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Abstract

Owing to a lag between a deleterious mutation’s appearance and its selective removal, gold-standard methods for mutation rate

estimation assume no meaningful loss of mutations between parents and offspring. Indeed, from analysis of closely related lineages,

in SARS-CoV-2, the Ka/Ks ratio was previously estimated as 1.008, suggesting no within-host selection. By contrast, we find a higher

number of observed SNPs at 4-fold degenerate sites than elsewhere and, allowing for the virus’s complex mutational and compo-

sitionalbiases,estimate that themutation rate isat least49–67% higher thanwouldbeestimatedbasedonthe rateofappearanceof

variants in sampled genomes. Given the high Ka/Ks one might assume that the majority of such intrahost selection is the purging of

nonsense mutations. However, we estimate that selection against nonsense mutations accounts for only�10% of all the “missing”

mutations. Instead, classical protein-level selective filters (against chemically disparate amino acids and those predicted to disrupt

protein functionality) account for many missing mutations. It is less obvious why for an intracellular parasite, amino acid cost

parameters, notably amino acid decay rate, is also significant. Perhaps most surprisingly, we also find evidence for real-time selection

against synonymous mutations that move codon usage away from that of humans. We conclude that there is common intrahost

selectiononSARS-CoV-2 that actsonnonsense,missense, andpossibly synonymousmutations. This has implications formethodsof

mutation rate estimation, for determining times to common ancestry and the potential for intrahost evolution including vaccine

escape.
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Significance

In SARS-CoV-2, we find evidence for common intrahost purifying selection against nonsense, missense, and synon-

ymous mutations, such that the true underlying mutation rate is about 50% higher than would be estimated if one

assumes that the mutation rate is the rate of appearance of mutations in the circulating population. This has impli-

cations for methods to determine mutation rates, for determining times to common ancestry and the potential for

vaccine escape.
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Introduction

Classically purifying selection can be inferred by absence. For

example, in the Ka/Ks test, we employ the normalized rate of

occurrence of substitutions at synonymous sites (Ks) in a pro-

tein coding gene as a measure of the background rate of

evolution, comparing this to the normalized rate of nonsynon-

ymous changes (Li et al. 1985; Goldman and Yang 1994). A

dearth of the latter compared with the former (Ka/Ks< 1) is

taken to imply that protein changing mutations happened but

were too deleterious to persist (Li et al. 1985; Goldman and

Yang 1994). The method thus implicitly infers the rate of what

might be called “missing” mutations.

A consequence of this is that, owing to a lag between

mutation appearance and selective removal (Rocha et al.

2006), our ability to resolve purifying selection on recently

diverged lineages is weak, few mutations being “missing”

(Ponting 2008). Indeed, for this reason, for closely related

species Ka/Ks in a pairwise analysis declines as the time to

common ancestry increases (Rocha et al. 2006).

Consequently, we know relatively little about the activity of

purifying selection over the short term (Ponting 2008), let

alone what might be called “real time.” Similarly, to estimate

the mutation rate (meaning the rate at which new mutations

happen, not the rate of lineage evolution), we employ a few

generations of mutation accumulation lines (Lynch et al.

2016) under the assumption that the rate of accumulation

of changes in DNA/RNA is the mutation rate, as purifying

selection is both diminished and will not yet have influenced

the fate of mutations. Indeed, parent–offspring trios are now

considered a gold standard for mutation rate estimation as

such analyses are presumed to be the least affected by the

missing mutation problem (Yang et al. 2015).

An ideal examination of real-time selection in the wild

would require analysis of massive numbers of full genomes

of a relatively fast evolving species sampled continuously in

time and place. Such a natural experiment is currently run-

ning. Indeed, the volume of genome data for SARS-CoV-2

allows an unparalleled evaluation of the activity of purifying

selection in real time. Early analysis, however, suggested that

purifying selection was not detectable, Ka/Ks being almost

exactly 1 (Bai et al. 2020), that is, there is no distortion from

the immediate mutational profile, consistent with assump-

tions of parent–offspring mutation rate estimation. More re-

cent evidence, by contrast, indicates that such selection is

detectable (Dearlove et al. 2020; Shen et al. 2020; Tang et

al. 2020; Tonkin-Hill et al. 2021; Lythgoe et al. 2021).

Similarly, mutational scanning experiments indicate positions

under positive and negative selective constraints in the SARS-

CoV-2 receptor-binding domain (Starr et al. 2020).

There are numerous reasons why the study of real-time

purifying selection in SARS-CoV-2 in particular might be in-

teresting. For example, the difference between the rate of

appearance of new mutations in the population and the

rate at which they actually occur, is indicative of the potential

for intrahost evolution. If, for example, there is little disparity

(e.g., Ka/Ks¼ 1) then intrahost selection is not occurring and

the nonsynonymous mutations that occur are being transmit-

ted without selection. Conversely, if only a small proportion of

actual mutations survive to be transmitted, the adaptive po-

tential, for example, for selection for vaccine escape, must be

quite high, there being differential birth and death (i.e., intra-

host variance in fitness with the viral clone). Similarly, if we

infer the evolutionary rate of a virus by assaying the rate at

which RNA changes appear in the population (Duchene et al.

2020; Hill and Rambaut 2020; Nextstrain 2020) and, in turn,

assume this to reflect the true underlying rate (much as done

with parent–offspring sequencing), then the true underlying

rate is likely to be underestimated. Although not necessarily

important for inferring the evolutionary rate, allowance for

such purifying selection can affect estimation of time to com-

mon ancestry (Wertheim and Kosakovsky Pond 2011). Here

then, we attempt to estimate the proportion of mutations

that occurred but were missing prior to sequencing of circu-

lating variants. From this, we attempt in turn to infer the true

mutation rate, more particularly asking whether this is a size-

able correction or not. That Ka/Ks �1, might suggest that no

meaningful correction is needed.

Further, the profile of these missing mutations may also

contain information as to what selection is acting on.

Selection against most nonsense mutations seems inevitable.

Indeed, it is possible both that there is purifying selection op-

erating against nonsense mutations and that Ka/Ks¼ 1, as

the later metric does not factor in nonsense mutations. We

should then predict fewer nonsense mutations circulating

within the sequenced genomes than expected given the un-

derlying mutational profile. Prior sampling of intraindividual

variation supports this (Tonkin-Hill et al. 2021), although se-

quence quality issues may be relevant here (see Nekrutenko

[2020]). Indeed, for reasons unknown (see Nekrutenko

[2020]), one commonly employed intrahost sequencing proj-

ect (SRP253798) reports both remarkably high numbers of

mutations and that almost all such mutations are C->U.

This has the potential to overestimate the rate of generation

of nonsense mutations. Given that Ka/Ks (that considers only

missense/nonsynonymous changes) is near unity (Bai et al.

2020), one might then suggest that, despite evidence for

purifying selection against some missense (nonsynonymous)

variants (Dearlove et al. 2020; Lythgoe et al. 2021), the vast

majority of purifying selection must be against nonsense

mutations. Here, we attempt to assay whether this is so.

We find that there is common purifying selection operating

at the protein level (i.e., against nonsynonymous variants). We

then ask whether the profile of selection against nonsynon-

ymous variation seen in more distant comparisons can be

detected in real time. Classically nonsynonymous mutations

are selected against when they disrupt protein function too

much. This can be reflected in a dearth of fixed (between two
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different species) differences that see an amino acid replaced

by one that is chemically very different (Weber and Whelan

2019). We ask whether we can detect such selection operat-

ing within hosts. In addition, we might expect, at a higher

level of granularity, that a biophysical model of protein func-

tioning might predict which amino acid exchanges are toler-

ated. We consider spike protein as an exemplar, not least

because the model for this protein was not informed by evo-

lutionary constraint data (which would render any analysis

circular).

Analyses of longer-term purifying selection suggests that

mutations to more biosynthetically costly amino acids are also

subject to purifying selection (Richmond 1970; Akashi and

Gojobori 2002; Heizer et al. 2006; Hurst et al. 2006; Swire

2007; Charneski et al. 2011). In contrast to the above pre-

dictors, we do not necessarily expect this to be detectable, in

real time or otherwise, in a virus which may itself not suffer

the costs of amino acid synthesis, the ATP costs of amino acid

biosynthesis being more obviously suffered by the host not

the virus. One might, however, conjecture that what is good

for the host might also be good for the virus (fitness covari-

ance) and, as translation imposes the majority of the cost of

building a virus, such costs may be under selection

(Mahmoudabadi et al. 2017). Indeed, virus-like Gene

Transfer Elements integrated in Alphaproteobacteria have

been suggested to be under positive selection for the reduc-

tion of cost (Kogay et al. 2020). However, an integrated ele-

ment is expected to have stronger fitness covariance with its

host than SARS-CoV-2 for whom the host is just a temporary

transmission vehicle.

Perhaps the weakest selection we might hope to detect is

that of synonymous mutations. Although selection on synon-

ymous sites is likely to be hard to detect, prior evidence sug-

gests viruses might adapt their codon usage to that of their

host (Hernandez-Alias et al. 2021), to optimize translational

efficiency (Wong et al. 2010; Liu et al. 2011; Fan et al. 2015;

Chen et al. 2020; Hernandez-Alias et al. 2021) or avoid cer-

tain nucleotide combinations (Shpaer and Mullins 1990;

Atkinson et al. 2014; Gaunt et al. 2016; Gu et al. 2019).

Some evidence for selection of codon usage in SARS-CoV-2

has been reported (Gu et al. 2020; De Maio et al. 2021;

Hernandez-Alias et al. 2021). Our prior analysis reveals that

predicted neutral mutational equilibrium content of U at 4-

fold degenerate sites (U4*) at 65% is higher than the ob-

served U4, which could indicate purifying selection on U

mutations at 4-fold degenerate sites but could also reflect a

relatively recent change in mutational profile and lag to mu-

tational equilibrium (Rice et al. 2021).

Here then, in addition to estimating the number of missing

mutations, we examine nonsense, missense, and synonymous

mutations to test particular hypotheses for the causes of such

selection. Although the genomic resources are exceptional,

SARS-CoV-2 analysis presents unusual methodological chal-

lenges. Site frequency spectra (SFS) approaches have been

applied in an attempt to infer selection on nucleotide compo-

sition in SARS-CoV-2 (De Maio et al. 2021). However, broader

application of such methods may well be problematic as some

methods are advised against in nonrecombining genomes

(Bustamante et al. 2001) and inferences can be confounded

by effects of demography that can mimic selection. Indeed,

SFS methods are more commonly employed to determine

demography (Lapierre et al. 2016), analyses that in turn are

confounded by their failure to allow for weak selection

(Lapierre et al. 2016). Moreover, highly geographically

skewed sequencing efforts, including intensive sequencing

around outbreak hotspots, will distort the SFS (e.g., a rare

mutation in an oversequenced location will appear to be at

a relative high net frequency).

Ka/Ks has also been applied to test for selection on SARS-

CoV-2 (see, e.g., Bai et al. [2020]). Aside from the fact that the

test was designed to be applied to fixed between-species differ-

ences (Mugal et al. 2020), this test too has numerous interre-

lated issues. First, it overlooks nonsense mutations as a source of

“missing” mutations. Second, even the best codon-centered

models (Goldman and Yang 1994; Wertheim and Kosakovsky

Pond 2011) ignore complex mutational effects that bridge be-

tween codons, forcing codon pair bias, that is important for viral

functioning (Coleman et al. 2008). Third, and related, SARS-

Cov-2 has an exceptionally biased and complex mutational pro-

file (Rice et al. 2021; Simmonds 2020b; Graudenzi et al. 2021),

with a large bias toward U, especially from CU and GU dinu-

cleotides, that is likely to confound estimation methods.

Coupled with differential nucleotide usage at different codon

positions, this is likely to interfere with estimation. For example,

although one could estimate the true mutation rate by using

the rate at 4-fold degenerate codon sites alone (cf. Keightley

and Eyre-Walker 2000), as these are much more U biased than

the other codon sites (Rice et al. 2021), the rate at 4-fold de-

generate sites will not reflect the underlying rate at the other

sites, potentially underestimating it as U has a low mutation rate

(Rice et al. 2021). Compounded with a short time between

mutational occurrence and sampling, these issues may explain

why prior Ka/Ks estimation reports a value of 1.008, indicative

of no purifying selection (Bai et al. 2020).

To overcome these problems, we apply a variety of meth-

ods. Most notably, we estimate rates at 4-fold sites of differ-

ent nucleotide compositions and use these nucleotide-

dependent rates to infer the true underlying mutation rate

and hence the rate of missing mutations, given the nucleotide

content of all other sites. Similarly, to determine the profile of

missing mutations, we define expectations of the rates of

amino acids exchanges under a complex null neutral model

and examine the predictors of deviations from this. Using re-

lated methods, we also attempt to infer the direction of se-

lection on synonymous mutations. These methods have an

advantage over direct within-host sampling that they can

also estimate rate of mutations so deleterious that they never

attain reasonable frequencies within the host. They should

Purifying Selection on SARS-CoV-2 GBE
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also be less subject to sequencing artifact known to affect

intrahost sampling (see Nekrutenko [2020]). We also however

employ such within individual sequencing to infer selection.

Results

An Excess of Variants at 4-Fold Degenerate Sites Implies
Purifying Selection

Were selection ongoing we expect that, per occurrence of a

given nucleotide, the number of mutations observed at 4-fold

degenerate sites would be higher than at sites 1 and 2 in

codons. In all eight independent comparisons (4-fold site vs.

site 1, 4-fold site vs. site 2, for four nucleotides), the 4-fold

degenerate sites have more mutations per occurrence of the

ancestral nucleotide (fig. 1a: binomial test, P¼ 0.008). This is

consistent with weaker selective constraint on mutations at 4-

fold sites detectable even at sites recently sampled (fig. 1a).

We also see that when all 12 mutational types are considered,

4-fold degenerate sites have the highest rate in 22/24 com-

parisons (fig. 1b: binomial test, P¼ 3.6�10�5).

To allow for dinucleotide effects, not considered when

performing standard Ka/Ks tests, as performed for SARS-

CoV-2 (see, e.g., Lythgoe et al. [2021]), we also consider

the incidence rate of mutations centered on a given base at

a 4-fold degenerate site in each of the 16 possible dinucleo-

tides (either at sites 2 and 3, denoted “23,” or 3 and 1, “31”)

and compare this with observations for the same dinucleoti-

des where the mutations observed are not centered over co-

don third sites. The finding of a weaker selective constraint at

4-fold degenerate sites is resilient to such control (fig. 2). All

four nucleotides are more mutable when situated at a 4-fold

position, regardless of dinucleotide (Wilcoxon ranked-sum

tests; A: P¼ 0.0052, C: P¼ 9.8�10�5, G: P¼ 0.00021, U:

P¼ 0.00024).
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FIG. 1.—Comparisons between 4-fold and codon site 1 and site 2 mutations. (A) Rate of observed mutation per reconstructed (i.e., alignable and

qualifying) site in the genome for each base (premutation). (B) The same data as in figure (A) divided by type of mutation given ancestral state. When all 12

mutational types are considered, 4-fold degenerate sites have the highest rate in 22/24 comparisons (binomial test, P¼3.6�10�5).
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For Every Ten Variants that we See, around Five Other
Mutations Are Not Recovered

The above evidence indicates that there must be some miss-

ing mutations derived from codon sites 1 and 2. If x is the

number of new mutations seen per unit time down a partic-

ular lineage then xþ dx must be the true rate, dx being the

mutations that happened but disappeared before they were

sequenced. How can we estimate dx and hence the true mu-

tation rate, xþ dx? Under the assumption of no selection on

4-fold degenerate sites, and assuming that most mutations

are either neutral or deleterious, then the difference between

their rate and that observed elsewhere in the genome (fig. 1)

is informing us of the rate of missing mutations. One could,

alternatively, estimate the rate at 4-fold sites and assume all

other sites have the same rate. However, we have previously

identified both strong nucleotide skews at 4-fold sites and

strong biases in the mutation rate per occurrence of each of

the nucleotides (Rice et al. 2021). Considering that codon sites

1 and 2 are not as skewed in nucleotide content as 4-fold sites

(Rice et al. 2021), the optimum approach is to extrapolate

from the patterns at 4-fold sites in a manner that is sensitive

to differences in nucleotide composition across sites.

dx can be estimated as the number of mutations seen in

sequencing data multiplied by the proportion of mutations

missing (Pm) (this being the proportion in terms of those ob-

served), which may be estimated by comparing rates at codon

sites 1, 2, and 3 to those at 4-folds (see Materials and

Methods for calculation). As dx¼x. Pm, the true mutation

rate¼x [1þ Pm] per unit time. We estimate Pm¼0.672, that

is, we are seeing 1/1.672¼ 59.8% of all mutations, missing

40.2% and the true mutation rate is 1.672 times higher than

that observed. Most of the mutations missing are at G nucleo-

tides. At A sites, we are seeing 70.0% of mutations and miss-

ing 30.0%, this equating to 3,119 mutations lost in the

analyzed phylogeny. At C sites, we are missing 22.4%

(5,735 mutations), at G sites, we are missing 61.5%

(20,974 mutations), and at U sites, we are missing 21.8%

(1,969 mutations) of mutations. In total, we estimate there

are 31,797 unsequenced mutations missing in total.

Using mutational counts at the dinucleotide level, we may

also estimate Pm and dx (and the number of mutations miss-

ing for each dinucleotide) by adapting the above method. For

example, the mutation rate of A in an AG dinucleotide at site

12 may be compared with the mutation rate of A at AG

dinucleotides where A is the 4-fold site. The mutation rate

of G in an AG dinucleotide at site 12 is compared with the

mutation rate of G at AG dinucleotides where the G is the 4-

fold site, and so on. Owing to the structure of the genetic

code, there are no 4-fold sites following a second codon po-

sition A, hence for these dinucleotides, we use the mutation

rates at codon third sites, rather than 4-fold rates, for the

comparison. The resulting predicted number of missing muta-

tions is hence likely to be an underestimate. Nevertheless,

from our dinucleotide calculations, we estimate Pm¼ 0.489,

FIG. 2.—Comparisons between 4-fold and non-4-fold mutations at different reconstructed dinucleotide sites. The increased mutability of 4-fold sites is

resilient to control for dinucleotide effects.

Purifying Selection on SARS-CoV-2 GBE
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that is, we are seeing 1/1.489¼ 67.1% of all mutations, miss-

ing 32.9% and the true mutation rate is 1.489 times higher

than that observed. In terms of raw mutations, this equates to

44,966 missing dinucleotide changes or 22,433 mutations (as

each point mutation affects two dinucleotides). Given the

probable underestimation, this corroborates the mononucle-

otide prediction of �30,000 missing mutations. Indeed, con-

sistent with most missing mutations being at G sites, our

dinucleotide analysis predicts that mutations are most com-

monly missing from GG (9,963 mutations) and UG (8,867

mutations) dinucleotide sites.

Currently, the rate of SARS-CoV-2 sequence change is es-

timated from circulating mutations to be about 1 every 2

weeks or �1�10�3 per site per year (Duchene et al. 2020;

Hill and Rambaut 2020; Nextstrain 2020). We hence suggest

the mutation rate to be �1.5–1.7�10�3 per site per year,

assuming no selection at 4-fold degenerate sites.

Selection Skews the Mutational Matrix

It is possible that purifying selection acts in a uniform fashion

against all sites, in which case all mutations at second sites

(none of which can be synonymous) will be equally underrep-

resented when compared with 4-fold degenerate sites (N.B. a

few C$U (Leu$Leu) and A$G (Arg$Arg) first site muta-

tions are synonymous). This appears not to be the case with

considerable heterogeneity between mutation types.

Mutations from G are poorly tolerated at sites 1 and 2 (fig.

1) and in particular G->U mutations appear to be commonly

counter selected (we presume here that the 4-fold site rate

does not indicate positive selection for U at such sites, not

least because U4 observed [50.8%] is much less than neutral

equilibrium predicted U4 content [65.6%]) (Rice et al. 2021).

To more systematically assess any such skew and the net

effect on nucleotide composition, we compare the equilib-

rium nucleotide contents predicted on knowledge of the mu-

tational profiles. We show using such a method that

mutations at 4-fold degenerate sites and those not at 4-fold

degenerate sites resulted in significantly different predicted

mutational equilibria, with G underrepresented at 4-fold sites

(Z¼�8.43), but still very rare, whereas U is very common but

nondeviant between the two sets (Z¼�0.35). To fully under-

stand the variation between sites, we extend these calcula-

tions to consider sites 1-, 2-, and 4-folds separately. This

reveals that all three classes of site within a codon are different

from all others (table 1). We conclude that selection not only

prevents mutations at certain sites from increasing in fre-

quency, but it also skews the mutational matrix with the na-

ture of skew particular to the site concerned.

Evidence for Selection against Nonsense Mutations

Why might selection act differently on different mutations at

different sites? We have observed from analysis of 4-fold sites

a strong CjG->U mutation bias in SARS-CoV-2 (Rice et al.

2021) (fig. 1). The above evidence suggests that at first sites

within codons there is especially strong contemporaneous se-

lection to counter this mutation bias. Why might this be? In all

genomes, premature stop codons generated by nonsense

mutations are commonly under strong purifying selection

and there is no reason why this should not apply to SARS-

CoV-2. Indeed, intrahost mutation appears to generate non-

sense mutations that fail to transmit (Tonkin-Hill et al. 2021).

N->U mutations at codons NAA, NGA, and NAG will gen-

erate stop codons (where N can be A, C, or G). The nine

codons should be at a frequency of 9/61¼ 14.75% under

unbiased nucleotide content but are at 17.05% with AAA

(3.76%) being the second most common codon after GUU

(3.9%). Mutations to U at the second site can never generate

a stop codon. Consistent with these expectations, the reduc-

tion in U seen at non-4-fold sites compared with 4-fold sites is

profound at site 1 (Z¼�6.86) but not seen at site 2 (Z¼ 4.72)

(table 1). Similarly, site 1 has much less predicted U content at

equilibrium than site 2 (Z¼�12.3). The raw predicted U con-

tent at equilibrium reflects these trends: U1*¼ 63.2%,

U2*¼ 73.5%, U3*¼ 70.1%, U4* ¼ 69.5%. More specifi-

cally, when considering the full mutational profile of the virus,

we find nonsense mutations to be significantly less common

than other point mutations (2�2 Chi2; v¼ 1,942.9, df¼ 1,

P< 2.2�10�16). They are also less common when they gen-

erate an in-frame stop codon than aþ 1-frameshifted (2�2

Chi2; v¼ 1,924.4, df¼ 1, P< 2.2�10�16) or aþ 2-frame-

shifted (2�2 Chi2; v¼ 2,626.1, df¼ 1, P< 2.2�10�16) stop,

and are significantly more likely at the first nucleotide position

than the second (2�2 Chi2; v¼ 137.1, df¼ 1,

P< 2.2�10�16). The commonality of nonsense mutation at

first sites is likely owing to the strong N->U mutation bias, all

stop codons having U at the first site.

Sequenced isolates deposited in GISAID are usually consen-

sus sequences that discard all but the most frequent base at

any position from individual samples, and therefore likely do

not fully reflect the diversity of SARS-CoV-2 among infected

individuals. To gain insight into within-individual variation, we

analyzed variants identified from publicly available SARS-CoV-

2 raw sequencing read data to quantify variants within sam-

ples. Could this data provide evidence for missing mutations

in GISAID sequences and purifying selection being a reason?

Counting nonsense mutations present at some frequency in

1,092 samples, there is a mean of 0.23 nonsense mutations

per sample. Compared with GISAID isolates, within-individual

samples are far more likely to harbor a nonsense mutation

(1.3% of GISAID isolates vs. 13.4% of within-individual sam-

ples, 2�2 Chi2; v¼ 1,110.3, df¼ 1, P< 2.2�10�16). Similar

to the mutational profile above, for within-individual varia-

tion, first nucleotide positions are significantly more likely to

generate an in-frame stop codon than second positions

(0.9% vs. 0.6%, respectively, 2�2 Chi2; v¼ 7.0, df¼ 1,

P¼ 0.008).
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Nonsense Mutations Account for �10% of Missing

Mutations

A prior observation of Ka/Ks�1 (Bai et al. 2020) suggests that

nearly all intrahost selection must be against nonsense muta-

tions. Selection against nonsense mutations cannot, however,

explain all the observed patterns. Under the assumption that

there is no selection to avoid out-of-frame stop codons, we

may extrapolate the out-of-frame nonsense mutation rate to

estimate how many nonsense mutations are missing in the

above trends. Taking the out-of-frame per-trinucleotide non-

sense mutation rate as the mean of the þ1 and þ2 frame-

shifted rates, this equals 1.46�10�5 mutations per

trinucleotide compared with 1.26�10�6 in-frame. We are

hence missing nonsense mutations at a rate of 1.46�10�5–

1.26�10�6¼ 1.33�10�5 per trinucleotide and, scaled to the

number of in-frame trinucleotides analyzed that are one point

mutation away from a stop, this equates to 3,205 missing

nonsense mutations. As we above estimate a total of

31,797 mutations missing from the sequence data, nonsense

mutations only account for approximately 10.1% of these.

We also used an alternate method of estimating the

expected number of missing nonsense mutations analytically,

relying on trinucleotide substitution patterns observed at

4-fold degenerate sites. As we have previously mentioned,

4-fold degenerate sites should evolve in a mostly neutral

way and as such, the observed mutation rates on these sites

should better reflect mutational bias. For this, we compared

the proportion of in-frame nonsense mutations observed in

our data set (264 nonsense mutations out of 49,358 trinucle-

otide changes), to an expected proportion of nonsense muta-

tions derived from distributing this same number of mutations

randomly across the sequence at the rate of trinucleotide sub-

stitutions of 4-fold degenerate sites (an average of 2,909.362

nonsense mutations out of 49,358 trinucleotide changes,

95% CI lower¼ 2,908.410, upper¼ 2,910.314). This com-

parison equates to approximately 2,645 missing nonsense

mutations on an average, accounting for only 8.3% of our

31,797 estimated missing mutations. This is close to the above

estimate of�10%. Given prior evidence that Ka/Ks¼ 1 (Bai et

al. 2020), this result is surprising, suggesting that the majority

of counter-selected mutations are not nonsense ones.

Reinforcing this result, we also see that when all 12 muta-

tional types are considered, not only do 4-fold degenerate

sites have the highest rate in 22/24 comparisons (binomial

test, P¼ 3.6�10�5) but the rate is also higher at 4-fold de-

generate sites for mutations that could never generate stop

codons, for example, G->C, U->C at sites 1 and 2 (fig. 1).

Likewise, G->U rates are marginally higher at site 1 rather

than site 2, whereas we expect the opposite if all selection

is against nonsense mutations.

Although second site nucleotide content is considered the

key determiner of the chemical property of the encoded

amino acid (Haig and Hurst 1991; Freeland and Hurst 1998;

Gilis et al. 2001; Schwersensky et al. 2020), only five of 12 first

site versus second site comparisons have higher rates at the

first site. The same analysis of the 12 mutational types empha-

sizes the great disparity in G->U, and to a lesser degree C->U,

mutation between 4-fold degenerate sites and codon sites 1

and 2, this despite the fact that some (Leu->Leu) first site

C->U mutations are synonymous (fig. 1).

What then might predict these trends? We start by con-

sidering parameters that might explain why some amino acid

exchanges are seen less than expected given the mutational

profile. Then we consider in more detail a biophysical model

of disruption of a key protein–protein interaction, spike with

ACE2.

Amino Acid Cost and Chemical Distance as Predictors

Are there general properties of the missense/nonsynonymous

mutations that are underrepresented compared with a muta-

tional null? In order to test this, we first analyzed the relation-

ship between under/overrepresentation of amino acid

substitutions and 12 estimators of different biochemical

properties of such amino acids (supplementary table 2,

Supplementary Material online). However, as mentioned, mu-

tational biases can occur in the context of more than one

nucleotide, for example, when responding to codon bias or

as a result of nonselective mutational processes, like APOBEC-

induced genomic C-to-U deamination (Simmonds 2020b). To

account for the effect of multinucleotide mutational biases on

amino acid replacements, we first measured the over/under-

representation of each pair of amino acid replacements,

Table 1

Comparisons between Equilibrium Vectors

Comparisons P Value A* 1 A* 2 A: Z Score C* 1 C* 2 C: Z Score G* 1 G* 2 G: Z Score U* 1 U* 2 U: Z Score

4 versus non-4 0.012 0.170 0.142 3.596 0.10 0.099 0.221 0.035 0.060 �8.426 0.695 0.699 �0.348

1 versus 2 <0.001 0.196 0.111 12.939 0.094 0.076 6.858 0.079 0.077 0.550 0.632 0.735 �12.282

1- versus 4-fold <0.001 0.196 0.170 3.138 0.094 0.10 �1.745 0.079 0.035 14.416 0.632 0.695 �6.860

2- versus 4-fold <0.001 0.111 0.170 �8.665 0.076 0.10 �8.079 0.077 0.035 12.882 0.735 0.695 4.716

NOTE.—P is determined by 10,000 simulations (see Materials and Methods). Z score orientation is such that a positive value implies comparative enrichment within the first
comparator in the Comparison column. For example, in row 1 (4 versus non-4), the 4-fold degenerates sites are site class 1 and non-4-fold degenerate sites are the non-4-fold
degenerate sites (i.e., all others) and are class 2. In this case, C* 1, for example, is then the equilibrium C content of sites of class 1 (4-fold degenerates) and C* 2 the equilibrium C
content of sites of class 2.
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compared with expectations derived from trinucleotide sub-

stitution patterns observed at 4-fold degenerate sites. Then

we used a Best subset regression to select an optimal linear

model explaining the over/underrepresentation of amino acid

substitutions using the 12 estimators of biochemical proper-

ties, plus a set of variables measuring the degree in change in

U nucleotide, as well as UU and CG dinucleotide content be-

tween codons in each pair of amino acids.

The optimal model found includes many parameters indic-

ative of selection against nonsynonymous mutations that

break proteins by replacing one amino acid with a chemically

dissimilar one. Notably, between pairs of amino acids, predic-

tors include their distance in a BLOSUM100 similarity matrix,

differences in polarizability, and residue volume (adjusted

R2¼ 0.3533, P value¼ 9.563�10�11, supplementary table

3, Supplementary Material online). Perhaps more enigmati-

cally, we also observed an enrichment of missense mutations

to amino acids with a slower decay, possibly suggesting some

selection for reduced metabolic cost of SARS-CoV-2 protein

production (NB fast decay means more cost per unit viable

amino acid). There is avoidance of UU residues but this is not

significant.

Spike–ACE2 Interaction Disruption Predicts Missing
Mutations

The above measures are fairly broad brush but suggest, as

might be expected, protein disruption to be a source of puri-

fying selection in real time. Using spike protein, for which we

also have an underlying biophysical model of its binding (Starr

et al. 2020), we can examine the same hypothesis with better

granularity. For this, we again compared within-individual var-

iation to GISAID isolates. Firstly, counting observed missense

mutations in the receptor-binding domain of the spike (S)

gene, we find 212 unique amino acid substitutions in our

GISAID alignment compared with the reference sequence

and 61 substitutions in the within individual variation. This is

especially notable as the number of GISAID isolates in our

alignment (83,665 nonreference isolates) with the reference

sequence is many times the number of samples with observed

variants in the Galaxy Project within-individual variation data

set (1,092 samples). Secondly, using a mutational screen of

amino acid substitutions in the receptor-binding domain and

their measures of relative ACE2-binding activity compared

with the reference genome (Starr et al. 2020), we compared

the phenotypic effects of the substitutions we observe in

GISAID isolates and those from within-individual variation

(fig. 3). Substitutions observed within individuals reduce rela-

tive ACE2-binding activity more than observed GISAID substi-

tutions (median-binding activity, respectively: �0.27 and

�0.08; P¼ 0.0002; Wilcoxon ranked-sum test). This provides

evidence for unobserved SARS-CoV-2 variation when consid-

ering sequenced GISAID isolates only and purifying selection

being a possible reason for such variants failing to reach the

most frequent nucleotide at a given position and therefore

discarded at the consensus sequence stage.

