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Abstract

HSV-1 causes 50% of first-time genital herpes infections in resource-rich countries and

affects 190 million people worldwide. A prophylactic herpes vaccine is needed to protect

against genital infections by both HSV-1 and HSV-2. Previously our laboratory developed a

trivalent vaccine that targets glycoproteins C, D, and E present on the HSV-2 virion. We

reported that this vaccine protects animals from genital disease and recurrent virus shed-

ding following lethal HSV-2 challenge. Importantly the vaccine also generates cross-reactive

antibodies that neutralize HSV-1, suggesting it may provide protection against HSV-1 infec-

tion. Here we compared the efficacy of this vaccine delivered as protein or nucleoside-modi-

fied mRNA immunogens against vaginal HSV-1 infection in mice. Both the protein and

mRNA vaccines protected mice from HSV-1 disease; however, the mRNA vaccine provided

better protection as measured by lower vaginal virus titers post-infection. In a second experi-

ment, we compared protection provided by the mRNA vaccine against intravaginal chal-

lenge with HSV-1 or HSV-2. Vaccinated mice were totally protected against death, genital

disease and infection of dorsal root ganglia caused by both viruses, but somewhat better

protected against vaginal titers after HSV-2 infection. Overall, in the two experiments, the

mRNA vaccine prevented death and genital disease in 54/54 (100%) mice infected with

HSV-1 and 20/20 (100%) with HSV-2, and prevented HSV DNA from reaching the dorsal

root ganglia, the site of virus latency, in 29/30 (97%) mice infected with HSV-1 and 10/10

(100%) with HSV-2. We consider the HSV-2 trivalent mRNA vaccine to be a promising can-

didate for clinical trials for prevention of both HSV-1 and HSV-2 genital herpes.
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Author summary

Herpes simplex virus type 1 (HSV-1) is an important cause of genital herpes infection,

although worldwide herpes simplex virus type 2 (HSV-2) is the most common cause. Her-

pes infections persist for life and there is no cure. A preventative vaccine is the best

approach to reduce new genital herpes infections. An optimal vaccine should protect

against both HSV-1 and HSV-2 infection. Our vaccine targets HSV-2 glycoproteins C, D,

and E administered either as proteins or mRNA encapsulated in lipid nanoparticles. We

compared the vaccine delivered as mRNA or proteins for prevention of HSV-1 genital

infection in mice. Both vaccines prevented genital disease but the mRNA vaccine was bet-

ter at limiting virus replication in the genital tract. We then compared protection by the

HSV-2 mRNA vaccine against genital HSV-1 and HSV-2 infection. Mice infected with

either virus were totally protected from genital disease. Importantly, in two experiments,

the mRNA vaccine prevented HSV invasion of the dorsal root ganglia, the site of virus

latency, in 39/40 (97.5%) mice infected with either HSV-1 or HSV-2. We conclude that

the HSV-2 trivalent mRNA vaccine provides potent protection against both HSV-1 and

HSV-2 genital infection and is a promising vaccine candidate for human trials.

Introduction

Herpes simplex virus type 2 (HSV-2) genital infection affects a half-billion people worldwide

[1]. Herpes simplex virus type 1 (HSV-1) genital infection affects an additional 190 million

people [2, 3]. Fifty percent of first-time genital herpes infections in resource-rich countries are

caused by HSV-1. Successful public health measures have reduced acquisition of oral HSV-1 at

a young age, which leaves many people susceptible to genital HSV-1 in these regions [2]. First-

episode HSV-2 genital herpes rates are declining in resource-rich countries while first-episode

HSV-1 infection rates have remained stable for 25 years [4]. Although HSV-1 is an important

cause of first-time genital infections, HSV-1 is much less likely to cause recurrent genital infec-

tions than HSV-2 [5]. As a result, HSV-2 accounts for 95% of genital herpes disease worldwide

[3]. This epidemiology suggests that HSV-2 is the dominant genital pathogen but ideally a pro-

phylactic genital herpes vaccine will protect against both HSV-1 and HSV-2.

No prophylactic genital herpes vaccine is currently approved despite major efforts involving

three large phase 3 trials [6–8]. However, multiple observations support continued efforts to

develop an effective vaccine. First, reinfection with a different HSV-2 isolate is uncommon [9].

