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In recent years research on natural speech processing has benefited from recognizing that low-frequency cortical activity
tracks the amplitude envelope of natural speech. However, it remains unclear to what extent this tracking reflects speech-spe-
cific processing beyond the analysis of the stimulus acoustics. In the present study, we aimed to disentangle contributions to
cortical envelope tracking that reflect general acoustic processing from those that are functionally related to processing
speech. To do so, we recorded EEG from subjects as they listened to auditory chimeras, stimuli composed of the temporal
fine structure of one speech stimulus modulated by the amplitude envelope (ENV) of another speech stimulus. By varying the
number of frequency bands used in making the chimeras, we obtained some control over which speech stimulus was recog-
nized by the listener. No matter which stimulus was recognized, envelope tracking was always strongest for the ENV stimu-
lus, indicating a dominant contribution from acoustic processing. However, there was also a positive relationship between
intelligibility and the tracking of the perceived speech, indicating a contribution from speech-specific processing. These find-
ings were supported by a follow-up analysis that assessed envelope tracking as a function of the (estimated) output of the
cochlea rather than the original stimuli used in creating the chimeras. Finally, we sought to isolate the speech-specific contri-
bution to envelope tracking using forward encoding models and found that indices of phonetic feature processing tracked
reliably with intelligibility. Together these results show that cortical speech tracking is dominated by acoustic processing but
also reflects speech-specific processing.
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Significance Statement

Activity in auditory cortex is known to dynamically track the energy fluctuations, or amplitude envelope, of speech. Measures
of this tracking are now widely used in research on hearing and language and have had a substantial influence on theories of
how auditory cortex parses and processes speech. But how much of this speech tracking is actually driven by speech-specific
processing rather than general acoustic processing is unclear, limiting its interpretability and its usefulness. Here, by merging
two speech stimuli together to form so-called auditory chimeras, we show that EEG tracking of the speech envelope is domi-
nated by acoustic processing but also reflects linguistic analysis. This has important implications for theories of cortical
speech tracking and for using measures of that tracking in applied research.

Introduction
Over the past few years research on natural speech processing
has benefited from recognizing that low-frequency cortical activ-
ity tracks the amplitude envelope of natural speech (Ahissar et
al., 2001; Luo and Poeppel, 2007; Lalor and Foxe, 2010). This has
been useful for investigating the mechanisms underlying speech
processing (Peelle and Davis, 2012), how such processing is
affected by attention (Ding and Simon, 2012; Power et al., 2012;
Zion-Golumbic et al., 2013), and how audio and visual speech
interact (Luo et al., 2010; Zion-Golumbic et al., 2013; Crosse et al.,
2015, 2016a). However, it remains unclear to what extent these
cortical measures reflect higher-level speech-specific processing
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versus lower-level processing of the spectrotemporal/acoustic
stimulus dynamics.

There has been some evidence that speech intelligibility
affects these envelope tracking measures (Peelle et al., 2013), sug-
gesting that they may indeed index speech-specific processing.
But precisely what aspects of speech processing are reflected in en-
velope tracking measures, or even how specifically the measures
reflect speech processing at all, is unclear. It has been suggested
that different neural populations, having different functional roles
in receptive speech processing, may simultaneously contribute to
envelope tracking measures (Ding and Simon, 2014). Furthermore,
specific mechanistic theories have been proposed, suggesting that
envelope tracking (or envelope entrainment, more specifically)
represents a more active process for parsing speech into discrete
chunks for further processing (Giraud and Poeppel, 2012).
However, drawing definitive inferences about the meaning of corti-
cal speech tracking must contend with the likelihood that much of
the speech-tracking signal will derive from general auditory proc-
essing of the stimulus acoustics by cortical regions that are agnostic
to the special nature of speech. Indeed, a wealth of evidence has
been amassed suggesting that speech is processed by a hierarchi-
cally organized network of cortical regions with responses in earlier
stages (including primary auditory cortex) being well accounted
for based on the spectrotemporal acoustics of the stimulus and later
stages being invariant to those acoustics and involved in more
abstract linguistic processing (Davis and Johnsrude, 2003; DeWitt
and Rauschecker, 2012; Huth et al., 2016; de Heer et al., 2017; Kell
et al., 2018; Norman-Haignere and McDermott, 2018). This is
consistent with the idea that speech sounds are perceived using
mechanisms that evolved to process environmental sounds more
generally (Diehl et al., 2004), with additional linguistic processing
occurring in specialized downstream pathways (Hickok and
Poeppel, 2007; Rauschecker and Scott, 2009).

Indeed, this notion that cortical tracking of speech might
reflect (perhaps a lot of) general acoustic processing as well as
(perhaps a more limited contribution from) linguistic processing
helps to explain several other findings in the literature. For exam-
ple, although cortical envelope tracking sometimes shows sensitiv-
ity to speech intelligibility as mentioned above (Peelle et al., 2013),
this is definitely not always the case (Howard and Poeppel, 2010).
Indeed, robust cortical tracking has been observed for completely
unintelligible speech, including vocoded and backward speech
(Howard and Poeppel, 2010; Di Liberto et al., 2015, 2018), as well
as very general auditory stimuli such as amplitude modulated
broadband noise (Lalor et al., 2009). So acoustic processing defi-
nitely makes a substantial contribution. In the present study, we
aim to explore this idea of dissociable contributions to envelope
tracking using so-called auditory chimeras (Smith et al., 2002). In
particular, we record EEG from subjects as they listen to speech–
speech chimeras: stimuli composed of the temporal fine structure
(TFS) of one speech stimulus modulated by the amplitude enve-
lope (ENV) of another speech stimulus. By varying how these chi-
meras are constructed, we obtain some control over which
stimulus is recognized by the listener, allowing us to decouple the
processing of the acoustic envelope from the speech content. We
hypothesize that envelope tracking will be dominated by the
dynamic changes in the acoustic energy of the signal, with a
smaller component reflecting speech-specific processing.

Materials and Methods
Subjects
Seventeen native English speakers (mean age 24.9 years; SD, 3.7; range
20–30; 8 males) participated in the experiment. Participants reported no

neurologic diseases and self-reported normal hearing. Informed consent
was obtained from all participants before the experiment, and subjects
received monetary compensation for their time. The study was con-
ducted in accordance with protocols approved by the Research Subjects
Review Board at the University of Rochester.

Stimuli and experimental procedure
In our experiment, we wanted to decouple the acoustic amplitude fluctu-
ations of the stimuli from their speech content. To do this, we used so-
called auditory chimeras (Smith et al., 2002). These are stimuli in which
the envelope of one sound is used to modulate the temporal fine struc-
ture of a second sound. Importantly, this can be done after first filtering
the sounds into complementary frequency bands using a filter bank.
Then, each filter output is Hilbert transformed to derive its analytic sig-
nal, and the envelope (calculated as the magnitude of the analytic signal)
of the first sound is used to modulate the fine structure (calculated as the
cosine of the phase of the analytic signal) of the other sound within each
band, giving a series of partial chimeras. Finally, the partial chimeras are
summed over all frequency bands to produce the final chimera (Fig. 1).
Critically for our experiment, the number of frequency bands used has a
marked effect on which original sound source is actually perceived
(Smith et al., 2002). If the original sounds are both speech, and just one
band is used, then listeners will partially recognize the speech content
corresponding to the temporal fine structure. They will (obviously) fail
to understand any of the speech content corresponding to the source of
the broadband envelope. But as the number of frequency bands grows,
listeners will increasingly understand the speech content relating to the
source of the envelope and will no longer perceive the speech content of
the temporal fine structure source.

For our experiment, we generated auditory chimeras from two
speech sources. These were audiobooks of two classic works of fiction
[Env_Story and TFS_Story], which were read in English by two different
male speakers and sampled at 48 kHz. Our study consisted of three ex-
perimental conditions each involving the presentation of a speech–
speech chimera generated using a filter bank with a different number of
frequency bands, specifically 1, 4, and 16. These filter banks were com-
posed of finite impulse response bandpass filters that were spectrally di-
vided into logarithmically spaced filters along the cochlear frequency
map from 80 to 8020Hz (Greenwood, 1990). Each filter had a nearly rec-
tangular response, and adjacent filters overlapped by 25% of the band-
width of the narrower filter. All stimulus processing was performed
using MATLAB (release 2016b) software (MathWorks). And stimuli
were presented to subjects using the Psychophysics toolbox (Brainard
and Vision, 1997) within the MATLAB environment along with custom
code.

Forty-five separate 1 min speech segments were randomly selected
from each audiobook and were used to generate the three types of chi-
mera (1, 4, and 16 bands), resulting in 15 trials per chimeric condition.
All the chimera stimuli were made by using the envelope of the
Env_Story segment to modulate the TFS of the TFS_Story segments. We
chose to always use one audiobook as the Env_Story and the other
audiobook as the TFS_Story. This was mostly driven by a desire to not
divide our EEG data into an extra set of subconditions. We also wanted
to be consistent in the behavioral task in having subjects always answer-
ing questions on one story for the envelope and on the other story for
TFS. Importantly, we used these same two audiobooks in previous studies
(Power et al., 2012; O’Sullivan et al., 2015) and saw no systematic differ-
ence in the strength of neural tracking to each story. As such, we think it
is unlikely that we have introduced any bias into our results by choosing
not to counterbalance the audiobooks across the Env and TFS conditions.
All stimuli were spatialized by convolution with a head-related transfer
function, simulating a scenario in which each stimulus appears to be spa-
tially located directly in front of the subject (Algazi et al., 2001).
Incidentally, we selected an additional 10 segments from Env_Story and
five segments from TFS_Story, and we presented these, unmodified, to
the subjects as a control condition. Ultimately, however, we did not
include any analysis of these control data in our results below.