Synonymous Mutations Degrading Match to the Human
Codon Usage Are Counter Selected

Above we have concentrated on what a priori are expected to

be relatively large effect mutations. We can also ask whether

we can also detect selection at synonymous sites. In order to

test this, we compare the proportion of 4-fold synonymous

mutations resulting in a codon with an increase, decrease, or

with no effect on optimal codon usage. At first sight, one

might imagine that such a method could not work as we

are attempting to infer selection at synonymous sites using

observed mutations at synonymous sites, rendering the anal-

ysis circular. However, this need not to be true. Consider two

amino acids for which the “optimal” codon for each has a

different synonymous site. If one amino acid has a U as the

optimal synonymous site then common C->U mutations will

not be opposed by selection. However, if another amino acid

has C as the optimal site then the same mutation will be

opposed by selection. If selection is strong enough then

both processes will contribute to the net observed mutational

matrix. Consequently, although for the two the different syn-

onymous sites with the same nucleotide content the null rate

will be the same, we expect to see deviations away from this

null in a manner dependent on whether mutation bias and

selection are aligned or not. Deviations between expected

mutational profiles and observed mutational biases, then

have the potential to detect selection on synonymous muta-

tions. The method is flexible to any definition of “optimal” as

we can test whether deviation from the observed mutational

null tends to act against mutations that are thus defined as

nonoptimal. We consider two such definitions.

First, we consider translational efficiency, as measured by

the tRNA adaptation index (tAI) (dos Reis et al. 2004) in

humans, calculated based on the copy number of tRNA genes

and the binding strength between a codon and a tRNA (Yoon

et al. 2018) with random expectations derived from simula-

tions taking into account the trinucleotide mutational patterns

of 4-fold sites. Using tAI as a measure for selection on trans-

lational efficiency has some pitfalls. In multicellular organisms

with larger genomes, there is no correlation between codon

usage and tRNA, possibly due to a higher tRNA gene redun-

dancy in larger genomes, which would decrease selection for

specific codons (dos Reis et al. 2004). Furthermore, tRNA copy

numbers do not necessarily reflect the fact that pools of dis-

tinct tRNAs are dynamic and can vary considerably in different

conditions and tissues (Hernandez-Alias et al. 2021). We ob-

serve a significant depletion of 4-fold synonymous mutations

increasing codon adaptation (two tailed P value¼ 0.0022,

supplementary fig. 1, Supplementary Material online), as

well as a small, yet not significant, enrichment of mutations

that decrease or do not disrupt tAI (two tailed P
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value¼ 0.0984 and 0.326, respectively). These results sug-

gest, if anything, some selection acting against translational

efficiency dependent on the tRNA pool.

Second, we compared the number of mutations that

caused a switch in the SARS-CoV-2 genome to a codon

with a higher relative synonymous codon usage (RSCU) in

human. When accounting for the trinucleotide mutational

patterns, which would better capture the effects of muta-

tional biases derived from CpG avoidance or APOBEC-

induced mutation cytosine deamination, we do observe a sig-

nificant overrepresentation of mutations that increase RSCU

(P value¼ 1�10�4, supplementary fig. 2, Supplementary

Material online). This result is consistent with selection occur-

ring in SARS-CoV-2 to match the human codon usage profile.

We further ask whether such signatures of selection can be

detected within hosts. For this, in a similar manner as with the

between host data, we compared the observed tAI and RSCU

of 4-fold synonymous positions in the intrahost data set,

against random expectations derived from simulations taking

into account the trinucleotide mutational patterns of 4-fold

sites in this same data. We find a significant depletion of 4-

fold increasing codon adaptation (two tailed P val-

ue¼ 0.0044, supplementary fig. 3, Supplementary Material

online), as well as a significant enrichment of mutations that

do not disrupt tAI (P¼ 0.0354). This is consistent with the

above finding of selection against tRNA-dependent transla-

tional efficiency. We also detect overrepresentation of synon-

ymous mutations increasing human RSCU in the SARS-CoV-2

intrahost data but the deviation from null is not significant

(supplementary fig. 4, Supplementary Material online).

Although there should be some selection occurring among

strains within a host, reflected in differences in allelic fre-

quency, selection on RSCU might not be strong enough to

have a measurable impact at the shorter time scale reflected

by intrahost variation.

Discussion

Prior to the genomic age mutation rates were classically esti-

mated by considering substitution rates (between two spe-

cies) at synonymous sites with assumptions made about

generation times and time to common ancestry to provide a

per generation per base pair estimate (see, e.g., Keightley and

Eyre-Walker [2000]). The restriction to the synonymous sites

was a means to reduce the impact of purifying selection de-

pressing the estimate. More recently, this method has been

supplanted by MA line or parent–offspring sequencing (Lynch

et al. 2016). Such methods assume that there is no important

degree of purifying selection between parent and recent

descendants and hence that the profile and rate of mutations

can be estimated in an unbiased manner. Our finding of com-

mon and strong purifying selection detectable in real time

affecting mutations prior to their being sequenced strongly

suggests that, at least for SARS-CoV-2, this is not the case. In

principle our null simulation correction method could also be

employed to correct for underestimation in MA and parent–

offspring analyses to determine the mutation rate. However,

in genomes such as that of humans, where few sites are

subject to purifying selection, the correction is probably not

important. For more economical genomes (with higher CDS

density) it may be more relevant.

Given the evident purifying selection, an estimate of the

rate of evolution of the virus is not the mutation rate sensu

strictu, but rather of the rate at which new mutations appear

and are viable enough to be sequenced. The latter measure is

sometimes referred to as the substitution rate (van Dorp et al.

FIG. 3.—Relative effects on ACE2-binding activity for missense mutations in GISAID isolates and within individual variation. Distribution of relative effects

on binding activity of unique missense mutations within the receptor-binding domain that are observed one or more times in GISAID isolates and Galaxy

Project within individual variation. Change in relative ACE2 binding of two notable amino acid substitutions within the receptor-binding domain of spike

observed in variants of concern, N501Y and E484K, are annotated as dotted lines.

Purifying Selection on SARS-CoV-2 GBE

Genome Biol. Evol. 13(10) doi:10.1093/gbe/evab196 Advance Access publication 24 August 2021 9

https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab196#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab196#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab196#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab196#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab196#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab196#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab196#supplementary-data


2020), the rate of evolution (Hill and Rambaut 2020), or the

mutation rate (Zhao et al. 2004; Pathan et al. 2020). Given

our results, we advise against the latter usage to avoid con-

fusion. Put differently, if one were to take estimates of rates of

sequence change for SARS-CoV-2 that employ observed RNA

changes (Duchene et al. 2020; Hill and Rambaut 2020;

Nextstrain 2020), and assume that this is the underlying mu-

tation rate, one would be wrong. We indeed find that the

discrepancy is not modest (an �50% correction would be

needed).

Although to estimate the true underlying mutation rate,

we thus need to control for purifying selection, the discrep-

ancy between the mutation rate (sensu strictu) and the evo-

lutionary rate is important in other contexts. If selection on

viral escape from vaccines (or antiviral drugs) is in part owing

to intrahost selection, then knowing the underlying mutation

rate, and the difference between it and the apparent evolu-

tionary rate, is important. Furthermore, claims of higher or

lower mutation rates in some lineages would need to control

for the possibility of differences in, for example, effective pop-

ulation size (Ne) or sampling depth. Variation in Ne, modulat-

ing the strength of selection, could result in conflation of

differences in the mutation rate sensu strictu with efficacy

of selection differences (lower Ne permits more mutations

to circulate). Similarly, we would expect that deeper sampling

of genomes within an individual will provide evidence for

genomes that will be removed by purifying selection but

have yet to be removed (as indeed we show). This could

also lead to misleading inference of increased mutation rates.

To understand how important within-host selection might be,

it is important to control for such effects and unbiased sam-

pling of 4-fold degenerate sites is, we suggest, preferable to

analysis of sequence classes known to be under purifying

selection.

The analysis of missing mutations is, however, of less inter-

est in contexts where we wish to employ the rate of evolution

to estimate coalescent times, as in this context the appear-

ance rate (circulating in the population) per unit time is the

relevant metric, not the true underlying mutation rate.

Nonetheless, in this context understanding whether there

are sites subject to purifying selection can be important for

determining whether rate estimate correction is needed. As

O’Fallon (2010) noted, purifying selection acting at many

linked sites can systematically bias genealogical reconstruction

but by allowing a class of sites to have a time-dependent rate

can enable some degree of correction. Likewise, Wertheim

and Kosakovsky Pond (2011) show that, for other viruses,

adjusting codon models to allow for purifying selection can

lead to estimates of the time to common ancestry longer than

those supposed from rates of observed circulating mutations.

Our results suggest that such adjustments are then required

for SARS-CoV-2.

Our new estimate is likely to be an underestimate.

Although we have attempted to control for nucleotide biases

and biases in rates of each class of mutation, we have also

assumed that 4-fold sites are themselves free from selection.

Our analysis of two specific models of selection on codon

usage provided no evidence for selection on codon usage

to match tRNA pools (indeed selection appears to be in the

opposite direction) but of selection to match human codon

usage. The later result was seen unambiguously when testing

the circulating genomes for deviation from null, but not sta-

tistically significantly replicated with intrahost variation data.

However, SARS-CoV-2 has multiple modes of selection on

nucleotide content that would not be detected by such meth-

ods. These include selection against CpG dinucleotides to

avoid ZAP, against UpA to avoid RNAase L and more generally

against U, mediated possibly by transcript destabilization and/

or expression level (Rice et al. 2021). Just as we observe pos-

sible selection against U so we and others have identified

possible selection for A (Rice et al. 2021; Kustin and Stern

2021). One possible mechanism of this could indeed reflect

the high U content and hence selection for A to enable stable

base pairing in RNA stem structures (Ratcliff and Simmonds

2021).

Some of our results on the causes of purifying selection

seem fairly simple to interpret. It is not surprising that non-

sense mutations are counter-selected, nor that a biophysical

model of spike protein function recovers a trace of purifying

selection. Similarly, that features like chemical similarity pre-

dict amino acid exchange rates make sense, as highly different

amino acids are likely to corrupt proteins just as nonsense

mutations do. Nonetheless, our results hold a few surprises

when considered against the prior literature. Although puri-

fying selection was previously identified (see, e.g., Tonkin-Hill

et al. 2021; Lythgoe et al. 2021), given prior Ka/Ks estimates

near unity (Bai et al. 2020), seen also for SARS-CoV (Zhao et

al. 2004), it might reasonably have been inferred that most of

the missing mutations must be nonsense mutations. Our

results do not support this. We however consider Ka/Ks an

unsuitable tool for analysis of polymorphic data, especially in a

context with complex mutation and nucleotide biases (see

Introduction).

It is similarly, not so obviously expected that amino acid

cost determinants (amino acid decay rate) would factor as

predictors of amino acid exchange rates, with selection

against more costly ones. The usual logic is that making

“costly” amino acids, when cheaper good alternatives are

available, causes a fitness cost owing to differential ATP us-

age. For amino acids with high decay rates, these costs are

suffered more as the pool of amino acids needs replenishing

faster. However, why a temporary visitor to a cell (the virus)

that causes damage regardless, will have selection to use less

costly amino acids is not so transparent. Why would it be

under selection to use less costly amino acids if the cell making

those amino acids will soon be dead anyway? In what sense

would the virus benefit from using cheaper amino acids? The

key amino acid parameter, decay rate rather than synthesis
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cost per se, may point to an alternative cause. There could

well be selection for rapid viral replication. A genome that

both harms the cell’s ability to manufacture new amino acids

but needs rapid translation, may be under selection to use

those amino acids that have a long half-life, regardless of ATP

costs. Usage of those with a short half could leave the virus

slowed in translation waiting for ever rarer and diminishing

pools of charged tRNAs. We thus suggest that amino acid ATP

cost per se is not the key parameter, but rather delay to trans-

lation might be. That SARS-CoV-2 interferes with the host’s

splicing and translational machinery (Banerjee et al. 2020),

suggests that amino acid biosynthesis may well be affected.

Similar logic may explain why selection on synonymous

sites failed to identify adaptation to the tRNA pool. Our esti-

mation of this pool from tRNA copy numbers may well not

reflect the pool of charged tRNAs as certain amino acids, with

high decay rates, are limiting. Exactly why matching the hu-

man codon usage does matter is less clear, but a direct cou-

pling between GC content and gene expression in both

nuclear and cytoplasmic compartments (for reasons un-

known) of virus-mimicking intronless transgenes (Mordstein

et al. 2020, 2021) could underpin such an effect.

We highlighted several analytic challenges associated with

this virus’s genome. One we have not fully broached is the

problem of potential interactions between genomic location,

RNA structure, and both mutation rate and mutation profile.

We have controlled for complex mutational biases by consid-

eration of di- and trinucleotide context. We have also

attempted to control for rate heterogeneity by exclusion of

hypermutagenic sites, much as previously we excluded homo-

plasic sites (Rice et al. 2021). Hypermutagenic sites are rela-

tively rare (1% of all sites, 1.8% of variable sites, 2.7% of

4-fold sites, 4.2% of variable 4-fold sites) but given that they

contribute a disproportionate number of observed mutations

they have the potential to lead to false inference if the muta-

tional spectrum at such sites is different from that at non-

hypermutagenic sites. Although the sample of

hypermutagenic sites is limited, we can compare their trinu-

cleotide context with that of the remaining mutations for

four-fold sites (supplementary fig. 5, Supplementary

Material online). We find relative enrichment of UCN->UUN

consistent with more frequent activity of APOBEC on hyper-

mutable sites. We also see evidence for enrichment of CGN-

>CUN. This is suggestive of selection against CG residues,

possibly owing to ZAP-mediated attack. However such a

model would also predict CGN-> C[CjAjU]N which we do

not see. A possible combination of mutation bias (toward U)

and selection against CG might need to be evoked.

Our method to control for hypermutagenic sites defined

sites by reference to the number of independent mutational

events seen across all sites, with hypermutagenic being de-

fined by deviation from a negative binomial. This method,

however, makes no allowance for position by nucleotide

effects. One could suggest that there might be sites that do

not have unusually large numbers of mutations compared

with all other sites, but do when considering their ancestral

nucleotide state. We have considered such a model treating

each of the four nucleotides independently and eliminating,

for each, those sites in the alignment with more independent

mutational events than expected given a negative binomial

distribution parameterized for the nucleotide in question. To

assess whether this alternative methodology makes a differ-

ence to the final analysis of the residual mutational matrix (i.e.,

after removal of hypermutagenic sites), we compare the re-

sidual matrix from the nucleotide-controlled and -uncontrolled

methods. We find no significant difference between the two

residual matrices (P¼ 0.897: Predicted equilibria for original

hypermutable threshold—A: 0.170, C: 0.100, G: 0.035, U:

0.696; Predicted equilibria for nucleotide-controlled thresh-

olds—A: 0.162, C: 0.076, G: 0.025, U: 0.738).

Adding to such complexity is the notion that the rate or

profile of any given nucleotide motif may be contingent on its

genomic location, for example, in a stem loop or not.

Untangling cause and effect in this instance will not be trivial.

A low rate of observed SNPs in RNA stem structures

(Simmonds 2020a) could, for example, reflect selection

against mutations that disrupt RNA stem structures

(Simmonds 2020a). Alternatively, it may be owing to a re-

duced mutation rate if RNA stems protect from mutation,

for example, via shielding from APOBEC (Ratcliff and

Simmonds 2021). We are unaware of theoretical work that

attempts to correct for motif (k mer) by location effects on

rates and profiles. This we leave to future work.

Materials and Methods

Creating a Mutational Matrix

Multiple sequence alignment of 106,448 SARS-CoV-2 ge-

nome assemblies was downloaded from the GISAID (Shu

and McCauley 2017) Initiative EpiCoV platform, these being

those available as of September 28, 2020. Isolates with more

than 1% of ambiguous base calls or more than 5% of any

CDS missing were removed. This left 83,666 genomes. For list

of genomes and sources, see supplementary table 1 and data

1, Supplementary Material online.

We employed NCBI Reference Sequence NC_045512.2 to

specify CDS coordinates. However, following further annota-

tion of genes (Kim et al. 2020), we modified the gene loca-

tions to reflect those specified: https://github.com/hyeshik/

sars-cov-2-transcriptome/blob/master/reference/SARS-CoV-2-

annotations.gff. Specifically, to avoid a small codon overlap,

we exclude CDS overlaps, hence employed annotation:

ORF7a protein 27394.27759!27394.27753

ORF7b protein 27756.27887!27762.27887

To consider ORF1a and ORF1b independently and to avoid

overlap, we employ:
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ORF1a!266-13465

ORF1b!13471-21552

CDSs for each gene in each strain were extracted from these

alignments, and frameshift correction was then applied using

the protein sequence of the Wuhan-Hu-1 reference genome

(EPI_ISL_402124), sampled from a retailer at Huanan Seafood

Wholesale Market, Wuhan on December 30, 2019 as refer-

ence, using the DECIPHER R package. This early sequence

matches the consensus generated from all of the 19 sequen-

ces that were collected prior to December 31. CDSs were

then translated, realigned with MAFFT 7.458 (Katoh and

Standley 2013), and then reversed translated using

TranslatorX (Abascal et al. 2010).

A phylogenetic tree of SARS-CoV-2 isolates (released

October 28, 2020; Lanfear 2020) was pruned using

DendroPy v4.4.0 (Sukumaran and Holder 2010) to match

isolates present in our sequence alignment, and similarly our

sequence alignment was filtered to match isolates present in

the phylogenetic tree. This left 78,971 genomes present in

both. Aligned CDSs were concatenated to create a single

coding sequence alignment of length 30,696 bp as input for

ancestral sequence reconstruction. Ancestral sequence recon-

struction at internal nodes of the predefined phylogenetic tree

was performed using an empirical Bayesian method with a

GTRþG model of substitution in IQTree v2.1.2 (Minh et al.

2020). Inferred bases with a probability of less than 0.99 were

masked.

Known problematic sites in the SARS-CoV-2 genome (re-

leased December 12, 2020, Available from: https://github.

com/W-L/ProblematicSites_SARS-CoV2/blob/master/problem-

atic_sites_sarsCov2.vcf) identified and collated at https://viro-

logical.org/t/masking-strategies-for-sars-cov-2-alignments/

480 were masked and the number of mutations per site at 4-

fold degenerate sites were counted.

Given that some sites appear to be both hypermutable,

hence subject to homoplasy (van Dorp et al. 2020), and po-

tentially unrepresentative of the rest of the genome we

sought to exclude these sites from more general analysis

(we consider their properties separately). To find thresholds

for masking hypermutable sites in the genome, a negative

binomial distribution, with l fixed to the median number of

mutations per site (median: 1), was fitted to the observed

values using the fitdist function of the fitdistrplus R package

(fitted distribution: l¼ 1, size estimate¼ 0.3414126;

Delignette-Muller and Dutang 2015). An expected number

of hypermutable sites can be estimated from the fitted distri-

bution for a given number of sites. We set a cut-off threshold

where we expect no more than one site with that number of

mutations and mask the sites above that threshold. For ex-

ample, for 4,248 4-fold degenerate sites, we expect at least

one site with 17 mutations and less than one site with 18

mutations, and therefore mask sites where 18 or more muta-

tions have occurred independently across the tree. For 9,739

first, second, or third codon position sites, we expect at least

one site with 19 mutations per site, etc.

We also consider a second approach in which we define

(and exclude) hypermutagenic sites by reference to the num-

ber of mutated sites with the same premutation nucleotide.

That is to say, for each site, we determine the number of

independent mutational events at that site. We then compare

these by-site numbers to other sites within the alignment with

the same premutation nucleotide. We then calculate the

mean number of independent mutational events for all such

sites of a given premutation nucleotide. The mean of this

distribution then informs an expectation based on a negative

binomial. We again set a cut-off threshold where we expect

no more than one site with that number of mutations and

mask the sites above that threshold. Under the first method

2.7% (116/4,248) of 4-fold sites are hypermutagenic and

4.2% (116/2,798) of variable 4-fold sites are hypermutagenic.

Under this second, nucleotide-dependent method 0.5% (19/

4,248) of 4-fold sites are hypermutagenic and 0.7% (19/

2,798) of variable 4-fold sites are hypermutagenic. About

17 of these 19 hypermutable sites are considered hypermut-

able in the prior method too.

Mutations were counted from root to tips of the tree, tak-

ing ancestral parent nodes as reference and counting muta-

tions in descendants at each node of the tree. If a mutation

occurred at the same site in two descendants at the same

position of the tree, this mutation was counted once (similar

to De Maio et al. [2021]). When counting variants, known

problematic sites within the genome were masked, hyper-

mutable sites above their respective thresholds were masked,

and codons containing more than one variant in a single ge-

nome compared with its direct ancestor were masked.

Whole-genome nucleotide flux estimates were obtained by

counting the frequency of each type of mutation and normal-

izing by the frequency of the nucleotide in the reconstructed

ancestral genomes. This resulted in a data set of 51,244

variants.

Estimating the Number of “Missing” Mutations

How many mutations would be expected if all codon sites

evolved as if they are 4-fold? To estimate this, and hence

how many mutations might be missed in the sequencing

data, let us suppose that the number of mutations at ancestral

base N (N¼A, C, G, or U) normalized to the number of an-

cestral Ns at 4-fold degenerate sites is N4. Likewise, N1, N2, N3

for codon sites 1–3, respectively. The absolute number of

missing (M) mutations across the genome is hence:

M ¼
Xi¼3

i¼1
FðNiÞ:ðN4 � NiÞ;

where F(Ni) is the absolute number of occurrences of nucleo-

tide N as the ancestral residue at base i across all reconstructed

sites in the tree.
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The comparable sum of all mutations observed (O) is:

O ¼
Xi¼3

i¼1
F Ni
� �

: Ni :

Note here, we use all mutations at third sites because we need

to count all mutations. The true total (T) number of mutations

then is: T¼OþM. For every observed mutation the propor-

tion missing (Pm) of those observed is: Pm¼M/O.

We extend the same method to consideration of

dinucleotide-defined mutation bias. There are, however,

two complicating factors in such analysis: 1) dinucleotides

may mutate at either of their nucleotide sites and 2) any given

point mutation will affect two overlapping dinucleotides (a

mutation at B in ABC, is both associated with AB and BC).

To address problem (2), we calculate missing “dinucleotide

changes,” rather than mutations, the total number of which

may be halved to estimate the number of missing mutations.

To address problem (1), we control for each mutation’s nu-

cleotide position within the dinucleotide in our analysis.

For each of the 16 dinucleotides, we first calculate six

position-specific mutation rates: D(1)2, D1(2), D(2)3, D2(3),

D(3)1, and D3(1), where the numbers represent dinucleotide

position within a codon and brackets indicate the mutation

site. These we compare with the position-controlled 4-fold

null mutation rates. The number of missing dinucleotide

changes (M) for dinucleotide “D” may be hence be calculated

at each position (12, 23, or 31) as:

M12 ¼
X

FðD12Þ:ðD 4ð Þ1 � D 1ð Þ2Þ
þ

X
FðD23Þ:ðD2ð4Þ � D1ð2ÞÞ;

M23 ¼
X

FðD23Þ:ðD 4ð Þ1 � D 2ð Þ3Þ
þ

X
FðD23Þ:ðD2ð4Þ � D2ð3ÞÞ;

M31 ¼
X

FðD31Þ:ðD 4ð Þ1 � D 3ð Þ1Þ
þ

X
FðD31Þ:ðD2ð4Þ � D3ð1ÞÞ;

where F(D12) is the number of occurrences of dinucleotide D

as the ancestral residue at position 12. The total number of

missing dinucleotide changes (M) is: M¼M12þM23þM31

The comparable sum of all dinucleotide changes observed,

O, for dinucleotide “D” can be calculated at each position

(12, 23, or 31):

O12 ¼
X

F D12
� �

:ðD 1ð Þ2Þ þ
X

D12
� �

:ðD1ð2ÞÞ;

O23 ¼
X

F D23
� �

:ðD 2ð Þ3Þ þ
X

D23
� �

:ðD2ð3ÞÞ;

O31 ¼
X

F D31
� �

:ðD 3ð Þ1Þ þ
X

D31
� �

:ðD3ð1ÞÞ:

The total number of observed changes for dinucleotide D is

calculated as: O¼O12þO23þO31.

The true total for dinucleotide D is then: T ¼OþM.

The true totals of each dinucleotide may be summed to

estimate the true total number of dinucleotide changes. As

point mutations affect two dinucleotides, we divide this value

by two to predict the true number of mutations.

Calculation of Mutational Equilibria

Given that the mutational profile is strongly U biased, consid-

ering solely rates of GC$AU mutations (Long et al. 2018) is

likely to miss important dimensions. The equilibrium content

of all four nucleotides we therefore estimate using the full

mutational spectrum (Charneski et al. 2011; Rice et al.

2021). We here follow the same methodology as used in

our previous publication (see Rice et al. [2021]). Briefly, if

the frequency of G is denoted G and the frequency of U is

denoted U, etc., mutational flux from G to U, per occurrence

of G, is denoted g2u, and A to C, per occurrence of A, is

denoted a2c, and so on (each mutational flux captured by the

mutational matrix). Equilibrium is then defined as occurring

when the rate of loss of each nucleotide is equal to the rate of

gain of the nucleotide, for all nucleotides, with the additional

constraint that AþUþCþG¼ 1:

Gðg2uþ g2c þ g2aÞ ¼ Aða2gÞ þ Uðu2gÞ þ Cðc2gÞ

Cðc2uþ c2gþ c2aÞ ¼ Aða2cÞ þ Uðu2cÞ þ Gðg2cÞ

A ða2uþ a2c þ a2gÞ ¼ G ðg2aÞ þ U ðu2aÞ þ C ðc2aÞ

Uðu2gþ u2c þ u2aÞ ¼ Aða2uÞ þ Gðg2uÞ þ Cðc2uÞ:

Comparing Mutational Matrices

For each class of site (e.g., 4-fold degenerate, not 4-fold de-

generate, codon first sites, etc.), we determine the absolute

number of each of the 12 classes of mutation (A->C, A->U,

etc.), the rate then being this normalized to the frequency of

the ancestral base giving the rates (n2m) defined above, that

is, the rate of n2m, per incidence of n. We then analytically

solve, using NumPy (Walt et al. 2011), to determine the mu-

tational equilibrium vector (of length 4), this specifying the

frequencies of the four bases at mutation-neutral equilibrium.

To compare between pairs of equilibrium values (e.g., for

codon first sites and for 4-fold degenerate sites), we deter-

mine the Euclidean distance between the resulting vectors

and perform randomizations. In these, we randomly reallo-

cate the underlying mutations to pools the same size as con-

tributed to the two vectors in the first instance. From each

simulation, we derive the equilibrium predicted values of the

two pseudo mutational profiles and calculate the difference

between them. From multiple simulations, we determine the

null distribution. We express the observed difference in terms

of the distance away from the mean of the simulants in stan-

dard deviation units derived from the simulants (i.e., a Z

score). The method permits both estimation of the
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significance of the distance between any two vectors and

identification of the nucleotides most deviant (and the signif-

icance of each one’s deviation).

Analysis of Amino Acid Properties

In order to test the relationship between overrepresentation

of particular missense mutations and changes in the biochem-

ical properties of amino acids, we built a generalized linear

model. We first started by calculating the bias in missense

mutations as a Z score:

ZAAbias:cod ¼
Ocod � Ecodð Þ
SD Ecodð Þ ;

ZAAbias ¼
RZAAbias:cod

ncod

;

ZAAbias¼
P

ZAAbias.codncod,where ZAAbias.cod is the mean

measure of over/underrepresentation of change between co-

don pairs for each pair of amino acids: Ocod is the observed

number of single nucleotide substitutions switching from a

particular codon to another for that pair of amino acids,

and Ecod is the expected number of codon changes when

accounting for the rate of trinucleotide substitution at trinu-

cleotides centered on 4-fold degenerate sites. Ecod and its

standard deviation were estimated as the mean of 10,000

simulations distributing 49,358 mutations randomly across

the SARS-CoV-2 CDSs at the same rate as the trinucleotide

substitution observed at 4-fold degenerate sites. The param-

eter ncod is the number of codon pairs resulting in a particular

amino acid replacement. ZAAbias.cod values for each pair

amino acids were then averaged to obtain a measure of

over/underrepresentation of amino acid replacements,

ZAAbias. We then used a best subset regression, optimizing

for Bayesian information criterion, using the “bestglm” R

package, to search for a subset of biochemical properties of

amino acids (supplementary table 2, Supplementary Material

online, for the full list of tested properties and references)

that, on a generalized linear model, would best predict

ZAAbias.

Estimate of Expected Nonsense Mutations

We used the same method as above, in order to calculate an

estimate of the expected proportion of nonsense mutations.

Briefly, in order to obtain the expected number of codon

changes into a stop codon, when accounting for the rate of

trinucleotide substitution at trinucleotides centered on 4-fold

degenerate sites, we performed 10,000 simulations distribut-

ing 49,358 mutations randomly across the SARS-CoV-2 CDSs

at the trinucleotide substitution rates centered around 4-fold

degenerate sites. We additionally employ a method using the

rate of out of frame mutations to UAG, UGA, or UAG.

Analysis of tRNA Adaptation and Codon Usage Bias

To test if there is any evidence of selection on translational

efficiency at 4-fold synonymous sites, we measured the dif-

ference in human tAI and codon usage bias caused by each of

the 4-fold degenerate synonymous mutations identified in

our analysis (4,064 variants) when compared against the

SARS-CoV-2 reference genome. tAI per codon were obtained

from the STADIUM database (Yoon et al. 2018) and codon

usage tables were obtained from the CoCoPUTs database

(Alexaki et al. 2019). In order to measure if any particular

type of change is overrepresented when compared with ran-

dom expectations, we generated 10,000 simulations of 4,064

variants across all 4-fold degenerate synonymous codons in

the SARS-CoV-2 reference genome, at the same rate as the

nucleotide substitution observed at 4-fold degenerate sites. P

values of overrepresentation of each type of mutation were

calculated numerically from comparing with the distribution

of these simulants.

In order to account for trinucleotide mutational biases, we

repeated the simulation process accounting for the rate as the

nucleotide substitution observed at 4-fold degenerate sites.

We first masked any 4-fold degenerate synonymous variant

that was followed by a mutation or an alignment gap in the

first site of the next codon in a particular strain or if a hyper-

mutable or problematic site occurred within the codon or the

first site of the next codon.

Analysis of selection on translational efficiency on within-

individual variation (data described below) was performed in

the same way. Briefly, we measured the difference in human

tAI and RSCU bias caused by each of the 4-fold degenerate

synonymous mutations identified in the within-host data set

(1,208 variants), and compared it with random expectation

derived from 10,000 simulations aleatorily distributing 1,208

variants across all 4-fold degenerate synonymous codons in

the SARS-CoV-2 coding sequence, at the same rate as the

nucleotide substitution observed at 4-fold degenerate sites in

the within-individual variation data set.

Within-Individual Variation and Receptor-Binding Domain
Substitution Analysis

Within-individual variants generated by Galaxy and HyPhy

developments Teams (Nekrutenko et al. 2020) as part of

the Galaxy Project SARS-CoV-2 data analyses (Available

from: https://covid19.galaxyproject.org/genomics/4-variation/)

were obtained from GitHub (Available from: https://github.

com/galaxyproject/SARS-CoV-2/blob/4df1456e65367cf62c0

11c33d322643e79a9513e/genomics/4-Variation/variant_

list.tsv.gz), updated on May 29, 2020 and last accessed on

July 21, 2020. Known problematic sites in SARS-CoV-2
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sequencing were removed as in section “Creating a

Mutational Matrix” and only variants with allele frequency

>5% were considered. Samples from the sequencing proj-

ect with NCBI SRA Study Accession SRP253798 were re-

moved prior to analysis as some samples from this study

were noted as being dominated by C->U (>99% variants

of some samples C->U, Available from:https://virological.

org/t/gained-stops-in-data-from-the-peter-doherty-insti-

tute-for-infection-and-immunity/486 last accessed on July

21, 2020). Nonsense mutations were already annotated as

“EFF[*].FUNCLASS¼NONSENSE” and here were quanti-

fied per sample and at which position the mutations oc-

curred in codons. To compare nonsense mutations at first

and second nucleotide positions of codons, the number of

codons that were one mutation from a stop codon were

counted in the reference sequence (for first sites: NAA,

NAG, NGA; for second sites: UNA, UNG) and a v2 test

was performed.

Effects on binding activity of single mutations within the

receptor-binding domain of SARS-CoV-2 spike protein were

obtained from supplementary table 2 of Starr et al. (2020).

The above alignment of GISAID SARS-CoV-2 isolates was

used to quantify unique amino acid substitutions at positions

within this region. Within-individual variants were filtered for

those within the receptor-binding domain and unique amino

acid substitutions were quantified. This method has the ad-

vantage that the predicted mutational effect is called depen-

dent on biophysics alone, rather than methods that employ

sequence conservation and variant frequencies (Dunham et

al. 2021) that would render the present analysis circular.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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