Second, prior oral infection with HSV-1 partially reduces the severity of a first-time HSV-2

genital infection, while prior HSV-2 genital infection provides perhaps complete protection

against first-time genital HSV-1 infection [10]. Third, mothers with recurrent genital herpes

infection have a reduced risk of transmitting the virus to their newborns during labor and

delivery compared to mothers with first-time genital herpes infection [11]. This reduced risk is

attributed to antibodies transferred from mother to infant transplacentally, a concept that is

supported by vaccine studies in mice that demonstrate maternal antibodies protect newborns

[12–15]. Fourth, results from the Herpevac Trial for Women suggest that an effective vaccine

for genital herpes is possible based on protection provided by HSV-2 glycoprotein D (gD2)

vaccine against genital HSV-1 infection. The gD2 vaccine was 77% efficacious against HSV-1

genital disease after 3 immunizations, although not efficacious against HSV-2 [8]. Vaccine-

induced antibodies correlated with protection against HSV-1 infection [16]. A subset of sub-

jects were evaluated for neutralizing antibody titers that were higher to HSV-1 than HSV-2,
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which may explain the better protection against HSV-1 [17]. Another possible explanation for

better protection against HSV-1 is that genital HSV-1 may be less virulent than HSV-2 [18].

HSV immune evasion represents a barrier to a successful vaccine. HSV-1 and HSV-2 glyco-

protein C (gC1, gC2) bind complement C3b and limit its ability to participate in activating the

complement cascade, an important innate immune defense [19–22]. HSV-1 and HSV-2 glyco-

protein E (gE1, gE2) function as immunoglobulin G (IgG) Fc receptors that bind the IgG Fc

domain of an antibody that is also bound by its F(ab’)2 domain to an HSV antigen [23, 24].

These immune evasion molecules prevent antibodies and complement from participating in

host defense by inhibiting complement activation and antibody-dependent cellular cytotoxic-

ity. Our vaccine for preventing HSV-2 genital infection consists of three HSV-2 glycoproteins,

gC2, gD2, and gE2 that are expressed on the virion envelope and at the surface of infected cells

and thus potentially accessible to antibodies that block their functions. Antibodies to gD2

block virus entry, antibodies to gC2 neutralize virus and block C3b binding, while antibodies

to gE2 block cell-to-cell spread and immune evasion [25–27].

We compared two vaccine platforms for delivering the HSV-2 trivalent gC2/gD2/gE2 vac-

cine. One platform expresses the antigens in baculovirus and administers purified proteins

with CpG oligonucleotides and aluminum hydroxide (alum) as adjuvants [25]. The other plat-

form expresses the same immunogens as nucleoside-modified mRNA in lipid nanoparticles

(LNP) [26]. The mRNA molecule is modified to improve stability and prevent innate immune

sensors from inhibiting translation [28]. Nucleoside-modified mRNA-LNP stimulates potent

T follicular helper cell and germinal B cell responses that result in high titer and durable anti-

body responses [29]. The HSV-2 trivalent nucleoside-modified mRNA-LNP (mRNA) vaccine

outperformed the trivalent protein-CpG/alum (protein) vaccine in producing higher titers of

neutralizing antibodies and antibodies that block gC2 and gE2 immune evasion activities, and

in protecting mice and guinea pigs against intravaginal HSV-2 infection [26].

A previous report demonstrated that gD2 subunit protein administered with monopho-

sphoryl lipid A and alum as adjuvants provided better protection against HSV-1 genital infec-

tion than HSV-2 in female cotton rats [18]. The authors attributed better protection against

HSV-1 in part to the lower virulence of HSV-1 than HSV-2 in this model. Another study that

used gD2 subunit protein with monophosphoryl lipid A and alum reported slightly better pro-

tection against genital HSV-1 infection than HSV-2 in guinea pigs [30]. The cotton rat and

guinea pig results are consistent with the outcome reported in the Herpevac Trial for Women

[8]. We previously reported that immunization with the HSV-2 trivalent protein vaccine pro-

tects against HSV-1 genital lesions and recurrent HSV-1 genital shedding after intravaginal

infection of guinea pigs [31]. Since performing those guinea pigs studies, we determined that

the HSV-2 mRNA vaccine version outperforms the protein vaccine in preventing HSV-2 geni-

tal infection [26]. The goals of the current study were: 1) to determine whether the HSV-2

mRNA vaccine outperforms the protein vaccine in protecting against HSV-1 genital infection;

and 2) to evaluate whether the HSV-2 mRNA vaccine protects as well against HSV-1 as against

HSV-2 genital infection.

Results

Intravaginal HSV-1 infection in naïve mice

We evaluated the susceptibility of naïve, unimmunized mice to HSV-1 intravaginal infection

to determine the optimal challenge dose to be used in subsequent immunization experiments.

Eight- to nine-week-old naïve female BALB/c mice were infected with varying concentrations

of HSV-1 strain NS. Mice were assessed for clinical disease and euthanized when humane end-

points were reached. The HSV-1 lethal dose for 50% of the animals (LD50) was 3.73×104
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plaque-forming units (PFU) (Fig 1A). We selected an HSV-1 infection dose of 2×106 PFU (54

LD50) as a potent challenge to assess vaccine efficacy.

Intravaginal HSV-1 challenge of immunized mice

We compared vaccine efficacy of the HSV-2 gC2/gD2/gE2 nucleoside-modified mRNA-LNP

(mRNA) formulation with the baculovirus gC2/gD2/gE2 protein CpG/alum (protein) vaccine.

The two vaccines express the identical gC2, gD2, and gE2 amino acids. Female eight- to nine-

week old BALB/c mice were immunized twice at 28-day intervals with Poly(C) RNA-LNP

(Poly(C) control group) or with mRNA, while animals that received the protein vaccine were

Fig 1. HSV-2 gC2/gD2/gE2 trivalent immunization protects mice from intravaginal HSV-1 disease. (A) Survival curve of naïve female BALB/c

mice infected with varying concentrations of HSV-1. (B-F) BALB/c mice were immunized with Poly(C), trivalent mRNA, or trivalent protein and

challenged intravaginally with HSV-1 at 2×106 PFU. (B) Survival curves. P values were calculated by the log-rank test. (C) Mean genital disease

scores in the Poly(C), protein and mRNA groups. (D) Weight loss in individual mice in the Poly(C), protein, and mRNA groups. Orange filled

circles indicate mice that were sacrificed after reaching humane endpoints. (E) Vaginal swab titers on day two (left) and day four (right) post-

infection. Dashed line indicates the assay limit of detection (LOD) of 5 PFU/mL. P values compare the mean virus titers. (F) HSV-1 DNA copy

number in DRG four days post-infection. P values in E and F were calculated by the two-tailed Mann-Whitney test.

https://doi.org/10.1371/journal.ppat.1008795.g001
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immunized three times at two-week intervals. HSV-1 (2×106 PFU) was inoculated intravagin-

ally one month after the final immunization. Mice were observed for survival and clinical dis-

ease as measured by genital lesions and weight loss. In the Poly(C) RNA-LNP control group,

6/8 (75%) mice died between days 7–11, while no mouse in the protein (0/25) or mRNA (0/24)

group died (Fig 1B). 6/8 (75%) mice in the Poly(C) group developed genital disease and lost

weight, while no mouse in the mRNA or protein group developed genital disease or lost weight

(Fig 1C and 1D).

Mice were evaluated for subclinical infection by obtaining vaginal swabs for virus cultures,

measuring HSV-1 DNA copy number in dorsal root ganglia (DRG), and evaluating genital tract

tissues for histopathology and immunohistochemistry. On day two post-infection, virus was

isolated from 13/13 (100%) mice in the Poly(C) group (mean log10 titer 4.73 PFU/mL), 16/29

(55%) mice in the mRNA group (mean log10 titer 1.29 PFU/mL), and 30/30 (100%) mice in the

protein group (mean log10 titer 3.38 PFU/mL) (Fig 1E, left). By day four, the number of animals

with positive vaginal titers declined in the immunized animals but not in the Poly(C) controls.

Virus was isolated from 13/13 (100%) Poly(C)-immunized mice (mean log10 titer 4.27 PFU/

mL), 4/29 (14%) in the mRNA vaccinated group (mean log10 titer 0.49 PFU/mL), and 22/30

(73%) in the protein group (mean log10 titer 1.54 PFU/mL) (Fig 1E, right). Five mice from each

group were euthanized four days post-challenge and HSV-1 DNA copy number in lumbosacral

DRG was measured by qPCR. HSV-1 genomes were detected in the DRG from 4/5 (80%) mice

in the Poly(C) group (mean log10 2.45 DNA copies) compared to 1/5 (20%) in the mRNA

group (mean log10 0.038 DNA copies) and 1/5 (20%) in the protein group (mean log10 0.23

DNA copies) (Fig 1F). These results support vaccine efficacy for both mRNA and protein for-

mulations, but the mRNA vaccine was more potent based on fewer mice with positive virus

titers on days two and four post-infection and lower mean virus titers in the mRNA group.

Histopathology and immunohistochemistry after HSV-1 intravaginal

challenge

As another approach to compare protection provided by the mRNA and protein vaccines, we

performed histopathology and immunohistochemistry for HSV-1 antigens on genital tract tis-

sues harvested four days post-infection. The normal histology of the female genital tract in an

uninfected, non-immunized mouse is shown in Fig 2A (Naïve). 5/5 (100%) Poly(C) immu-

nized animals (controls) infected with HSV-1 at 2×106 PFU developed large ulcerations (white

arrowheads), necrosis and inflammatory debris in the vaginal epithelial lining with abundant

inflammatory infiltrates in the lamina propria (Fig 2A, Poly(C)). Characteristic viral inclusion

bodies including multinucleated cells, HSV Cowdry type A viral inclusions, and nuclei with

chromatin margination were present (Fig 2B, Poly(C)). 3/5 (60%) mice immunized with pro-

tein had some histopathologic evidence of infection denoted by areas of thickened vaginal epi-

thelium (white brackets in Fig 2A, protein) and superficial erosions without ulcerations (white

arrows in Fig 2A, protein). In mRNA-immunized mice, the genital tract tissues were nearly

devoid of pathology. Normal tissues were detected in 4/5 (80%) mice (Fig 2A, mRNA). One

animal had a single focus of infection that looked similar to the area shown for the protein

group (Fig 2A, protein).

We performed immunohistochemistry to detect HSV-1 antigens in genital tract tissues.

Foci of infection were counted along the entire length of the vagina at two depths separated by

100 μm. Uninfected naïve mice were negative for HSV-1 antigens (Fig 2C, naïve). 5/5 (100%)

mice in the Poly(C) group had multiple large foci of HSV-1 antigen that coincided with areas

of infection detected by histopathology (Fig 2C, Poly(C)). 3/5 (60%) mice in the protein group

had one or two foci that were positive for HSV-1 antigen, although the infection was greatly
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reduced compared to Poly(C) (Fig 2C, protein). In the mRNA group, a single focus of HSV-1

antigen was noted in one mouse that corresponded to the area detected by histopathology. No

HSV-1 antigen was identified in the remaining four mice in the mRNA group (Fig 2C,

mRNA). Images of HSV-1 antigen-positive areas were captured using a 2X objective and the

number of foci counted. A significant reduction was noted in the number of HSV-1 foci in the

protein and mRNA vaccinated groups compared to the Poly(C) controls (Fig 2D). We con-

clude that high dose HSV-1 infection produced extensive genital tract disease in Poly(C)-

immunized mice, while the protein and mRNA vaccines provided potent protection. The

mRNA vaccine outperformed the protein formulation based on fewer foci of infection

detected in genital tract tissues (Fig 2D), and lower day two and day four vaginal virus titers

(Fig 1E); however, protection by the mRNA vaccine was not complete based on a single focus

of genital infection detected by histopathology and immunohistochemistry in 1/5 mice.

Comparing protection provided by HSV-2 trivalent nucleoside-modified

mRNA-LNP against HSV-1 and HSV-2 intravaginal challenge

We previously reported that 64/64 mice immunized with the mRNA vaccine and challenged

with HSV-2 at 5×103 PFU (~ 275 LD50) or 5×104 PFU (~ 2,750 LD50) had negative day two

Fig 2. Histopathology and immunohistochemistry four days after HSV-1 intravaginal infection. (A) Hematoxylin and Eosin staining of genital tract tissues

from naïve mice that were not immunized or infected, or from mice that were immunized with Poly(C) RNA (control), protein, or mRNA and infected with

HSV-1 at 2×106 PFU. White arrowheads indicate ulcerations in the epithelial cell layer. White arrows indicate erosion in the epithelial cell layer. White brackets

indicate epithelial cell layer thickness. (B) Inflammatory debris, multinucleated cells (white arrowhead), inclusion bodies (white arrowhead) and chromatin

margination (white arrowhead) in Poly(C) group. Images were taken with 20X and 40X objectives. (C) