1.05) 0.43 0.20
GC, rs4588, C.A 0.95 (0.91–1.00) 0.050 0.98 (0.89–1.08) 0.71 0.054
GC, rs7041, G.T 0.98 (0.93–1.03) 0.43 0.98 (0.89–1.07) 0.63 0.34
DHCR7, rs12785878, T.G 1.07 (1.02–1.13) 6.8 3 1023 1.10 (0.99–1.21) 0.067 1.2 3 1023

CYP2R1, rs10741657, G.A 0.96 (0.92–1.00) 0.079 0.87 (0.79–0.95) 1.7 3 1023 3.0 3 1023

CYP2R1, rs12794714, G.A 1.04 (1.00–1.09) 0.064 1.13 (1.04–1.24) 4.9 3 1023 3.6 3 1023

VDR (FokI), rs2228570, C.T 0.99 (0.95–1.04) 0.81 0.92 (0.85–1.00) 0.059 0.23
VDR (BsmI), rs1544410, G.A 1.00 (0.95–1.05) 0.92 0.93 (0.85–1.01) 0.070 0.31
VDR (Cdx2), rs11568820, G.A 1.00 (0.94–1.07) 0.96 1.12 (0.91–1.12) 0.83 0.88
CYP27B1, rs10877012, G.T 0.93 (0.89–0.98) 3.1 3 1023 0.89 (0.82–0.97) 0.011 1.4 3 1024

CYP24A1, rs2296241, G.A 1.00 (0.95–1.05) 0.95 0.92 (0.85–1.01) 0.065 0.35
CYP24A1, rs6013897, T.A 1.00 (0.95–1.05) 0.96 — — —

We assumed a model of multiple allelic effects because this model was not significantly different from the full genotype model for any of the
SNPs tested. We report the maximum number of case, control, and family samples genotyped.
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consideration is the difference in affinities of 25(OH)D2
and 25(OH)D3 to DBP and VDR, which makes D3 more
bioavailable than D2 (43). Standard immunoassays detect
the bound and unbound forms. Because the relationship
between 25(OH)D levels and immune responsiveness
remains largely undefined (14,15) and the biological re-
lationship between circulating 25(OH)D and type 1 di-
abetes risk remains to be determined, we can only assume
that 25(OH)D concentrations may be an indirect surrogate
for vitamin D signaling within immune cells.

Recent studies suggest that the vitamin D metabolism
gene CYP27B1, associated with both type 1 diabetes
(24,25) and multiple sclerosis (26), has a role in vitamin D
signaling within immune cells (15). Inducible CYP27B1
and VDR expression has been identified within monocytes,
macrophages, and T-cells as being critical in responses
to mycobacterial infection and possibly in naïve T-cell
activation and proliferation (14–16,23). Consequently,
the inducibility of CYP27B1 or VDR expression and/or
1,25(OH)2D concentrations within the immune cells such
as monocytes, macrophages, and T-cells could be a rele-
vant quantitative phenotype in additional analyses of the
relationship between vitamin D metabolism and the de-
velopment of autoimmune disease. In such future studies,
children with type 1 diabetes–affected siblings and moth-
ers with a family history of type 1 diabetes and their
newborns should provide additional insight into the asso-
ciation of vitamin D metabolism and susceptibility to type
1 diabetes and perhaps to other autoimmune diseases,
such as multiple sclerosis (7).

Since the advent of GWA studies, great progress has been
made in identifying susceptibility loci for autoimmune dis-
eases such as type 1 diabetes (44) and in understanding
how susceptibility alleles affect immune systems. The sus-
ceptibility alleles of three type 1 diabetes loci collectively
provide a relevant example for the current study and for its
interpretation: PTPN22 (45) has been associated with lower
T-cell signaling and reduced T-cell activation (46), PTPN2
(47) has been associated with lower T-cell interleukin (IL)-2
cytokine signaling (48), and IL2RA (49) has been associated
with reduced IL-2 production in memory T-cells (50). These
results indicate that inherited impairment or lowering of
T-cell signaling and activation is a predisposing phenotype
for type 1 diabetes. Recently, von Essen et al. (15) have
suggested that severely low circulating levels of 25(OH)D
are associated with reduced T-cell activation and prolifera-
tion, although there are other considerations to be taken
into account in the interpretation of these studies (16).
Taken together, these studies indicate a common mech-
anism in type 1 diabetes predisposition, T-cell hypore-
sponsiveness, which may be restored to normal levels by
vitamin D3 supplementation to achieve optimal levels of
25(OH)D, a hypothesis that can be tested in future studies.

In conclusion, we have linked the genetic determinants
of circulating levels of 25(OH)D (DHCR7 and CYP2R1)
and vitamin D signaling in T-cells (CYP27B1) with type 1
diabetes risk. This provides the evidence that vitamin D
deficiency of type 1 diabetic patients probably plays a pri-
mary, causal role in the pathogenesis of type 1 diabetes
and is not secondary to hyperglycemia, diet, or to treat-
ment with insulin (20). However, we cannot yet fully rule
out that treatment with insulin may be responsible for the
lowering of circulating levels of 25(OH)D or of CYP27B1
expression within monocytes, macrophages, and T-cells.
Consequently, this study supports the potential of vitamin
D supplementation as part of a prevention strategy for

autoimmune disease and for vitamin D deficiency–related
comorbidities in type 1 diabetic patients in later life.
Randomized controlled trials of vitamin D supplementa-
tion will be required to establish both causality (5) and
health benefits for existing type 1 diabetic patients. A first
step will be to establish if optimal 25(OH)D concentrations
can be achieved in the circulation of patients with type 1
diabetes by oral supplementation and if improved 25(OH)D
status alters any of the emerging immunophenotypes being
associated with this autoimmune disease (50).
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