Subjects were instructed to attend to the audio stimulus and main-
tain visual fixation for the duration of each trial on a crosshair centered
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on the screen and to minimize eye blinking and all other motor activ-
ities. To quantify speech intelligibility, after each trial, subjects were
required to answer four multiple-choice questions (MCQs) on both sto-
ries (i.e., four from the Env_Story and four from the TFS_Story). Each
question had four possible answers. MCQs, answer choices and chimera
condition order were all pseudorandomized across subjects. Stimulus
presentation and data recording took place in an audiometric grade
sound attenuated and electromagnetically shielded room (120a Series,
IAC Acoustics). The visual stimuli (crosshair, MCQs, and answer
choices) were presented on a 24 inch LCD monitor (ASUS Predator),
operating at a refresh rate of 60Hz, and participants were seated at a dis-
tance of 70 cm from the display. All audio stimuli were normalized to
have the same root mean square intensity and were presented binaurally
through Sennheiser HD650 headphones at a self-adjusted comfortable
level.

EEG acquisition and preprocessing
EEG was recorded from 130 channels at 512Hz using a BioSemi
ActiveTwo system. One hundred twenty-eight cephalic electrodes were
positioned according to the BioSemi Equiradial system, with another
two electrodes located over the left and right mastoids. Triggers indicat-
ing the start of each trial were presented using Psychophysics toolbox in
MATLAB for synchronous recording along with the EEG.

The EEG data were first resampled to 128Hz using the decimate
function in MATLAB. The decimate function incorporates an eighth-
order low-pass Chebyshev type I infinite impulse response anti-aliasing
filter. Consistent with previous research suggesting that speech tracking
is strongest in the delta band (1–4Hz) and theta band (4–8Hz), we
focused our analysis on frequencies below 8Hz. Specifically, we used a

zero phase-shift Chebyshev type 2 bandpass filter with pass bands
between 1 and 8Hz. Subsequent preprocessing was performed using the
FieldTrip toolbox (Oostenveld et al., 2011) and custom code in
MATLAB. After filtering, bad channels were defined as those whose var-
iance was either less than half or greater than twice that of the surround-
ing three to seven channels (depending on location in the montage).
These channels were then replaced through spherical spline interpola-
tion (FieldTrip). Next, after removing bad channels, we applied denois-
ing using independent component analysis, usually only removing one
or two components reflecting eye-movement-related artifacts, which
were determined following definitions provided in (Debener et al., 2010).

Indexing cortical speech tracking using the temporal response function
The goal of this study was to examine how cortical activity tracks the en-
velope of speech and how that tracking might derive from acoustic ver-
sus speech-specific processing. To index cortical speech tracking, we
used the temporal response function (TRF) framework (Crosse et al.,
2016b). The general idea of this framework is to use linear regression to
map between ongoing speech features (e.g., the envelope) and ongoing
neural responses. This can be done either in the forward direction by
examining how well different speech features can explain variance in
EEG responses on individual channels (a forward encoding model
approach). Or it can be done in the backward direction by attempting to
reconstruct an estimate of a speech feature using all the EEG channels (a
decoding approach). It provides a number of dependent measures, that
is, the accuracy of EEG predictions based on a forward encoding model,
the accuracy of stimulus reconstructions based on a backward decoding
model, or the weights that are applied to the stimulus features (forward)
or EEG data (backward) on different channels and at different time lags

Figure 1. Speech-speech chimera generation. A, Two audiobooks were passed through Gammatone filter banks with different numbers of frequency bands (1, 4, 16) for our different experi-
mental conditions. The outputs of these filterbanks were Hilbert transformed (HT) allowing us to calculate the envelope of story 1 and a temporal fine structure representation of story 2. The
envelope of story 1 was used to modulate the temporal fine structure of story 2 within each frequency band, and the resulting partial chimeras were summed to produce a final multiband chi-
mera that was played to the subject. B, Spectrogram of an example segment of story 1 (left) and of the three types of chimera corresponding to that segment.
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between stimulus and response (Crosse et al., 2016b). In the forward
direction, the TRF can be described via the following equation:

rðt; nÞ ¼
X

t

wðt ; nÞsðt � tÞ1«ðt; nÞ;

where rðt; nÞ is the neural response at time point t on channel n, s(t) is
the stimulus feature at time t, which can be a univariate (e.g., the enve-
lope) or multivariate (e.g., the spectrogram) representation of the speech,
t indexes the relative time lag between the speech stimulus feature and
the neural response in samples, and «ðt; nÞ is an error term. In our anal-
ysis, t runs from 1 to the length of the trial (i.e., 60 s), n ¼ 1::: 128 chan-
nels, and t = –100–500ms, indicating that we are exploring the impact
of the stimulus on the EEG data at lags from –100ms to 1500ms. We
then estimated the unknown TRF, wðt ; nÞ using regularized (ridge) lin-
ear regression (Crosse et al., 2016b). As mentioned above, this enabled
us to use the weights of the TRF itself (wðt ; nÞ) as dependent measures
and to test how well different speech features were represented in the
EEG by seeing how well the TRF can predict EEG responses to held-out
trials (Crosse et al., 2016b). In cases where the speech representation is
multivariate, the resulting TRF is often known as a multivariate TRF
(mTRF). We also conducted a backward decoding analysis described by
the following equation:

ŝðtÞ ¼
XN

n�1

X

t

Rðt1t ; nÞgðt ; nÞ;

where the main difference is that the TRF, gðt ; nÞ, is a multivariate func-
tion (often known as a decoder) that was fit on all EEG channels at the
same time. In general, this approach is more sensitive as it makes more
effective use of the available data, but it is also limited in terms of what
speech features, ŝðtÞ; can be reconstructed. In our case, we restricted
ourselves to decoding based on the univariate amplitude envelope of the
speech stimuli (see below, Speech stimulus representations). Again,
the weights of the decoder and the ability of the decoder to reconstruct
the stimulus were then available to us as dependent measures.

Speech stimulus representations
To use the TRF framework to examine how cortical activity tracks the
amplitude envelope of our speech chimeras, we first needed to calculate
the amplitude envelope of our stimuli. Moreover, we were specifically
interested in how this cortical tracking might reflect contributions from
acoustic and speech-specific processing. To do this, we also wished to
use the TRF to explore how cortical activity reflects the processing of
other acoustic and speech-specific features of our stimuli. Importantly,
for other acoustic and speech-specific features to show up in measures of
envelope tracking, their temporal dynamics would need to correlate with
those of the envelope. This is true for the spectrogram and phonemes of
speech (and less true for higher-level representations of speech based on
semantic content; Broderick et al., 2018). As such, to assess how contribu-
tions from spectrotemporal and phoneme processing might contribute to
envelope tracking, we derived the following acoustic and phonemic fea-
ture representations of our speech stimuli:

The Envelope. We calculated the amplitude envelope (Env) for
each of the 45 one-min speech segments from both Env_Story and
TFS_Story. We did this by first bandpass filtering the segments into 128
logarithmically spaced frequency bands spanning 80 and 8000 Hz using
a cochlear filter bank (Greenwood, 1990). The envelope for each band
was computed using the Hilbert transform, then the broadband envelope
was obtained by averaging over the 128 narrowband envelopes. The out-
put of this process was then logarithmically transformed in an effort to
account for the nonlinear relationship between electrophysiological
responses and stimulus amplitude (Aiken and Picton, 2008). Specifically,
dB envelope representations were generated by taking 20log10 of the
broadband envelope (Aiken and Picton, 2008).

Recovered envelope . One important issue with modeling our EEG
data as a function of the envelopes of the original stories used in creating

the chimeras is that the subjects were not actually presented with these
original stories. So, when considering how our EEG might track the en-
velope of the stories in a chimera, we wanted to understand how the cor-
tex might be able to recover the envelope of the TFS story (TFS_Story)
from the output of the cochlea. To estimate this recovered envelope (RE-
Env), we did the following. We first determined the TFS of the chimera
stimuli for all three chimera conditions (1, 4, and 16 bands) by calculat-
ing the Hilbert transform of those chimera stimuli and then determining
the cosine of the phase of the resulting analytic signal. We then filtered
the TFS signal into 128 bands using a cochlear frequency map spanning
a range of 80 to 8020 Hz (Greenwood, 1990), and we created analytical
signals for each frequency band. Finally, the envelope of each of these
narrow bands (calculated as the absolute values of its analytical signal)
was summed to generate the broadband RE-Env (Smith et al., 2002;
Zeng et al., 2004).

Spectrogram. The envelope is a very impoverished measure of a
speech signal. To more fully explore the relationship between envelope
tracking and the acoustic processing of speech, we sought to more richly
represent the speech acoustics. We did this by computing the Log-Mel
spectrogram of our speech stimuli (Chi et al., 2005; Schädler et al., 2012;
Verhulst et al., 2018). This involved passing the speech signals through a
bank of 64 filters that spanned from 124.1 to 7284.1 Hz and were organ-
ized according to the Mel scale (i.e., the scale of pitches judged by listeners
to be equal in distance one from another). The output of these filters was
then scaled by a logarithmic compressive nonlinearity to convert it to the
final Log-Mel spectrogram (Sgram). The choice of the Log-Mel spectro-
gram was made because it incorporates several properties of the auditory
system, nonlinear frequency scaling, and compression of amplitude values.

Phonemes.We were also interested to explore how envelope tracking
might relate to speech-specific processing in the form of a sensitivity to
phonemes (Ph) within the speech. To derive a representation of pho-
nemes, we used the Montreal Forced Aligner (McAuliffe et al., 2017), a
Python-based open source tool based on the Kaldi ASR toolkit that relies
on triphone-based hidden Markov models to create statistical models
associating phonetic symbols to speech signals (http://kaldi-asr.org/).
The aligner, given an audio speech file and corresponding textual ortho-
graphical transcription, partitions each word into phonemes from the
American English International Phonetic Alphabet (IPA) and performs
forced-alignment (Yuan and Liberman, 2008), returning the starting and
ending time points for each phoneme. This information was then converted
into a multivariate time series composed of indicator variables, which are bi-
nary arrays (one for each phoneme). These are active for the time points in
which phonemes occurred. The phonemes are mutually exclusive, so only
one can be active at each sample point. We selected a subset of the IPA
comprising the 35 most frequent phonemes in the presented speech stimuli
(3 of 38 IPA phonemes were excluded as being outliers in terms of how rare
they were). Ph is a language dependent representation of speech.

Using the mTRF to assess the sensitivity of EEG to different speech
features
We use the TRF framework to assess how well different speech features
are represented in the EEG data (see below, Results). As discussed above,
two of our dependent measures are (1) how well we can reconstruct a
speech envelope from the EEG responses (i.e., backward modeling) and
(2) how well we can predict data on different EEG channels using the
stimulus spectrogram and phonemes (i.e., forward modeling). Two key
related considerations for using these dependent measures are (1) how
to train and test the mTRF models to trust in the generalizability of the
findings, and (2) how to regularize the mTRF models to make them ro-
bust to EEG fluctuations that are unrelated to the speech, as well as to
noise. In terms of the latter issue, we used ridge regression. In brief, this
approach penalizes large values in the mTRF, meaning that we are reduc-
ing the variance of our mTRF weights by adding a bias term. Ultimately,
this makes for a more generalizable model (Crosse et al., 2016b).
However, care must be taken not to over-regularize. In what follows, we
describe how we determined the ridge regression parameters (known as l
values) that allowed us to best map between speech features and EEG.

Our general strategy for training, regularizing, and testing was to use
the following cross-validation procedure. For each of our four stimulus
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representations, a separate TRF was fit to each of M trials for a range of
l values. One trial was left out to be used as a test set, with the remain-
ing M-1 trials to be used for the inner cross-validation. Next, one of
these inner M-1 trials was chosen to be left out and used as a validation
set. The remaining M-2 trials were used as a training set. An average
model was obtained by averaging over the single-trial models in the
training set. This was done for each l value. Next, this average model
was used to either reconstruct the speech envelope by convolving it with
the EEG data (decoding) or predict the EEG responses by convolving it
with the chosen speech representations (forward modeling) associated
with the validation set. The accuracy of this reconstruction or prediction
(of selected EEG channels; see below) was assessed by comparing it with
the real speech envelope or EEG using Pearson’s correlation coefficient.
This procedure was repeated so that each of the M-1 trials was left out of
the training set once. The l value that produced the highest average
reconstruction or prediction accuracy across all the validation sets was
then chosen as the optimal l . Please note, this could mean different
optimal values of l for reconstruction, prediction, each subject, and
each set of speech features.

Next, using the optimal l value chosen above, another average
model was obtained by averaging over the single-trial models in both the
validation and training sets and using that model on the data from the
test set. Model performance was assessed by quantifying how accurately
the reconstructed envelope or predicted EEG correlated with the actual
stimulus envelope or the actual recorded EEG response from the test set,
again using Pearson’s r. This entire procedure was repeated M times so
that each trial was left out of the inner-cross validation procedure once.
As before, the overall model performance was then finally assessed by
averaging the overall individual model performances for each trial.
Again, l parameter optimization was done separately for each stimulus
representation and subject (i.e., each model was based on its respective
optimal performance). Our modeling procedures were subjected to per-
mutation testing to quantify a null distribution; 95% quartiles, demar-
cated by gray boxes, are reported in the figures.

To evaluate whether either phonetic or spectral acoustic features con-
tributed independently to predicting the neural responses across condi-
tions, we computed the partial correlation coefficients (Pearson’s r)
between the EEG predicted by either phonological (or spectral acoustics)
feature model with the actual recorded EEG after controlling for the
effects of spectral acoustics (or phonological features). Specifically, we
fitted separate cross-validated forward model TRFs on each of the two
speech representations (Sgram, Ph) and predicted EEG based on those
models. Then we used the built-in MATLAB function partialcorr (X, Y,
Z), where X = actual recorded EEG, Y = predicted EEG in response to
the feature of interest (the feature whose unique contribution is to be
identified), and Z = concatenated predicted EEGs in response to
the other feature (which is to be partialled out). This function computes
the partial correlation coefficients between X and Y, while controlling
for the variables in Z (Fisher, 1924).

Statistics
Significance at the group level of either decoder or encoder accuracies
was evaluated using nonparametric permutation statistics. The neural
responses were permuted across trials so that they were matched to fea-
tures from a different trial, and the same leave-one-out cross-validation
procedure as described above was performed to compute TRFs and ei-
ther reconstruction or prediction accuracies. This was done 2000 times
for each subject to establish a distribution of chance-level prediction
accuracies. By randomizing the data across trials and recalculating the
test statistic, we obtained a reference distribution to evaluate the statistic
of the actual data. We also ran randomization using cluster-based statis-
tics (Monte Carlo procedure) across channels and time for topographical
demarcation of significant time-sensor clusters to be used as regions of
interest for further analyses (Maris and Oostenveld, 2007). Furthermore,
we adopted the same procedures for the partial correlation analyses,
based on the prediction accuracies (phonetic/spectral acoustic encoders).
We also computed a distribution of partial correlations for the phonetic
(or spectral acoustics) features measures (i.e., we partialled out the con-
tributions of all other features). Unless otherwise stated, further analyses

were done on significant channels following permutation tests or com-
puted on 12 temporal parietal channels (six symmetric pairs over left
and right hemispheres).

Linear mixed-effects models (LME) were implemented to explore be-
havioral and EEG results and their interrelationship, via the fitlme func-
tion in MATLAB using the restricted maximum likelihood method.
Advantages over standard ANOVA approaches have been previously
reported (Krueger and Tian, 2004; Wainwright et al., 2007; Luke, 2017).
After visual inspection of the residual plots, it was clear there were no
obvious deviations from homoscedasticity or normality. All p values
were estimated using the Satterthwaite approximations. Post hoc analyses
were performed using linear hypothesis testing on linear regression model
coefficients (coeftest). Mixed-effects models account for multiple compari-
sons. Subjects were treated as random factors according to the following
linear-model expression: (LME ¼ ðRAdata;11Behdata 1 ð1jSubjects IDÞ)
and (LME ¼ ðRAdata;11CondnBands1ð1jSubjects IDÞ), where RA
stands for reconstruction accuracy and Beh corresponds to behavioral
task performance.

As well as using frequentist probability-based statistics, we also used
the Bayesian analog of an ANOVA (anovanBF) to allow us to explicitly
determine the amount of evidence in favor of the null hypothesis (H0;
no interaction). We estimated the Bayes factors ðBF10) using MATLAB
code adapted from R Studio (https://www.rstudio.com) and the function
anovanBF in the toolbox Bayes factor (https://cran.r-project.org/web/
packages/BayesFactor/index.html). We adopted the commonly used
Jeffrey–Zellner–Siow prior with a scaling factor of 0.707 (Rouder et al.,
2009, 2012; Schönbrodt et al., 2017). Monte Carlo resampling with 106

iterations was used for the BF10 estimation. Subjects represented the ran-
dom factor. Importantly, this estimation allows us to quantify evidence
that our experimental factors and interactions explain variance in the
data above the random between-subject variations. Standard convention
stipulates that any BF10 exceeding three is evidence in favor of the alter-
native hypothesis (H1), whereas below 0.33 is in support of the null hy-
pothesis (H0), and BF10 ranging between one and three is taken as weak
anecdotal evidence in favor of the alternative hypothesis, as is widely
reported in the literature (Wagenmakers et al., 2011).

Results
One-hundred-twenty-eight-channel EEG was recorded from 17
subjects as they listened to 60 s auditory chimeras composed of
segments of narrative speech from two audiobooks. In particular,
the envelope of Env_Story was used to modulate the temporal
fine structure of TFS_Story. By varying the number of frequency
bands used in making the chimeras (1, 4, or 16 bands), we aimed
to manipulate which story was understood by the subjects.
Following Smith et al. (2002), we expected subjects to (partially)
recognize TFS_Story for the 1-band chimeras, to (partially) rec-
ognize Env_Story for the 4-band chimeras, and to clearly recog-
nize Env_Story for the 16-band chimeras.

With such a pattern of behavioral results, what might we
expect in terms of variation in how cortical signals track the
envelopes of the Env_Story and the TFS_Story? Based on pre-
vious studies, several plausible alternative hypotheses can be
proposed as to how such signals might vary across our chimera
conditions. We briefly suggest four alternative hypotheses that
could be plausibly advanced based on previous research.

Hypothesis 1 (Fig. 2A) is that neural tracking of speech
is overwhelmingly dominated by acoustic processing. Were this
true, one might expect the acoustic energy fluctuations (i.e., the
envelope) to play such a dominant role that neural tracking
would reflect the processing of only the Env_Story across chi-
mera conditions. An example of a previous study that might mo-
tivate a hypothesis like this is Howard and Poeppel (2010),
which reported that discrimination of speech stimuli based on
neuronal response phase patterns depends on acoustics but not
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comprehension. Hypothesis 2 (Fig. 2B) is that neural tracking
of speech is dominated by speech-specific processing. Were this
hypothesis true, one might expect neural tracking to very closely
mirror speech intelligibility, with no tracking for the unintelligible
stimulus despite its acoustic energy fluctuations (e.g., no tracking of
the Env_Story in the 1-band condition). This would be a reasonable
hypothesis based on a series of studies by Zoefel and VanRullen
(2015, 2016), who explored speech entrainment using novel
speech/noise speech stimuli that were constructed to have no
systematic changes in sound amplitude and spectral content. It
might also be a reasonable hypothesis coming from studies that
have focused on how speech-specific acoustic edges might be
driving neural entrainment to that speech (Doelling et al.,
2014). Hypothesis 3 (Fig. 2C) is that neural tracking of speech
is dominated by general acoustic processing that can be
enhanced by intelligibility through either predictive processing
related to the speech content (Broderick et al., 2018), by attention
(O’Sullivan et al., 2015), or higher order statistical structure in
the acoustics (Zuk et al., 2020). Were this hypothesis true, one
might expect that neural tracking would again be dominated by
the acoustic energy of the Env_Story, but the tracking of
Env_Story would increase across chimera conditions. One would
expect no discernible tracking of the TFS_Story in this case.
Finally, hypothesis 4 (Fig. 2D) is that neural tracking of speech
contains contributions from low-level neural populations
that are responsive to general acoustic input and from
higher-level neural populations that are specifically tuned to
speech sounds. Were this hypothesis true, one would expect

the Env_Story to contribute to all
chimera conditions, but more so in chi-
mera conditions where the Env_Story is
intelligible. And one would expect the
TFS_Story to contribute only in those
conditions where the TFS_Story is intel-
ligible. This is the hypothesis we favor
based on the previous literature (and a
synthesis thereof). If the data support
this hypothesis, it will also be of interest
to see the relative size of the contribu-
tions to the EEG that appear to derive
from general acoustic processing versus
speech-specific processing.

Speech comprehension varies across
speech–speech chimera conditions
Speech comprehension was assessed by
asking multiple-choice questions at the
end of each trial. There were four possi-
ble answers to each question, setting the
theoretical chance level at 25%. However,
we determined that, at the group level, a
score of 27.5% was significantly greater
than chance (p ¼ 0:05) based on a bino-
mial distribution using all 840 trials (14
subjects � 60 questions) per condition.
We then tested our distribution of sub-
ject scores against 27.5% using a one-
sided Wilcoxon signed rank test. The
pattern of behavior was largely consistent
with what we expected based on Smith et
al. (2002; Fig. 3A). In particular, per-
formance on the questions for Env_Story
in the 1-band condition was 29.43% 6
2.11 (percentage mean 6 SEM) and was

not significantly greater than chance (p = 0.28). However, as the
number of chimera bands increased, so did performance with sub-
jects achieving 33.43% 6 1.57 and 68.43% 6 2.09 for the 4-band
and 16-band conditions, respectively, both of which were signifi-
cantly greater than chance ðz ¼ 3:30; p ¼ 4:56 � 10�04; and
z ¼ 3:60; p ¼ 1:58 � 10 �04; Wilcoxon signed rank test). Mean-
while, the performance on TFS_Story showed largely the oppo-
site effect. Performance on the questions were 37.86% 6 1.41,
33.71%6 1.16, and 22.79%6 1.73 for the 1-band, 4-band, and 16-
band conditions, respectively. Importantly, these scores were signifi-
cantly above chance for the 1-band (z ¼ 3:24; p ¼ 6:04� 10�04)
and 4-band conditions (z ¼ 3:11; p ¼ 9:37� 10�04). However, as
expected, they were not significantly above chance for the 16-band
condition ðz ¼ �2:52; p ¼ 0:99). We wanted to more explicitly
test for the interaction effect between chimera condition and story
that we expected from Smith et al. (2002). To do this we used a
two-way repeated-measures ANOVA (rmANOVA; with factors of
chimera condition, 1-, 4-, 16-band; and story, ENV Env_Story, TFS
TFS_Story). This analysis showed main effects of chimera condition
(Fð1;2Þ ¼ 42:39; p,0:001; h 2 ¼ 0:15;BF10 ¼ 3:259Þ and story
(Fð1;1Þ ¼ 189:42; p,0:001; h 2 ¼ 0:21; BF10 ¼ 2:131� 1018Þ.
Importantly, it also revealed a significant interaction between
chimera condition and story (Fð1;1Þ ¼ 195:45; p,0:001; h 2 ¼
0:51;BF10 ¼ 2:128� 1031Þ. Post hoc analyses were conducted
using Bonferroni-corrected pairwise t tests, which showed
that Env_Story intelligibility scores in the 16-band condition

Figure 2. Hypothetical pattern of results. A, Decoding accuracy is mainly driven by the speech envelope and is not modu-
lated as a function of speech intelligibility. TFS is poorly decoded as there is no envelope feature. B, Speech is the dominant
factor here, neural tracking is speech specific and is related to the parsing of the structure of higher-order speech features. In
this instance, it would be predicted that there is stronger tracking for the most intelligible conditions, that is, 1 band for the
TFS_Story and 16 bands for the Env_Story. The lack of tracking of an unintelligible stimulus component that varies in its acous-
tic energy could be explained by comodulation masking release, wherein coherent fluctuations in a masker can improve signal
detection by suppressing that masker (Dau et al., 2009). C, The hypothesis that obligatory sensory tracking of the acoustics of
speech stimulus is enhanced by speech intelligibility. Tracking is dominated by the speech envelope as shown in the
Env_Story, whereas there is little to no cortical tracking of the TFS_Story. D, Neural tracking is a mixture of both general acous-
tic processing and speech-specific processing. In this case, we would expect to see tracking of the Env_Story across all condi-
tions, with stronger tracking as that story becomes more intelligible. We would also expect to see some tracking of the
TFS_Story in conditions where that story is intelligible. How strongly the tracking of the Env_Story will be relative to the
TFS_Story is an open question.
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were significantly higher than those in the 1-band condition
(tð16Þ ¼ 16:71; p,0:001;BF10 ¼ 1:4210� 1010Þ, and TFS_Story
scores in the 1 band were significantly higher than 16 band
(tð16Þ ¼ 13:04; p,0:001;BF10 ¼ 1:5114� 106Þ. This pattern of

results generally replicates the findings from Smith et al. (2002),
although we assessed speech intelligibility by means of compre-
hension questions, whereas Smith et al. (2002) probed word
recall.

Figure 3. Cortical tracking of speech envelopes reflects both acoustics and speech intelligibility across chimera conditions. A–C, Box plots (mean6 SEM) and rain kernel density estimates
of speech intelligibility and reconstruction decoding accuracy (Rho) values for Env_Story (turquoise) and TFS_Story (peach). Group and individual statistics; black line in box plot indicates mean
across subjects, and gray box demarcates single-subject-level statistical significance above chance (permutation test based on shuffling trial labels 1000 times before reconstructing the enve-
lopes, *p, 0.05). Single dots represent single-subject data. Behavioral intelligibility (A), original envelope reconstruction accuracies (B), and chimera envelope reconstruction accuracies across
bands, conditions, and stories (C). D, Topographical plots show forward transformed decoder weights across all channels for Env_Story and TFS_Story over a time-lag window of 80–120 ms.
Red dots indicate significant effects at the group level (one-tailed cluster-based permutation test, N = 2000, p, 0.05). E, Left, Env_Story; right. TFS_Story brain-behavior correlations.
Individual dots represent subjects and are color coded according to condition. Correlations were assessed using robust Pearson’s correlation (bootstrap permutation test p, 0.05). This was
done for each individual condition (colored lines), as well as collapsed across all conditions (shaded area representing 95% confidence interval). Subplots show the distribution of the data in
terms of both envelope decoding (left) and behavior (below) using the same color code as the subject dots.
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Cortical tracking of the original story envelopes varies with
understanding of speech–speech chimeras
To adjudicate among the four hypotheses introduced above (Fig.
2), and to test hypothesis 4 in particular, we wished to explore
how cortical tracking of speech envelopes might reflect acoustic
and speech-specific processing. Importantly, all three of our stim-
ulus conditions (1-, 4-, and 16-band chimeras) have envelopes
that are derived from Env_Story. As such, their acoustic energy
will be dominated by that of Env_Story. However, as shown in the
previous section, for the 1-band condition, subjects are more likely
to understand the speech content from TFS_Story. How might
envelope tracking reflect these acoustic and behavioral inconsis-
tencies? We investigated this by attempting to reconstruct esti-
mates of the speech envelopes corresponding to Env_Story and
TFS_Story from the EEG recorded during each of our chimera
conditions. As discussed above, we did this for all 15 trials for each
condition using a cross-validation training and testing procedure.
Importantly, for this first analysis, we simply sought to reconstruct
the envelopes of the original speech segments, not of the chimeras
themselves. Then we compared these reconstructions to the two
original envelopes using Pearson’s correlation. We also deter-
mined a baseline level of reconstruction performance by generat-
ing a null distribution of Pearson’s r values by shuffling the labels
between trials 1000 times and attempting to reconstruct the enve-
lopes using the same procedure.

The general pattern of stimulus reconstruction measures mir-
rored that of the behavioral results and supported hypothesis 4 (Fig.
2D). Specifically, as the number of frequency bands in the chimeras
increased, envelope reconstructions for Env_Story tended to in-
crease, and reconstructions for TFS_Story decreased (Fig. 3B). We
assessed this pattern of results using a two-way rmANOVA (with
factors of chimera condition and story). As with the behavioral
results, we found significant main effects for chimera condition
(Fð1;2Þ ¼ 30:45; p,0:001; h 2 ¼ 0:007;BF10 ¼ 16:042Þ and story
(Fð1;2Þ ¼ 34:44; p,0:001; h 2 ¼ 0:39;BF10 ¼ 4:287Þ. And, mir-
roring our key behavioral result, we found a significant interaction
between chimera condition and story (Fð1;1Þ ¼ 56:65; p,0:001;
h 2 ¼ 0:15;BF10 ¼ 19:307Þ. Again, we conducted post hoc analy-
ses using Bonferroni-corrected pairwise t tests. These also tracked
with the behavioral results in that reconstructions for Env_Story
were significantly higher for the 16-band condition than the 1-
band condition (tð16Þ ¼ 16:0; p,0:001;BF10 ¼ 6:01� 108Þ, and
TFS_Story reconstructions were significantly higher for the
1-band condition than the 16-band condition (tð16Þ ¼ 5:04;
p,0:001;BF10 ¼ 270:01Þ.

One important discrepancy between the behavioral and
cortical tracking results is that there is robust cortical track-
ing of Env_Story for the 1-band condition (Fig. 3B, left, blue
cloud), despite it being entirely unintelligible (Fig. 3A, left,
blue cloud). Indeed, the cortical tracking of Env_Story in this
condition is significantly stronger than that for TFS_Story
(tð16Þ ¼ 5:25; p,0:001;BF10 ¼ 3:49� 102Þ, despite TFS_Story
being the one that is better understood. Of course, this is eas-
ily explained by reminding ourselves that the envelope of the
chimera in this condition is determined by Env_Story. This
highlights that fluctuations in the acoustic energy of an audi-
tory stimulus will robustly drive cortical tracking, completely
independently of any speech-specific activity. That said, the
similar pattern of interaction effects for behavior and enve-
lope tracking also supports the notion that cortical envelope
tracking does, at least to some extent, index speech-specific
processing. Env_Story tracking improved across conditions
as Env_Story understanding increased, and TFS_Story

tracking decreased as TFS_Story understanding fell. On this
issue, it is particularly interesting to consider the case of the
cortical tracking of TFS_Story in the 1-band condition.
Again, the envelope of the chimera stimulus in this condition
is dominated by Env_Story, and, yet, we have significant
cortical tracking of the envelope of TFS_Story. How might
this come about? We examine this further in the next section,
where we discuss the results of Figure 3C.

Before that, to visualize which EEG channels were contribut-
ing to the pattern of envelope reconstructions reported above,
we transformed the backward decoding model weights (Haufe et
al., 2014) into a pattern of forward model weights (Fig. 3D).
Visualizing these weights across the scalp is more analogous to
exploring the topographical distribution of event-related poten-
tials (Lalor et al., 2009). Using a cluster-based nonparametric
permutation (N = 2000) analysis (Maris and Oostenveld, 2007)
we identified model weights that were significantly different
from zero across subjects and trials over a window of 80–120ms
time lags. We chose these time lags based on a prominent peak
in the forward TRF model over these time lags (see below). For
Env_Story there was an increase in the number of channels with
significant model weights as intelligibility increased across condi-
tions. These channels were largely over central and temporal
scalp. For TFS_Story, significant model weights were found only
for the 1-band condition, that is, the condition for which
TFS_Story was most intelligible. They were centered over central
scalp regions.

We also sought to explore the correspondence in the pattern
of results between behavior and stimulus reconstruction more
directly (Fig. 3E,F). Specifically, we used robust correlation anal-
ysis with bootstrap resampling (Pernet et al., 2013) to check for
correlations between these measures across subjects. We did so
in one analysis that included all conditions and found a
strong positive correlation between decoding accuracy and
behavioral intelligibility scores as a function of chimera con-
dition for Env_Story ½rs ¼ 0:76; p,0:001; 95%CI ð0:61 0:85Þ�
and TFS_Story ½rs ¼ 0:31; p,0:05; 95%CI ð0:04 0:53Þ�. We
tested this relationship further using a linear mixed effect
model with subjects as a random factor (LME ¼ ðRAdata;11
Behdata1ð1jSubjects IDÞ) with comprehension accuracy scores and
envelope reconstruction values as dependent and predictor varia-
bles, respectively. The LME models variability because of stimulus
conditions and subjects simultaneously. We found a significant pos-
itive relationship between reconstruction accuracy and comprehen-
sion scores for Env_Story (b ¼ 415:73; SE ¼ 43:91p,0:001Þ and
for TFS_Story (b ¼ 174:92; SE ¼ 82:95p,0:05Þ:

An important aspect of the previous result is that as men-
tioned it was conducted across all stimulus conditions collapsed
together. We also wished to explore the possibility that there
might be a correlation between behavior and reconstruction
accuracy within each condition across subjects. That said, we were
not especially confident about finding such a result. This is
because EEG envelope tracking measures can vary greatly between
subjects based on factors that are completely unrelated to their
ability to understand speech. For example, basic biophysical differ-
ences in cortical folding and brain/skull conductivity properties
likely drive a very large percentage of the variance in EEG
responses across subjects. With n = 17 in the present study, we
expected such causes of variance might obscure any variance
related to speech intelligibility across subjects. Indeed, using per-
mutation testing while controlling for multiple comparisons across
conditions, we found that there were no significant correlations
within any one condition alone, for either the Env_Story ðp ¼
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0:28; p ¼ 0:25; p ¼ 0:21, for 1 band, 4 band, and 16 band, respec-
tively) or the TFS_Story ðp ¼ 0:34; p ¼ 0:27; p ¼ 0:81, for 1
band, 4 band, and 16 band, respectively).

Cortical tracking of envelopes recovered from the chimeras
also varies with understanding of speech–speech chimeras
In the previous section, we wondered about how we might see
significant cortical tracking of the TFS_Story envelope to a 1-
band chimera whose envelope is determined by Env_Story (Fig.
3B). The answer likely lies in the fact that each subject’s auditory
cortex does not actually operate on the chimera stimuli that we
present. Rather, each stimulus first undergoes extensive periph-
eral and subcortical processing. Indeed, the first stage of this
processing is the fine-grained filtering by the cochlea. This pro-
duces a representation in the early auditory system that will be
exquisitely sensitive to the temporal fine structure in the stimu-
lus. It may be that some of the computations conducted by the cor-
tex serve to synthesize a coherent TFS_Story speech object from
these earlier representations, a process sometimes referred to as
analysis by synthesis (Halle and Stevens, 1959, 1962; Bever and
Poeppel, 2010; Poeppel and Monahan, 2011; Ding and Simon,
2013). This synthesis of an auditory object for TFS_Story from
the temporal fine structure of the chimera is likely what our
cortical envelope tracking measure is indexing in this case.

To explore this more directly, we conducted an additional
analysis aimed at examining how cortical activity might track
with the envelopes of Env_Story and TFS_Story that we recov-
ered from the actual chimera stimuli that were presented to the
subjects. We determined the envelope of the chimera by passing
it through a filter bank, determining the Hilbert transform of
each narrowband frequency, and averaging the envelopes across
frequency bands (see above, Materials and Methods). Next, we
computed the ReEnv of the TFS component from the chimeras
using an approach based on the Hilbert transform and cochlear
scaled filtering (Patterson, 1987; Irino and Patterson, 1997;
Patterson et al., 2002; Apoux et al., 2011). The overall pattern of
envelope reconstruction results for the chimera envelopes (which
should be very similar to those for Env_Story) and Re-Env
(which we expected to resemble the envelopes for TFS_Story)
was very similar to that for the original envelopes (Fig. 3C).
Specifically, a two-way rmANOVA (with factors chimera condi-
tion and story) showed main effects for chimera condition
(Fð1;2Þ ¼ 29:05; p,0:001; h 2 ¼ 0:006;BF10 ¼ 15:002Þ and story
(Fð1;1Þ ¼ 32:41; p,0:001; h 2 ¼ 0:32;BF10 ¼ 4:024Þ. And there
was a significant two-way interaction between chimera condition
and story (Fð2;32Þ ¼ 55:45; p,0:001; h 2 ¼ 0:14;BF10 ¼ 19:007Þ.
Post hoc Bonferroni-corrected t tests showed that Env_Story
reconstruction accuracies for the 16-band condition were signifi-
cantly higher than those for the 1-band condition (tð16Þ ¼ 16:84;
p,0:001;BF10 ¼ 5:87� 108Þ, and TFS_Story reconstruction
accuracies for the 1-band condition were significantly higher
than that for the 16-band condition (tð16Þ ¼ 5:04; p,0:001;
BF10 ¼ 280:21Þ:

For Env_Story, the fact that the pattern of stimulus recon-
struction results was so similar for the original and recovered
envelopes (Fig. 3B,C, compare turquoise rain cloud plots) was
entirely unsurprising. This is because the envelopes from the
original Env_Story were used to create the chimeras in the first
place. As such, the raw stimulus envelope for the Env_Story and
the envelope of the chimeras were highly correlated for all condi-
tions (Table 1, second column). For the same reason, the correla-
tion between the raw stimulus envelope for the TFS_Story and
the envelope of the chimeras was very low (in fact, it was slightly

negatively correlated). Meanwhile, the similar pattern of stimulus
reconstruction results for the original and recovered envelopes
for TFS_Story (Fig. 3B,C, compare turquoise rain cloud plots)
was more interesting. Indeed, it was not obvious in advance that
this would be the result, given that the temporal fine structure
of TFS_Story was so heavily modulated by the envelope of
Env_Story for the chimeras. Moreover, this pattern cannot be
because the Re-Env was correlated with the raw TFS_Story enve-
lope because, as mentioned above, if anything, they are weakly
negatively correlated with each other (Table 1, third column). As
such, it appears that this result supports that notion that cortex
has been able to synthesize a coherent representation of the
TFS_Story from its (partial) temporal fine structure. However,
the fact that the pattern of TFS_Story results appears qualitatively
similar for the raw envelope analysis (Fig. 3B) and the Re-Env
analysis (Fig. 3C) does not allow us to conclude that the signals
being tapped into by the two analyses are actually the same. In
other words, it could be that the analysis based on the Re-Env is
driven by EEG responses to speech features that are different
from those that are driving the raw envelope analysis. To explore
this, we directly compared the stimulus reconstructions that
were obtained using the raw envelope of the TFS_Story with
those obtained using the envelope recovered from the TFS struc-
ture of the chimera. There was a significant positive correlation
between these reconstructions only for the 1-band condition
[rs ¼ 0:18; p,0:001, 95% CI (0.16–0.20)]; Table 1, right col-
umn). And although this correlation was relatively low, it was
substantially higher than the correlations between the recon-
structions and the original or reconstructed envelopes shown in
Figure 3, B and C. This suggests that the information being recov-
ered by cortex, as indexed by the Re-Env-based reconstruction anal-
ysis, is not identical to that being indexed by the raw envelope
analysis, but that there is some overlap between the two. Again, it is
not surprising that they are not identical given that the temporal
fine structure of TFS_Story was so heavily modulated by the enve-
lope of Env_Story for the chimeras. And, again, this is the reason
why Env_Story reconstructions based on the raw and chimera enve-
lopes are so highly correlated with each other (Table 1, fourth col-
umn). A final observation is the correspondence between the
behavior and speech reconstructions for TFS_Story in the 16-band
condition. At the group level, behavioral performance was not above
chance, indicating a general lack of understanding of TFS_Story in
this condition, consistent with previous research (Smith et al., 2002).
This was mirrored in the failure to reconstruct the recovered enve-
lope of TFS_Story in this condition (Fig. 3C).

Intelligibility of speech–speech chimeras is reflected more
strongly by cortical speech tracking in the delta band than
the theta band
A substantial amount of previous research has sought to distin-
guish the roles of delta and theta band cortical activity in speech

Table 1. Stimulus and reconstructed envelope correlations

Stimulus TRF reconstruction

Env_Story TFS_Story Env_Story TFS_Story
Chimera condition Raw, chimera Raw, chimera Raw, chimera Raw, chimera

1-Band 0.91 (0.001) �0.20 (0.001) 0.91 (0.001) 0.18 (0.002)
4-Bands 0.90 (0.001) �0.11 (0.001) 0.97 (0.001) 0.08 (0.114)
16-Bands 0.73 (0.001) �0.10 (0.001) 0.95 (0.001) �0.10 (0.019)

Computed between raw and chimera-derived envelopes for both the original stimulus and TRF reconstructed
versions. Statistics reported as Pearson’s r (p value). Correlations computed using robust correlation analyses
with boostrap resampling across subjects (Pernet et al., 2013).
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processing (Ding and Simon, 2013, 2014; Peelle et al., 2013;
Doelling et al., 2014; Etard and Reichenbach, 2019). With that
in mind, we sought to explore the sensitivity of delta and
theta band speech-tracking measures across our different
chimera conditions. We did this by attempting to recon-
struct the envelopes of Env_Story and TFS_Story from EEG
that had first been filtered into either the delta (0.05–4 Hz)
or theta (4-8 Hz) bands (using zero phase-shift Chebyshev
type 2 bandpass filters). We found that the pattern of recon-
struction accuracies based on delta band EEG (Fig. 4, left)
corresponded to that seen for speech intelligibility (Fig.
3A). However, this was much less clear for reconstructions
based on theta band activity (Fig. 4, right).

Indeed, for delta band reconstructions, as with both the
broadband EEG decoding of the envelopes of the original speech
(Fig. 3B) and the chimera speech (Fig. 3C), we found significant
main effects for chimera condition (Fð1;2Þ ¼ 45:12; p,0:001;
h 2 ¼ 0:58;BF10 ¼ 6:01Þ and story (Fð1;1Þ ¼ 34:44; p,0:001;
h 2 ¼ 0:16;BF10 ¼ 4:287Þ. And, we again saw a significant two-
way interaction between chimera condition and story (Fð1;2Þ ¼
132:42; p,0:001; h 2 ¼ 0:15;BF10 ¼ 20:08Þ. Again, post hoc
Bonferroni-corrected pairwise t tests revealed that reconstruc-
tions for Env_Story were significantly higher for the 16-band
condition than 1-band condition (tð16Þ ¼ 16:9; p,0:001; BF10 ¼
8:88� 108Þ, and TFS_Story reconstructions were significantly
higher for the 1-band condition than the 16-band condition
(tð16Þ ¼ 5:14; p,0:001;BF10 ¼ 283:93Þ, as we had found with
broadband EEG. In contrast, theta-based reconstructions did
not track significantly with speech intelligibility in the chimera
stimuli, although there was a main effect for story (Fð1;1Þ ¼
92:12; p,0:001; h 2 ¼ 0:5;BF10 ¼ 4:84Þ, there was no main
effect for chimera condition (Fð1;2Þ ¼ 0:04; p ¼ 0:9; h 2 ¼ 1:11�
10�15;BF10 ¼ 0:002Þ, and no interaction effect (Fð1;2Þ ¼ 1:89;
p ¼ 1:89; h 2 ¼ 0:01;BF10 ¼ 0:06Þ. Post hoc Bonferroni-cor-
rected t tests showed that Env_Story reconstruction accuracies
for the 16-band condition were not significantly different (or
higher) than the 1-band condition (tð16Þ ¼ 1:2; p ¼ 0:24ðn:s:Þ;
BF10 ¼ 0Þ. Similarly, there was no significant difference between
1-band and 16-bands conditions in TFS_Story reconstruction
accuracies tð16Þ ¼ 1:94; p ¼ 0:07; BF10 ¼ 1:1Þ.

Exploring the relationship between the intelligibility of
speech–speech chimeras and cortical speech tracking at
different latencies
Previous research has suggested that different hierarchical stages
of acoustic and linguistic speech processing can be approxi-
mately indexed by exploring brain responses to speech at differ-
ent latencies (Salmelin, 2007). Given that we are interested in
disambiguating general acoustic processing from speech-specific
processing, we sought to explore the possibility that speech track-
ing at different time lags might be differentially sensitive to the
intelligibility of our various speech chimeras. To do this, we plot-
ted the (forward) TRF by learning a linear mapping from the en-
velope of our different chimera stimuli to the corresponding
EEG responses (Crosse et al., 2016b). If acoustic processing is
indexed at shorter latencies and speech-specific processing at
longer latencies, we might expect to see strong Env_Story TRF
responses at short latencies for all conditions, with variations in
longer latency TRF components that mirror our behavioral
measures of speech intelligibility. And we might expect to see rel-
atively weak early TRF responses to the TFS_Story with longer
latency TRF components again reflecting our speech intelligibil-
ity measures.

Figure 5A displays TRFs averaged over 12 frontotemporal
channels (six from the left scalp and their symmetrical coun-
terparts on the right), chosen based on previous literature
(Di Liberto et al., 2015; Crosse et al., 2016b; Broderick et al.,
2018; Teoh et al., 2022). Robust TRFs were visible for most
conditions. In general, the TRFs for the Env_Story appeared
to increase in amplitude from the 1-band condition to the
16-band condition. However, there was no clear difference in
the pattern across conditions for early TRF components
compared with later components. Indeed, Monte Carlo clus-
ter-based permutation statistics show main effects of chi-
mera condition at a number of latencies both early and late
(Fig. 5. subplot). For the TFS_Story, the 1-band (most intelli-
gible) condition displayed the largest TRF at a latency of
;100–170ms. However, this result needs to be treated
with caution given that the (somewhat intelligible) 4-band
response appeared smaller than the (completely unintelli-
gible) 16-band response.

Figure 4. Envelope reconstructions based on delta and theta band EEG. Box plots (mean 6 SEM) and rain kernel density estimates of reconstruction decoding accuracy
(Rho) values for Env_Story (turquoise) and TFS_Story (peach). Group and individual statistics; black line in box plot indicates mean across subjects, and gray box demarcates
single-subject-level statistical significance above chance (permutation test based on shuffling trial labels 1000 times before reconstructing the envelopes, *p, 0.05). Single
dots represent single-subject data.
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Modeling speech responses in terms of both acoustics and
phonetic features can disambiguate acoustic and speech–
specific processing
The envelope reconstruction results above (Fig. 3) highlight one
of the key limitations of using envelope tracking as a measure of
speech processing. The general correspondence in the patterns of
results for behavior and tracking indicate a sensitivity to speech-
related processing. However, the robust tracking of speech that
is either completely or almost completely unintelligible (i.e.,
Env_Story in the 1-band and 4-band conditions; Fig. 3B) high-
lights that much of the cortical tracking is simply driven by
acoustic energy, which is consistent with previous work (Lalor et
al., 2009; Howard and Poeppel, 2010). In the previous section,
we attempted to approximately index EEG activity that is driven
by the stimulus acoustics and reflects speech-specific processing
by exploring TRF components at different latencies. However,
that analysis is still based on a very coarse representation of the
stimulus (i.e., its envelope) whose dynamics necessarily correlate
with those of many acoustic and linguistic features. And, as such,
the results are difficult to interpret.

An alternative approach is to use forward encoding models to
explicitly model EEG responses in terms of specific acoustic and
linguistic features of the speech stimulus (Di Liberto et al., 2015).
Here, we explore this issue with a focus on acoustic and phone-
mic features whose dynamics likely correlate with those of the
envelope. In particular, we aimed to model EEG responses in
terms of both the spectrogram and phonemes of speech and to
try to identify unique variance in the EEG responses that can be
explained by each. In doing so, we aim to disentangle the encod-
ing of acoustic features from speech-specific processing that
likely jointly contribute to the envelope reconstruction measures
investigated above. Specifically, the two feature spaces are highly
correlated, but not perfectly so. And here we wished to isolate
the unique contributions of each feature.

To explicitly quantify the unique contributions of acoustic
and phonemic processing to the EEG, we computed the partial
correlation coefficients (Pearson’s r) between the EEG predicted
by either the Phoneme (Ph) or Spectrogram (Sgram) model with
the actual recorded EEG, after controlling for the effects of the
other feature. The unique predictive power of each model is
shown in Figure 6 for phonemes and spectrogram across each
band condition (shown here for an average across 12 channels,
six symmetric pairs on the left and right scalp as previously used
in Di Liberto et al., 2015, 2018; although including all 128

channels revealed the same qualitative pattern of results). In par-
ticular, we conducted two separate ANOVAs, one focused on Ph
predictions (while controlling for Sgram) and one focused on
Sgram (while controlling for Ph). Both ANOVAs (rmANOVA)
had factors of chimera condition, 1-, 4-, 16-bands, and story,
Env_Story, TFS_Story). Both models showed a generally similar
pattern to our envelope-based results above, with improvements
in prediction with increasing chimera bands for Env_Story and
decreases in prediction with increasing chimera bands for
TFS_Story (Fig. 3). Indeed, for both models, we found a signifi-
cant main effect of chimera condition (Ph, Fð1;2Þ ¼ 3:06; p,0:05;
h 2 ¼ 0:18; BF10 ¼ 59:3; Sgram, Fð1;2Þ ¼ 5:55; p ¼ 0:006; h 2 ¼
0:09;BF10 ¼ 3:2� 1017Þ and Story (Ph, Fð1;1Þ ¼ 32:53; p,0:001;
h 2 ¼ 0:41;BF10 ¼ 1:61� 1008; Sgram, Fð1;1Þ ¼ 62:89; p ¼
0:001; h 2 ¼ 0:53; BF10 ¼ 1:38 � 10 17Þ, and a significant interac-
tion of chimera condition and story (Ph, Fð1;2Þ ¼ 16:1; p ¼ 0:001;
h 2 ¼ 0:34; BF10 ¼ 267:65; Sgram, Fð1;2Þ ¼ 21:98; p,0:001;
h 2 ¼ 0:07;BF10 ¼ 2:9� 1016Þ. Additionally, post hoc Bon-
ferroni-corrected pairwise t tests revealed that Env_Story partial
correlation coefficient scores in the 16-band condition were sig-
nificantly higher than those scores in the 1-band condition for
both models (Ph, tð16Þ ¼ 4:65; p,0:001;BF10 ¼ 120:12; Sgram,
tð16Þ ¼ 5:44; p,0:001; BF10 ¼ 481:9Þ, and TFS_Story scores in
the 1-band were significantly higher than the 16-bands for both
models (Ph, tð16Þ ¼ 2:79; p,0:001;BF10 ¼ 4:28;Sgram, tð16Þ ¼
3:78; p,0:05; BF10 ¼ 23:68Þ:

Although these data show that both acoustic and phonemic
features track with our original envelope findings, there are a
couple of notable differences in the performances of the two
models. First, in the 1-band condition, the Env_Story is com-
pletely unintelligible, so any prediction based on Env_Story must
be driven by acoustic processing. This is reflected in the fact that
the acoustic Sgram model (Fig. 6B,D) predictions are signifi-
cantly above zero (z ¼ 3:38; p ¼ 7:13� 10�04). Meanwhile, the
unique contribution of the Ph model (Fig. 6A,C), is not signifi-
cantly above zero for this condition (z ¼ �0:4; p ¼ 0:71), which
again makes sense given that there is no phonemic information
in this chimera for Env_Story as speech was degraded and unin-
telligible in this band. Conversely, for TFS_Story in the 1-band
condition, the Ph model adds unique predictive power (Fig. 6A,
C), again, reflecting the fact that this chimera contains phonemic
information for TFS_Story. The unique contribution of the Ph
model disappears for the 4-band and 16-band conditions, again
supporting the idea that it represents a measure of speech-

Figure 5. TRFs indexing the relationship between the envelope of the different chimera stimuli and the corresponding EEG response. TRFs are averaged over a set of 12 electrodes with high
prediction accuracies over frontotemporal scalp (6 on the left side of the scalp, and their symmetrical counterparts on the right), without biasing any of the TRF models. Shaded lines demarcate
SEM. Subplots show Monte Carlo cluster-based permutation statistics, main effect of chimera condition (F value), with the thick blue lines indicating significance (p, 0.05).
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Figure 6. Partial correlations of real EEG and EEG predicted using forward encoding models based on different stimulus feature representations. A, Partial correlation of real EEG and EEG pre-
dicted using the phonetic feature representation (Phonemes) while controlling for the acoustic representation (Sgram). Correlations are averaged over the same set of 12 electrodes as in Figure
5, that is, a set with high prediction accuracies over frontotemporal scalp (6 on the left side of the scalp, and their symmetrical counterparts on the right). B, Partial correlation of real EEG and
EEG predicted using the Sgram representation while controlling for the Phon representation. Box plots (mean6 SEM) and rain kernel density estimates of partial correlation Rho (Pearson’s r,
two tailed) values for Env_Story (turquoise) and TFS_Story (peach). Group and individual statistics; black line in box plot indicates mean across subjects, and gray box demarcates single-sub-
ject-level statistical significance above chance (permutation test based on shuffling trial labels 1000 times before predicting EEG, *p, 0.05). Single dots represent single-subject data. C, D,
Topographical plots show partial correlation Rho across channels for Env_Story (C) and TFS_Story (D). Red dot indicates significant effects at group level statistics (one-tailed cluster-based per-
mutation test, *p, 0.05). E, Phoneme encoding according to accuracy relationship with behavioral intelligibility scores for delta (1–4 Hz) frequency band. Left, Env_Story; right, TFS_Story.
Individual dots represent subjects and are color coded according to condition. Using robust Spearman’s correlations (bootstrap permutation test p, 0.05, confidence interval 95%). This was
done for each individual condition (colored lines), as well as collapsed across all conditions (shaded area representing confidence interval 95%). Subplots show the distribution of the data in
terms of both envelope decoding (left) and behavior (below) using the same color code as the subject dots.
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specific processing, separable from more general acoustic proc-
essing. The differences between the Ph and Sgram models can
also be seen when visualizing which EEG channels are signifi-
cantly predicted by each model (Fig. 6C,D). Although the per-
formance of the Sgram model is qualitatively similar to that of
the envelope, the unique contributions of the Ph model seem to
track more specifically with speech intelligibility.

Next, under the assumption that the phonetic feature model
performance might more closely relate to speech intelligibility,
we assessed the relationship between EEG phonetic feature
encoding (while controlling for Sgram) and behavioral intelligi-
bility score (Fig. 6E). In particular, we ran a Spearman’s robust
correlation analysis with bootstrap resampling (Pernet et al.,
2013) and specifically looked at delta band EEG (given our
results in Fig. 4). As before, we conducted the analysis in one
correlation collapsing across conditions and found a significant
positive correlation between phonetic encoding and behavioral
intelligibility score as a function of condition, for Env_Story
[rs ¼ 0:46; p,0:001; 95%CIð0:170:68Þ] and TFS_Story ½rs ¼
0:36; p,0:05; 95%CIð0:110:58Þ�). As we collapsed across con-
ditions, we wanted to provide further support for this rela-
tionship using a LME model with behavioral intelligibility
score and phonetic feature encoding as dependent and predictor
variables, respectively. The LME models variability because of
stimulus conditions and subjects simultaneously. We found a
significant positive relationship between reconstruction accuracy
and intelligibility score for Env_Story (b ¼ 302:65; SE ¼ 101:56
p,0:001Þ and for TFS_Story (b ¼ 154:33; SE ¼ 62:12 p,0:01Þ.
Nonsignificant within-condition correlation lines are plotted for
completeness.

Discussion
In this study, we have aimed to disentangle the contributions to
cortical speech envelope tracking that derive from acoustic and
speech-specific processing. Using speech–speech chimeras, we
aimed to decouple the acoustic envelope fluctuations of a stimu-
lus from its speech content. We found evidence of robust enve-
lope tracking based on acoustic energy fluctuations. We also
found that changes in the strength of envelope tracking correlate
with speech intelligibility across conditions. Altogether, we con-
clude that the cortical tracking of speech envelopes contains a
large contribution from general auditory processing, with addi-
tional contributions from neural populations that are specifically
tuned to speech, consistent with our original hypothesis (Fig. 2,
hypothesis 4).

The notion of a substantial general acoustic contribution to
cortical speech responses is in line with the idea that speech
sounds are perceived using mechanisms that evolved to process
environmental sounds more generally (Diehl et al., 2004), with
additional linguistic processing occurring in specialized down-
stream pathways (Hickok and Poeppel, 2007; Rauschecker and
Scott, 2009). Indeed, there is a wealth of evidence suggesting that
speech is processed by a hierarchically organized network of
cortical regions with responses in earlier stages (including pri-
mary auditory cortex) being well accounted for based on the
spectrotemporal acoustics of the stimulus and later stages being
invariant to those acoustics and involved in more abstract lin-
guistic processing (Davis and Johnsrude, 2003; DeWitt and
Rauschecker, 2012; Huth et al., 2016; de Heer et al., 2017; Kell et
al., 2018; Norman-Haignere and McDermott, 2018). Of course,
to contribute to envelope tracking, any such linguistic processing
must involve speech features whose dynamics correlate with the

envelope. One candidate set of features would be phonemes,
whose onsets and offsets will often coincide with fluctuations in
the envelope. The superior temporal gyrus, an auditory associa-
tion area whose activity is not especially well captured based on a
spectrotemporal representation of speech (Davis and Johnsrude,
2003; Norman-Haignere and McDermott, 2018), has shown a
high degree of tuning for phonetic features (Chang et al., 2010;
Mesgarani et al., 2014).

The idea that envelope tracking consists of general acoustic
processing contributions from primary auditory areas and tem-
porally correlated speech-specific contributions from areas like
superior temporal gyrus (STG), explains many of the features of
our results. For example, we see robust envelope tracking of
Env_Story in the 1-band condition, when it is completely unin-
telligible. This must necessarily be because of simple auditory
responses to changes in acoustic energy and fits with previous
work showing robust envelope tracking to nonspeech stimuli
(Lalor et al., 2009). The tracking of the Env_Story envelope then
increases in strength across the 4-band and 16-band conditions
as subjects increasingly understand the speech content of story 1,
which likely reflects the increased contribution from speech-spe-
cific neuronal populations across these conditions. Conversely,
we see significantly lower envelope tracking for TFS_Story,
which makes sense as the energy fluctuations of the stimulus are
dominated by Env_Story. Thus, the general acoustic processing
contribution will be relatively insensitive to the dynamics of
TFS_Story. However, in the 1-band (and 4 band) condition, sub-
jects can partially understand the speech content of TFS_Story.
And this leads to significant envelope tracking for TFS_Story in
that condition, likely driven by contributions from STG and
other speech-specific areas. That said, we also found that the
EEG tracked the envelope that was recovered from the chimera
stimuli (RE-Env), meaning that there could be tracking of lower-
level acoustic features that have been resynthesized from the chi-
mera after it passes through the cochlea.

We attempted to parse the contributions of acoustic and
speech-specific processing using forward encoding models. We
did this in two ways. First, we explored whether we might see dif-
ferential sensitivity to variations in intelligibility as a function of
latency between stimulus and response (Fig. 4). Although no par-
ticularly clear pattern emerged, it is important to bear in mind
that the envelope of speech is a very compressed measure of a
speech signal. Indeed, any speech features (acoustic or linguistic)
that covary with the speech envelope are likely to contribute to
the output measure. As such, the TRF in this case is very difficult
to interpret. Second, we explored how the EEG across our differ-
ent conditions reflected acoustic and phonetic feature processing
by explicitly modeling those features. In general, both sets of fea-
tures contributed uniquely to predicting EEG responses, with
both increasing across conditions for Env_Story and decreasing
across conditions for TFS_Story. Notably, the unique contribution
for the phoneme features (Ph) was only significant for individual
EEG channels for Env_Story in the 4-band and 16-band condi-
tions, that is, where Env_Story could be partially understood, and
TFS_Story in the 1-band condition, i.e., were TFS_Story could be
partially understood. The phoneme model added no value in con-
ditions where Env_Story (1 band) and TFS_Story (16 band) could
not be understood. This suggests that modeling the responses to
speech in this way has enabled us to tap into contributions from
speech-specific areas, like STG.

The idea of general and speech-specific contributions to enve-
lope tracking helps to explain why it can be quite difficult to link
cortical envelope tracking measures with measures of speech
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understanding (Howard and Poeppel, 2010). For example, some
studies have reported that cortical envelope tracking shows sensi-
tivity to speech intelligibility (Peelle et al., 2013; Vanthornhout et
al., 2018), whereas others have failed to find it (Howard and
Poeppel, 2010). It may be that the large general auditory process-
ing contribution to envelope tracking that is common to both
intelligible and unintelligible speech somewhat masks a smaller
contribution from task-based speech-specific processing. Indeed,
in studies that have tried to control or account for the acoustic
contributions to speech perception, correlations with behavior
have been reported for phoneme-level processing (Di Liberto et
al., 2018), including in STG (Leonard et al., 2016).

It has been well established that cortical envelope tracking is
strongly affected by selective attention (Kerlin et al., 2010; Ding
and Simon, 2012; Power et al., 2012; O’Sullivan et al., 2015).
However, correlations between envelope tracking and behavioral
measures of cocktail party attention have been difficult to iden-
tify (O’Sullivan et al., 2015; Tune et al., 2020). Again, if we con-
sider envelope tracking as the combination of general acoustic
and speech-specific processing, this makes sense. Using invasive
recordings, it has recently been shown that cocktail party atten-
tion effects vary substantially in their strength across the cortical
hierarchy, with weak effects in early auditory areas like Heschl’s
gyrus and much stronger effects in areas like STG (O’Sullivan et
al., 2019). And EEG studies have suggested something similar on
the basis of examining envelope tracking at different latencies
(Power et al., 2012) or based on trying to isolate markers of
acoustic and phonetic feature processing (Teoh et al., 2022).
Indeed, focusing specifically on cortical responses to higher-level
linguistic speech features, including those at the lexical and
semantic levels, researchers have often found strong correlations
with attention (Brodbeck et al., 2018; Broderick et al., 2018) and
speech understanding, more generally (Broderick et al., 2018).
Incidentally, it is worth reflecting on the possible role of attention
in the pattern of results we see in the present study. For example,
one might wonder whether changes in the amount of attention
being paid to Env_Story or TFS_Story across conditions is driv-
ing the changes in envelope reconstruction accuracy we see (Fig.
2). We think this is unlikely. This is because, in our experiment,
there was always just a single chimera stimulus being presented
at any one time. Thus, any increase in attention to the speech
content is likely to enhance the response to the acoustic energy
changes. Of course, this is not guaranteed. Feature-based atten-
tion has been shown to affect the processing of some features
more than others within the same object (Maunsell and Treue,
2006). However, the limited literature exploring how different
feature-based attention tasks within a cocktail party environment
have shown no clear effects on envelope tracking (Lauteslager et
al., 2014).

The approach and results in this study have implications for
theories of so-called speech entrainment (Giraud and Poeppel,
2012; Obleser and Kayser, 2019). One such prominent theory
posits that intrinsic, ongoing oscillatory brain rhythms entrain to
the rhythms of the speech signal by aligning their phase with the
stimulus in an anticipatory, behaviorally effective manner. The
core idea of this model is that salient points (edges) in the speech
signal cause phase resetting of ongoing oscillatory activity. The
realignment of the phase of these oscillations, which has been
linked to fluctuations in cortical excitability (Lakatos et al., 2005),
then enables the parsing and chunking of the continuous speech
signal into discrete linguistic units for further processing by faster
oscillations (Ghitza, 2011; Giraud and Poeppel, 2012; Rimmele et
al., 2018). This theory links to fundamental electrophysiological

observations in nonhuman studies (Lakatos et al., 2008).
However, when it comes to the specific case of speech process-
ing in humans, it has largely been built from observations that
cortical activity (often measured noninvasively) shows consist-
ent phasic fluctuations in theta band activity across repeated
presentations of a speech stimulus (Luo and Poeppel, 2007).
The fact that theta band activity appears special in this regard
has led to the suggestion that this entrainment facilitates the
parsing of continuous speech into syllables, given that the time
scale of syllables is in the range of 4–8Hz. However, basing this
theory on the idea of consistent fluctuations in noninvasively
recorded brain responses to speech is problematic. As we have
shown in the present study, much of the variance in these fluc-
tuations is driven by amplitude modulations of the stimulus,
again, in line with previous research (Lalor et al., 2009). If
acoustic edges (perhaps corresponding to syllable boundaries)
were driving this cortical tracking, we might expect to see
stronger tracking for TFS_Story than Env_Story in our 1-band
condition. Of course, it may be that different low-frequency oscil-
lators, each with a different specific role, are concurrently active in
different early cortical areas. Indeed, recent research (also using
stimuli where the ENV and TFS have been decoupled) has
reported cortical entrainment in the theta range to temporal fine
structure, distinct from that to the envelope (Teng et al., 2019). In
particular, that study showed robust MEG tracking of unintelli-
gible stimuli composed entirely of the TFS of speech (i.e., with no
envelope fluctuations). Furthermore, behavioral results showed
that TFS could help improve the recognition of speech whose en-
velope had been temporally distorted. The authors interpreted
these findings as evidence that cortical entrainment to speech
reflects the tracking of both the temporal and spectral structure of
speech. That finding agrees well with our data showing EEG track-
ing of both Env_Story and TFS_Story. However, differences in the
stimuli and tasks between the two studies led to different interpre-
tations of the results. Teng et al. (2019) interpret their findings as
evidence for two complementary mechanisms through which neu-
ral entrainment can facilitate the segmentation of speech (for fur-
ther processing). On the other hand, our somewhat more direct
linking of envelope and TFS tracking to speech comprehension in
one experiment has led us to the interpretation that these neural
measures index not just the segmentation of speech but dissociable
contributions from general acoustic and speech-specific process-
ing. Specifically, our interpretation is that acoustic energy fluctua-
tions drive evoked responses in early auditory areas, with speech-
specific tuning leading to additional contributions from auditory
association areas like STG. We think this interpretation can also
explain the cortical tracking of TFS reported by Teng et al. (2019).
Although decisively adjudicating on the relative contributions of
entrained oscillations versus evoked responses is not straightfor-
ward (Obleser and Kayser, 2019).

The variation in speech intelligibility across chimera condi-
tions was reflected more strongly in delta band EEG frequencies
than in theta band. This agrees with previous studies highlighting
a specific correspondence between speech intelligibility/compre-
hension in challenging listening environments and delta band
tracking (Ding et al., 2014; Etard and Reichenbach, 2019; Mai
and Wang, 2019). For example, Etard and Reichenbach (2019)
explored EEG responses to native and foreign languages in dif-
ferent levels of background noise and found that cortical tracking
in the theta band was mainly correlated with clarity, whereas the
delta band was most closely related to speech comprehension.
Ding and Simon (2014), who dissociated the envelope and tem-
poral fine structure of speech using noise vocoding, found that
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cortical tracking in the delta band predicted speech recognition
scores for individual listeners. Indeed, more generally, a slew of
previous research has linked cortical activity in the delta band
with the tracking of linguistic features, even if these features have
no acoustic correlates (Buiatti et al., 2009; Ding et al., 2016;
Makov et al., 2017; Brodbeck et al., 2018; Broderick et al., 2018;
Jin et al., 2018; Sheng et al., 2019).

Although the correspondence of delta band activity to behav-
ior was not unexpected, we were somewhat surprised that the
delta band tracking of the chimera stimuli was generally so much
stronger than for the theta band. We sought to understand this
through the lens of our previously mentioned interpretation that
cortical speech tracking is largely driven by evoked responses. To
that end, we calculated the mean amplitude of the modulation
spectrum of our chimera stimuli in the delta and theta frequency
ranges and found that delta band stimulus modulations were in
excess of three times as large as modulations in the theta range (1
band, 3.15; 4 band, 3.39; 16 band, 3.34). This compares to a ratio
of only 1.88 in (clean speech) stimuli we have used in previous
research and that produced generally stronger tracking in the
theta band than the delta band (Di Liberto et al., 2015). As such,
the stronger tracking of speech in the delta band in the present
study may simply reflect differences in evoked response ampli-
tude based on more energetic modulations in that frequency
range. The 1/f noise characteristics of the EEG itself (our current
EEG dataset had an average delta/theta ratio across subjects of
6.18) could also be a contributory, interacting factor. That all
said, we also found some evidence for preferential, speech-spe-
cific tracking in the delta range in our data. Specifically, the
(demeaned) reconstructed envelopes for the broadband chimeras
had delta/theta ratios of 7.00 for the 1-band stimuli, 12.65 for the
4-band stimuli, and 12.71 for the 16-band stimuli. These ratios
are much higher than those of the stimuli. And they increase
with the number of bands in the stimuli, as does the tracking and
the intelligibility of the Env_Story. This suggests that there is a
relative increase in delta tracking that may relate to behavior and
that cannot be explained solely by the statistics of the stimuli and
the EEG. Such a dissociation between delta and theta when using
degraded/noisy speech stimuli would be consistent with several
previous studies. For example, when the spectral resolution of
speech decreases, theta band cortical tracking has been shown to
be reduced (Peelle et al., 2013; Ding et al., 2014), but delta band
tracking can be enhanced (Ding et al., 2014). Furthermore, when
speech is presented in competing speech streams, delta band fre-
quency (1–4Hz) cortical tracking has been reported to be robust,
whereas theta frequency band (4–8Hz) cortical tracking often
decreases as the level of the competing stream is increased (Ding
and Simon, 2013). Further work is needed to more fully explore
the roles of evoked responses and entrained oscillations in the
delta and theta bands, bearing in mind that both general auditory
and speech-specific activity are likely to be occurring within
those frequency ranges.
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