
 International Journal of 

Molecular Sciences

Review

Role of Neutrophils and Myeloid-Derived Suppressor
Cells in Glioma Progression and Treatment Resistance

Sabbir Khan † , Sandeep Mittal †, Kain McGee, Kristin D. Alfaro-Munoz, Nazanin Majd,
Veerakumar Balasubramaniyan * and John F. de Groot *

Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe
Boulevard, Houston, TX 77030, USA; skhan15@mdanderson.org (S.K.); SMittal1@mdanderson.org (S.M.);
KMcGee@mdanderson.org (K.M.); KDAlfaro@mdanderson.org (K.D.A.-M.); NKMajd@mdanderson.org (N.M.)
* Correspondence: vbalasub@mdanderson.org (V.B.); jdegroot@mdanderson.org (J.F.d.G.)
† These authors contributed equally to this work.

Received: 11 January 2020; Accepted: 5 March 2020; Published: 13 March 2020
����������
�������

Abstract: Recent efforts in brain tumor research have been directed towards the modulation of
the immune system for therapeutic interventions. Several human cancers, including gliomas, are
infiltrated with immune cell types—including neutrophils and myeloid-derived suppressor cells—that
contribute to tumor progression, invasiveness, and treatment resistance. The role of tumor-associated
neutrophils and myeloid-derived suppressor cells in cancer biology remains elusive, as these cells
can exert a multitude of pro-tumor and antitumor effects. In this review, we provide the current
understanding and novel insights on the role of neutrophils and myeloid-derived suppressor cells in
glioma progression and treatment resistance, as well as the mechanisms of pleiotropic behaviors in
these cells during disease progression, with an emphasis on possible strategies to reprogram these
cells towards their antitumor actions.

Keywords: neutrophils; glioma progression; treatment resistance; myeloid-derived suppressor cells;
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1. Introduction

Gliomas represent approximately 80% of malignant brain tumors, which are classified into
four major clinical grades (grades I–IV), on the basis of their histologic characteristics and clinical
behavior [1]. In the revised World Health Organization classification of central nervous system
tumors, a multidimensional approach was taken for the categorization of gliomas, integrating both
histologic and genetic information to define tumor grades and their prognosis [2]. Grade IV glioma or
glioblastoma (GBM) is the most common lethal primary brain tumor in adults, with a median survival
time ranging from 12 to 15 months, with current standard of care treatment, which includes maximum
surgical resection followed by concomitant chemotherapy and radiation therapy (RT). GBM tumors are
highly resistant to RT and chemotherapy, and therefore recurrence is inevitable despite an advanced
multimodal standard therapy [3]. The current understanding of the complex biology of gliomas is
mainly derived from genetic exploration and molecular changes within cancer cells [4,5]. Furthermore,
the characterization of the genome, epigenome, and transcriptome of GBM has provided an overall
picture of genetic alterations and revealed molecularly distinct GBM subtypes based on gene expression
signatures [4,6–9]. Additionally, single-cell RNA sequencing revealed that multiple subtypes could
exist within a tumor, which substantially contributes to the inter- and intra-tumor heterogeneity of
GBM/glioma [7].

The glioma microenvironment (GME) is composed of a wide variety of cells, such as differentiated,
partially differentiated, and undifferentiated glioma stem cells (GSCs); non-neoplastic stromal cells;
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endothelial cells; various infiltrating and resident immune cells; and other major cell types of the
central nervous system, such as oligodendrocyte progenitor cells, reactive astrocytes, and neurons
(reviewed by Hambardzumyan and Bergers [10]). The GME not only harbors various cell types, but
also acts as a communication center for the dynamic interaction of tumor and non-tumor cells via
direct cell-to-cell contacts or paracrine signaling. Tumor cell and stroma interactions promote tumor
growth, immune evasion and therapeutic resistances [11,12].

In the GME, glioma cells secrete several cytokines, chemokines, and growth factors, which attract
the infiltration of various myeloid immune cells, differentially activating the microglia, resident
immune cells, and endothelial cells. These cells create a specific glioma tumor niche, which promotes
tumor growth, invasiveness, and therapy resistance [13–15]. Among infiltrated myeloid cells,
glioma-associated macrophages, tumor-associated neutrophils (TANs), and myeloid-derived
suppressor cells (MDSCs) constitute the major proportion of nonmalignant cells in the GME [16–20].
In glioma, studies have shown that neutrophils have a pro-tumor role, because neutrophilia and an
elevated peripheral neutrophil-to-lymphocyte ratio (NLR) are associated with immunosuppression
and poor survival and prognosis [18,21–23]. Similarly, clinical data from GBM patients have reported
infiltration of CD11b+/CD14+ monocytic and CD11b+/CD15+ granulocytic subsets of MDSCs in
blood and tissue, which is associated with increased glioma grades and poor prognosis [20,24,25].
The antitumor and pro-tumor potential of neutrophils has been reconsidered, owing to the better
understanding of their characteristics, such as maturation stage, functional plasticity (N1 vs. N2),
and activation stage (Figure 1) [26–30]. In this review, we provide the current understanding and novel
insights on the role of neutrophils and MDSCs in glioma progression and treatment resistance, with an
emphasis on the possible strategies to reprogram these cells towards their antitumor potential and
defer the development of treatment resistance.
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Figure 1. Schematic representation of the proposed roles of neutrophils/tumor-associated neutrophils 
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Figure 1. Schematic representation of the proposed roles of neutrophils/tumor-associated neutrophils
(TANs) in the glioma microenvironment (GME). Neutrophils can be polarized into two distinct
functional phenotypes under certain cytokines and growth factors in the GME, i.e., N1 neutrophils can
polarized into N2 in the presence of TGF-β, while N2 neutrophils can polarized into N1 phenotype in
the presence of IFN-β. N1 phenotype has been shown to induce tumor cells cytotoxicity/apoptosis,
antibody-dependent cellular cytotoxicity (ADCC), activate T cells and inhibit tumor growth.
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N2 phenotype promoted the tumor growth, stemness, angiogenesis, invasion, and suppress immunity.
NE: neutrophil elastase, TNFα: tumor necrosis factor alpha, H2O2: hydrogen peroxide, MMP9: matrix
metallopeptidase 9, NO: nitric oxide, and NOS2: nitric oxide synthase 2.

2. Circulating Neutrophils in Glioma Progression and Treatment Resistance

Neutrophils are the most abundant circulating white blood cells and are the first responders
to infection and tissue damage. The primary function of neutrophils is host defense, which occurs
through multiple mechanisms, including phagocytosis, release of antimicrobial peptides and proteases,
and the formation of neutrophil extracellular traps [31]. Neutrophils are very mobile and are quickly
recruited to damaged tissue and invading microbes via proinflammatory signals such as chemokines
and lipid mediators, as well as signals to mediate host defense [32,33]. Thus, neutrophils play a critical
role in coordinating innate and adaptive immune responses via various mechanisms [34].

Although neutrophils are known to play a crucial role in host pathogen defense and tissue
homeostasis, the dysregulation and activation of neutrophils can contribute to chronic inflammation and
facilitate tumor growth in various cancers [28,35]. In glioma, increased circulating and tumor-infiltrating
neutrophils has been observed in high-grade disease compared with low-grade disease [18,36].
Moreover, immunosuppression in GBM patients is correlated with increased neutrophil degranulation
and elevated levels of circulating arginase-1 (Arg1), which is known to have an immunosuppressive
effect on T cells [37]. A previous study from our group showed that neutrophils enhanced the
proliferation of GSCs via the upregulation of S100A4 expression, which led to tumor growth and
resistance against anti-vascular endothelial growth factor (VEGF) therapy in GBM [18]. Neutrophil
activation is associated with increased interleukin (IL)-12 (IL-12p70) in GBM patients, which is
considered an early sign of tumor progression, and patients with high levels of activated neutrophils
had a worse prognosis than those who had low levels [38]. Thus, neutrophil activation has prognostic
value for glioma patients and disease outcome.

Bambury et al. reported that pretreatment NLR is associated with overall survival; patients with
NLR > 4 had worse overall survival and poorer outcomes than NLR < 4 [22]. Similarly, Mason et al.
reported that low NLR was associated with prolonged survival during concurrent treatment with
temozolomide (TMZ) and RT, in a cohort of 369 GBM patients [39], independent of other known
prognostic factors. Thus, an elevated baseline NLR is associated with poor prognosis in GBM
patients [23,39]. Further, NLR is one of the biomarkers of systemic inflammation and considered a poor
prognostic factor for many malignancies [23,40]. However, whether this elevated NLR in glioma patients
is due to increased neutrophil numbers or decreased lymphocytes population is poorly understood.
Since most of the glioma patients have a strong neutrophilia due to overproduction of G-CSF by tumor
cells [41,42], an elevated NLR in GBM patients might be due to increased neutrophil count.

In addition, Schernberg et al. reported that pretreatment neutrophilia is negatively associated
with overall survival in GBM patients who undergo concurrent treatment with TMZ and RT [43].
Baseline circulatory neutrophil count predicts bevacizumab efficacy in GBM patients, although the role
of neutrophils in the antitumor response of anti-VEGF therapy is unclear [44]. A recent study also
showed that the absolute baseline number of neutrophils is negatively associated with overall survival,
and has a prognostic value for bevacizumab response in patients with recurrent GBM who have not
received corticosteroids [45]. This prognostic impact for bevacizumab response is lost in patients who
have received corticosteroids during treatment [45].

Taken together, these findings illustrate that increased circulating neutrophils in glioma patients
are generally associated with poor overall survival, immunosuppression, promotion of tumor growth,
and development of resistance to chemotherapy and RT (Table 1). If prospectively validated, the baseline
circulating neutrophil count could be used to predict bevacizumab (anti-VEGF therapy) efficacy in
glioma/GBM patients.
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Table 1. Experimental and clinical evidence, highlighting the role of circulating neutrophils and tumor-associated neutrophils (TANs) in glioma cell proliferation and
growth, stemness of glioma stem cells (GSCs), angiogenesis, and therapeutic resistance.

Mechanism/Inference Test Systems Specific Cells Used References

Glioma-derived factors affect circulating neutrophils and influence their
infiltration into the tumors In vivo human Blood neutrophils and tumor sections [36]

Neutrophils enhance proliferation of GSCs and promote glioma
progression and resistance against anti-vascular endothelial growth factor
(VEGF) therapy via upregulation of S100A4

Mixed (in vitro and in vivo
in both human and mouse)

Tumor tissue microarray, GSCs and
mouse xenografts [18]

Neutrophil degranulation is associated with elevated levels of circulating
Arg1, which promotes tumor growth and immunosuppression In vitro and in vivo human Blood neutrophils and tumor sections [37]

Increased neutrophil activation levels indicate early signs of tumor
progression and provide prognostic value in glioblastoma (GBM) In vivo human Blood neutrophils and serum [38]

Immunosuppression within the tumor is driven by the overexpression and
production of G-CSF and S100A4

Mixed (in vitro and in vivo in both
human and mouse) Glioma cells, GSCs and blood samples [18,41]

IL-6 and IL-8 partially mediated by glioma cells have a protective effect on
blood neutrophils In vitro human Blood neutrophils and glioma cells [46]

Depletion of neutrophils via monoclonal antibody against Ly6G prolongs
the survival of mice with developing gliomas

Mixed (in vitro and in vivo
in mouse, and in vitro human) Transgenic mice and patients’ blood [47]

TANs are associated with tumor aggressiveness in mutant-IDH1 glioma Mixed (in vivo mouse and human) Transgenic mice, patients tumor tissue
and blood cells/RNA [21]

Primary glioma cells sustaining NOS2 activity promote proliferation,
migration, and neurosphere generation and represent a prognostic factor
for glioma malignancy and recurrence

Human in vitro Glioma cell lines and primary culture [48]

Radiation-induced infiltrating Ly6G+ neutrophils support the conversion
of GBM tumor cells to GSCs via the regulation of nitrosative stress and
dedifferentiation (NOS2-NO-ID4) signaling in newly diagnosed/recurrent
GBM patients, and this is negatively associated with survival and
radiation therapy outcomes

Mixed (in vitro and in vivo
in both human and mouse)

Human glioma cell lines, tumor single
cells, and glioma mouse models [49]

In a CIBERSORT comparative analysis of immune cell fractions,
mesenchymal subtypes of GBM have higher levels of TANs
than other subtypes

Human in vitro and in vivo GSCs and GBM tumor tissue [50]

Arg1: arginase-1, GBM: glioblastoma, G-CSF: granulocyte colony stimulating factor, IL: interleukin, NOS2: nitric oxide synthase 2, PMNs: polymorphonuclear leukocytes, VEGF: vascular
endothelial growth factor. Term ‘mixed’ indicated utilization of both human and mouse cells/tissue in the experiments.
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3. TANs in Glioma Progression

Several human cancers, including GBM, are infiltrated with numerous immune cell types,
including neutrophils [42,51]. Interplay between the tumor and immune cells is an emerging key
modulator of tumor biology and is a major determinant of pathogenesis and progression of many
cancers, including glioma [27,31,42]. Moreover, profound immunosuppression occurs in the tumor
microenvironment, particularly in the context of cell-mediated immunity [31], which is driven by
an array of cytokines, such as prostaglandin E2, transforming growth factor beta (TGF-β), matrix
metallopeptidase 9, IL-10, programmed death-ligand 1 (PD-L1), granulocyte colony stimulating factor,
VEGF, and S100A4 [18,31,33,52,53]. At a mechanistic level, most proposed pathways to mediate
immunosuppression in GBM are those involving signal transducer and activator of transcription
3 (STAT-3) [54,55], phosphoinositide 3 kinase, Ras–mitogen-activated protein kinase, wingless-related
integration site/β-catenin, and indolamine 2, 3-dioxygenase [56].

In addition, tumor microenvironment cytokines recruit TANs and immunosuppressive regulatory
T cells to the tumor microenvironment, which results in aggressive tumor growth and development of
treatment resistance in many cancers, including glioma [27,57]. Mutant IDH1 glioma tumors, which are
less aggressive than wild-type IDH1 tumors, have low TAN infiltration [21]. In particular, neutrophils
are recruited at the GBM tumor site by many chemotactic agents, such as IL-8 or chemokine ligand
8 and macrophage migration inhibitory factor [46,58]. Furthermore, TANs also secrete elastase, which
can further help in TAN infiltration at the tumor site [59]. TANs promote malignancy in GBM and can
mediate angiogenesis via the expression of S1004A within the GME [18]. The depletion of TANs via a
monoclonal antibody against Ly6G+ has been shown to prolong mouse survival in a preclinical mouse
model of GBM [47]. Interestingly, depleting the Ly6G+ also reduced the number of CD4+-FoxP3+ cells
in the tumor site, suggesting an alteration of tumor microenvironment upon depletion of LY6G+ cells.
Taken together, this suggests that TANs played a significant role in the promotion of gliomagenesis in
the de novo gliomas murine model [47]. However, the complete mechanism of TAN recruitment and
the role of TANs in tumor growth are still not completely understood in GBM. How the heterogeneity
of the tumor microenvironment affects neutrophil reprogramming and/or tumor cells following their
extravasation into the tumor niche still needs to be unraveled.

4. TANs and Treatment Resistance in Glioma

Despite a better understanding of tumor heterogeneity and molecular pathology of glioma
at the transcriptomic level, there have been limited advances in the treatment of glioma over the
past three decades. Three critical factors hamper successful treatment of glioma and lead to the
development of treatment resistance: GSCs, tumor heterogeneity, and microenvironmental niches,
including various infiltrating immune cells. In this regard, bidirectional signaling of TANs and
the tumor microenvironment can reprogram the functional plasticity of TANs and modulate tumor
heterogeneity, which can affect glioma treatment outcomes (Table 1). Current understanding of the
involvement of TANs in the development of treatment resistance against the various targeted therapies
for glioma is discussed in the following sections.

4.1. Chemotherapy and Anti-VEGF Therapy Resistance

The current treatment for malignant glioma is surgical resection in combination with RT and
chemotherapy, which includes TMZ and nitrosoureas alkylating agents [60,61]. There is clear evidence
of significant infiltration of TANs in wild-type IDH1 tumors, and this is correlated with poor prognosis
and decreased overall survival in GBM patients [21,36,62]. However, no clear functional mechanistic
studies have established the role of TANs in standard chemotherapy (TMZ and nitrosoureas) treatment
resistance. As mentioned above, increased circulating neutrophils (NLR) are associated with poor
outcome of treatment with TMZ in glioma patients (see Section 2). Moreover, in other cancer types,
a growing body of evidence has demonstrated that TANs are associated with pro-tumor phenotypes
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and play a role in the development of chemotherapy resistance [27,28,63]. Thus, future experimental
studies are warranted to investigate the role of TANs in the development of resistance against standard
chemotherapy (TMZ) in GBM.

Bevacizumab is associated with improved progression free survival and is commonly used in GBM
patients for reduction of cerebral edema and symptom control [64]. However, resistance to anti-VEGF
therapy has been shown to be associated with myeloid cell infiltration and mesenchymal transition in
GBM [65,66]. Recently, we have also reported that increased neutrophil infiltration promotes tumor
progression and resistance to anti-VEGF therapy in GBM [18]. Therefore, it is possible that TANs or
their derived substances can modulate the tumor microenvironment to develop resistance against
anti-VEGF therapy. However, further studies are needed to determine the exact mechanisms of TAN
recruitment to mediate the development of resistance to anti-VEGF therapy in GBM.

4.2. RT Resistance

RT is the cornerstone of treatment for both low-grade and high-grade gliomas. As mentioned
above, increased circulating neutrophils (NLR) have been associated with poor survival and prognostic
outcomes in patients who received RT [39]; therefore, TANs may be involved in the development of
resistance against RT and diseases recurrence. Recently, it has been reported that radiation-induced
senescence in GBM cells promotes the recruitment of Ly6G+ (TANs) and modulates tumor
microenvironmental cells and vessel formation through nuclear factor kappa-light-chain-enhancer of
activated B cell (NFκB) signaling [49,67]. Palumbo et al. showed that infiltrating Ly6G+ cells support the
conversion of GBM tumor cells to a more stem-like state through dedifferentiation and nitrosative stress
(NOS2-NO-ID4) signaling [48]. Jeon et al. further confirmed this mechanism by showing that NFκB
inhibitors and Ly6G-neutralizing antibodies reduced the number of GSCs and prolonged the survival of
tumor-bearing mice after RT [49]. Furthermore, Ly6G+ cells positively correlated with NOS2-NO-ID4
signaling in newly diagnosed and recurrent GBM patients [49]. However, direct clinical evidence
establishing a clear role of TANs in the development of resistance to RT is still lacking. Moreover,
it is well established that GBM tumor cells with stemness properties are resistant to RT [48,68–72].
Infiltrating TANs secrete S100A4 and promote the growth of GSCs and a malignant phenotype, as well
as drug resistance, in in vitro and mouse models of GBM [18]. Therefore, TANs might contribute to the
development of resistance to RT via S100A4-mediated increased cell proliferation and stemness in
GSCs. Future studies are needed to explore the possible mechanistic role of S100A4 in the development
of resistance to RT (Table 1).

4.3. Immunotherapy Resistance

Immunotherapy is quite successful for the treatment of many solid cancers [73]. In glioma, several
randomized clinical trials have demonstrated limited success for immunotherapies, such as targeted
vaccines and checkpoint inhibitors; many challenges must be overcome for successful clinical translation
of these therapies in GBM [57,74–76]. The unique immunosuppressive tumor microenvironment of
the central nervous system is at least in part the reason for limited success of immunotherapeutics
for gliomas [42,75,76]. TANs are recruited at the tumor site by chemotactic agents (chemokine legend
8, macrophage migration inhibitory factor, and osteopontin) produced by tumor cells and/or other
non-tumor cells present in the microenvironment, and this partly contributes to the immunosuppressive
environment within the tumor [42,50,62,77]. Moreover, a comparative analysis of immune cell fractions
among the molecular subtypes of GBM using CIBERSORT indicated that mesenchymal tumors
have a significantly higher number of TANs than do other subtypes [50]. Thus, increased TANs in
mesenchymal tumors might contribute to the extreme immunosuppressive environment and plausibly
mediate immunotherapy resistance. In contrast, Chang et al. reported that virus-stimulated neutrophils
in the tumor microenvironment increase T cell-mediated antitumor immunity in a mouse model of
melanoma [78]. Although TANs are associated with an immunosuppressive environment within the
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tumor, clear experimental and clinical evidence is lacking to establish the involvement of TANs in
immunotherapy outcomes, which is likely context dependent.

5. MDSCs in Glioma Progression

MDSCs are important cells in the tumor immune microenvironment and are correlated with
cancer stage, metastasis, and therapeutic resistance [79]. However, such information in glioma is
very limited [20,24]. In 2007, Gr-1+ Cd11b immune infiltrates were renamed as MDSC, owing to their
ability to suppress the activation and function of T cells [80,81]. MDSCs encompass early myeloid
progenitors that have a granulocytic or monocytic lineage [82]. During myelopoiesis, hematopoietic
stem cells differentiate into common myeloid precursor cells and immature myeloid cells. Under
normal conditions, immature myeloid cells differentiate into mature myeloid cells, such as macrophages
and dendritic cells. However, in pathologic conditions such as sepsis, trauma, autoimmune diseases,
infectious diseases, and cancer, immature myeloid cells do not differentiate into mature cells and can
form MDSCs, depending on the pathology-specific cytokines [83,84].

Despite their abundance in various pathologies, the characterization of MDSCs remains mainly
descriptive owing to a lack of unique markers. Recently, efforts have been made to improve the
nomenclature and characterization standards of MDSCs and to create a harmonized staining and gating
procedure for the analysis of human MDSCs [85,86]. Basically, MDSCs have been divided into three
major subgroups, based on surface markers: monocytic MDSCs, granulocytic polymorphonuclear
MDSCs (PMN-MDSCs), and early immature MDSCs [82,85]. In mice, these MDSCs can be characterized
by CD11b+Ly6ChighLy6G− as monocytic MDSCs and CD11b+Ly6ClowLy6G+ as PMN-MDSCs [87].
In contrast to mice, humans do not express Ly6G and their MDSCs have been characterized by the
presence of CD14 on monocytic MDSCs and CD15, along with CD66b on PMN-MDSCs. All three types
of MDSCs express CD33 along with these markers; thus monocytic MDSCs can be further distinguished
by the selective expression of CD14 and HLA-DR [81,85,88].

MDSCs have been shown to expand systemically in various pathologies such as infection [89,90],
sepsis [91], and autoimmune disorders [92]. All the major cytokines that are involved in the normal
hematopoiesis and proliferation of MDSCs, such as macrophage colony stimulating factor and
granulocyte macrophage colony stimulating factor (GM-CSF), are highly expressed in GBM [93].
In GBM patient blood, studies have shown high levels of neutrophilic and monocytic subsets
of circulating MDSCs in the peripheral blood, compared with that of healthy donors [20,24,94].
A comparison between GBM patients and age-matched healthy donors and other cancer patients
revealed that CD15+CD14− PMN-MDSCs were significantly increased in GBM patients compared with
the heathy controls [20]. Similarly, in GBM tumor masses, the predominant presence of neutrophilic
(CD33+CD15+CD14−HLA-DR−) and negative lineage (CD33+CD15−CD14−HLA-DR−) MDSCs has
been shown [17,24]. However, MDSCs from both patients and healthy donors had a similar expression
pattern of myeloid markers, such as CD124, CD86, and CD40, with the absence of myeloid activation
markers viz B7-1/CD80 and PD-L1 [17,24]. Recently, a multicolor flow cytometry-based analysis
of peripheral blood and tissue of 52 GBM patients revealed an increased frequency of monocytic
MDSCs (CD14highCD15+) and PMN-MDSCs (CD14lowCD15+) in the blood and tumor masses [95].
Furthermore, a comprehensive analysis of the blood cells of these patients revealed that the cells
which expressed CD14lowCD15high (PMN-MDSCs) suppressed T cell function, while the cells with
CD16lowHLA-DRhigh MDSCs did not inhibit T cell proliferation in vitro [95]. Furthermore, there was a
strong correlation between the number of PMN-MDSCs and CD4+ effector memory T cells in GBM
tumors. The CD4+ T cells were functionally exhausted and found to express high levels of PD-1 with
concomitant increased levels of PD-L1 in tumor-derived MDSCs [95].

In a mouse model of glioma, a monocytic population of MDSCs (CD11b+Gr1low) has been found to
infiltrate more than the granulocytic (CD11b+Gr1high) MDSCs, which could simultaneously express the
marker of pro-inflammatory M1 and tumor-supportive M2 macrophages [17,96–98]. These populations
constituted about 8% of total tumor cells and also expressed CD11c and IL-4Rα. The depletion of these
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cells was found to improve the survival of mice, suggesting that these cells had a tumor-promoting
role in GBM [17,98]. All of the above studies indicate that different MDSC subsets can accumulate
in the blood and tissue of GBM patients, and these subsets of MDSCs can play a significant role in
shaping the GBM tumor microenvironment, as well as promoting immunosuppression in GBM.

Several tumor-associated factors and growth factors have been shown to affect the recruitment
of MDSCs from the peripheral blood and the promotion of their immunostimulatory phenotype
to exert their immunosuppressive effects [99,100]. The proliferation and migration of MDSCs is
controlled by the activation of STAT-3, which regulates the expression of S100A8 and S100A9 [101].
Furthermore, various studies have shown that MDSCs require various recruitment factors such as C-C
motif chemokine ligand 2, VEGF receptor 2, IL-8, and galectin-1 and activation factors such as GM-CSF,
stimulator of interferon (IFN) genes, CD40, and IL-12, to exert immunosuppression at full potential.
In addition, some other factors, such as macrophage colony stimulating factor, phosphoinositide
3 kinase, receptor tyrosine kinases, and cyclooxygenase, have also been shown to promote the formation
of MDSCs from myeloid precursor cells [99,100].

6. MDSCs and Treatment Resistance in Glioma

In recent years, MDSCs have emerged in the cancer field as a powerful modulator of the immune
system; MDSCs control not only T cell activity but also recovery from an immunologic insult [102].
Accumulation of MDSCs has been linked to increasing grades of glioma. Thus, understanding the
role of MDSCs in therapeutic resistance in glioma could pave a path to establish novel targets for the
treatment of GBM.

6.1. MDSC-Mediated Immunosuppression and Therapy Resistance in Glioma

Myeloid cells are an important part of innate immunity and play a significant role
in immunotherapy. However, in pathologic conditions such as cancer, myeloid cells
become immunosuppressive, owing to the presence of various cytokines/chemokines. These
immunosuppressive cells inhibit the activity of antitumor immune cells and lead to immunotherapy
resistance in cancer patients [93]. Various peripheral immune cells such as glioma-associated myeloid
cells and macrophages, MDSCs, and regulatory T cells have been shown to inhibit the host’s antitumor
response in GBM patients [15].

Although much information is available regarding immunosuppression mediated by
glioma-associated myeloid cells and macrophages in GBM, for MDSCs, the detailed mechanism
is still being unraveled [13,103]. In other solid tumors, in general, MDSCs exert immunosuppression
through the inhibition of T cell activity [93]. However, the interaction of MDSCs with other antitumor
immune cells, such as natural killer (NK) cells, dendritic cells, and pro-inflammatory macrophages has
also been reported [17,20,58,104–106]. MDSC-mediated T cell suppression is mainly exerted through
the depletion of either L-arginine (important for T cell proliferation) or cysteine (required for T cell
activation). Arg1 is an essential enzyme that metabolizes L-arginine into L-ornithine in the urea
cycle [107,108]. In the tumor microenvironment, MDSCs generate increased amounts of reactive oxygen
species (ROS) and reactive nitrogen species, which subsequently upregulate the expression of Arg1
and inducible nitric oxide synthase (iNOS), respectively. Arg1 and iNOS at increased levels metabolize
the available L-arginine in the tumor microenvironment, leading to the depletion of L-arginine and
diminished T cell-mediated antitumor activity. Specifically, ROS-mediated depletion of L-arginine
leads to the cell cycle arrest of T cells and the downregulation of CD3 ζ-chain expression. The reduction
of CD3 ζ makes the T cells anergic, through nitrosylation of T cell receptors [99]. In contrast, reactive
nitrogen species lead to increased nitric oxide and subsequently nitrosylation of IL-2 pathway mediators,
leading to T cell suppression. Furthermore, increased levels of ROS have also been shown to induce T
cell apoptosis. Reactive nitrogen species such as peroxynitrite can nitrosylate C-C motif chemokine
ligand 2 present in the tumor microenvironment. This modified C-C motif chemokine ligand 2 can
attract MDSCs but not CD4+ and CD8+, which can explain the selective accumulation of MDSCs in
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the tumor area [100]. Furthermore, increased production of hypoxia-inducible factor 1α in the hypoxic
environment of the tumor can induce the expression of PDL-1 on MDSCs, which can further inhibit T
cell activity through PD-1/PD-L1 interaction [101].

ROS production in cells could be mediated through several mechanisms, but in MDSCs, studies
have shown that STAT-3 plays a major role in the production of increased ROS through increased
NADPH oxidase (NOS) 2 activity. Furthermore, L-arginine depletion by Arg1 triggers the production
of ROS through iNOS. Several tumor-derived growth factors, such as TGF-β, IL-6, IL-10, and GM-CSF,
can increase the production of ROS [92].

Cysteine is an essential component required for T cell activation. However, T cells cannot
synthesize cysteine; instead, it is delivered by antigen-presenting dendritic cells and macrophages
which convert methionine and cystine to cysteine [109]. Similarly, MDSCs can also import cystine, but
they cannot deliver the cysteine, which leads to a shortage of cystine in dendritic cells and macrophages
and ultimately cysteine deprivation in T cells [105]. MDSCs can also induce the conversion of naïve
CD4+ T cells into regulatory T cells through CD40–CD40L interactions; production of IFNγ, IL-10,
and TGF-β; and Arg1 expression. Furthermore, by producing TGF-β1 and retinoic acid, MDSCs
can also promote the trans-differentiation of Th17 into forkhead box P3 regulatory T cells [104,109].
MDSC-mediated dendritic cell impairment requires the production of IL-10, which inhibits dendritic
cell maturation and concomitantly IL-12 production [110].

Owing to increased inflammation in the tumor, MDSCs have the ability to skew the macrophage
phenotype from type 1 to type 2 through the IL-12-dependent toll-like receptor 4 pathway. Type 2
macrophages create an immunosuppressive environment, thus promoting the progression of cancer
cells [110–112]. MDSCs can also regulate NK cell function through MDSC interaction, with natural
cytotoxicity triggering receptor 3 (NRC3/NKp30) and NK group 2D receptors on NK cells in a cell
contact-dependent manner [113,114]. MDSCs downregulate the expression of NKp30 and NK group
2D on NK cells through TGF-β1 present on the membrane, which leads to decreased IFNγ production
and ultimately reduced NK cell activity.

6.2. MDSCs and RT Resistance

RT has been shown to prolong the life of glioma patients [115]. RT alters the tumor
microenvironement by increasing infiltration of immunosuppressive myeloid cells and release of tumor
antigens from necrotic tissue [116,117]. It is crucial to understand the interplay between RT and the
tumor microenvironement to integrate immunotherapeutic approaches into the current standard of
care for gliomas.

The irradiation of human and murine cells has been shown to upregulate the expression of various
immune molecules, such as Fas, intercellular adhesion molecule 1, MHC class I, carcinoma-associated
antigens, and mucin-1, to target them for immune phagocytic cells [118–121]. In 2006, Newcomb
et al. showed that RT can be used to enhance the expression of MHC class I in GL261 cells that
were retrovirally transduced to release GM-CSF. This combination treatment primed myeloid cells
towards an immunostimulatory state and rendered the glioma more sensitive to RT compared with RT
alone [122].

Nanomaterials have been used as radio-sensitizers for cancer treatment, with minimal side
effects [123–125]. Metal-based nanomaterials can generate photoelectrons to enhance the dose effect of
RT and induce cytotoxicity in tumor cells through increased ROS production [123–125]. In a recent
study, Wu et al. showed that the combination of RT and a magnetic nanoparticle-based platform
with cationic polymer modification induced cytotoxicity in glioma cells and increased the median
survival of immunocompetent and athymic glioma mice [126]. This observed effect was attributed to
the repolarization of MDSCs towards the pro-inflammatory phenotype from the immunosuppressive
phenotype and to the increased expression of tumor necrosis factor-α and iNOS. In addition, MDSCs
taken up by the nanoparticles could then be delivered to the tumor microenvironment to enhance the
production of ROS to increase the efficacy of RT. RT can be used to modulate the accumulation and
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distribution of nanoparticles to enhance drug delivery and antitumor efficacy [127]. Apart from X-rays,
other types of radiation, such as carbon irradiation and proton irradiation, have also evolved, with
the aim of increasing the target dose in cancer tissue while minimizing collateral damage to normal
tissue [128,129].

7. Conclusions and Future Perspectives

It has become increasingly clear that TANs play a major role in cancer biology and treatment.
Despite the large amount of literature suggesting that neutrophils have pro-tumor effects, evidence
from multiple studies has also shown that these cells can be reprogrammed to kill tumor
cells [28,30,33,52,63,130]. However, in glioma, increased circulating neutrophils and TANs have
been observed, particularly in high-grade disease, and this is associated with poor overall
survival, immunosuppression, promotion of tumor growth, and development of resistance to
chemo-radiotherapy and bevacizumab (anti-VEGF therapy).

Although neutrophils are associated with immunosuppression, their involvement in
immunotherapy outcomes is unknown. TANs are known to exhibit both pro-tumor (N2-like)
and antitumor (N1-like) functional phenotypes within the tumor in lung cancers [130] and
mesothelioma [29]. However, the characterization of functional plasticity (N1 vs. N2) of TANs
in glioma/GBM is lacking. Therefore, it will be important to study the molecular mechanisms that may
promote the differentiation of TANs into an antitumor phenotype (N1), such as stimulation of type I
IFN and/or inhibition of TGF-β signaling (Figure 1) [29].

MDSCs have been used as prognostic markers in various other cancers, such as melanoma,
kidney cancer, prostate cancer, and breast cancer, but less information is available about their role in
glioma [131,132]. Studies have shown that the presence of CD15+ MDSCs, along with M2 macrophages,
can be used as a marker of glioma grade [133]. Furthermore, increased circulating MDSCs have
been associated with poor prognosis and survival in GBM patients [134]. However, mechanistic and
functional studies of the interaction between MDSCs and glioma, along with immunosuppression of
antitumor cells at the GBM site, are still lacking.

Several clinical trials employing myeloid cell-related factors in combination with other therapies
are currently ongoing for several cancers, and preliminary results from some of these clinical trials
have shown that this approach has promising immunologic efficacy [100]. On the basis of these trials,
clinical trials of combination treatments with GM-CSF with EGFRvIII peptide vaccine and bevacizumab
have shown that this combination improved progression-free survival in GBM patients compared
with single-modality treatment [135]. Similarly, the preliminary results of a phase II clinical trial of
combination treatment with GM-CSF with cyclophosphamide and bevacizumab, as well as results
from a phase I trial of combination treatment with MK-1454 (stimulator of IFN gene agonist) and
pembrolizumab, and results from a completed trial of Toca 511 and Toca FC, have shown that these
treatments increased survival rates in GBM patients [136,137].

Based on the current pre-clinical and clinical studies, targeting MDSCs could be integrated with
standard or immunotherapies as complementary treatment strategies for the effective treatment of
glioma. However, additional research into the immunosuppressive and pro-tumoral role of MDSCs in
glioma is needed.
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Abbreviations

Arg1 Arginase-1
GBM Glioblastoma
GM-CSF Granulocyte macrophage colony stimulating factor
GME Glioma microenvironment
GSCs Glioma stem cells
IFN Interferon
IL Interleukin
iNOS Inducible nitric oxide synthase
MDSCs Myeloid-derived suppressor cells
NFκB Nuclear factor kappa-light-chain-enhancer of activated B cells
NK cells Natural killer cells
NLR Neutrophil-to-lymphocyte ratio
PD-L1 Programmed death-ligand 1
PMN-MDSCs Granulocytic polymorphonuclear MDSCs
ROS Reactive oxygen species
RT Radiation therapy
STAT-3 Signal transducer and activator of transcription 3
TANs Tumor-associated neutrophils
TGF-β Transforming growth factor beta
TMZ Temozolomide
VEGF Vascular endothelial growth factor
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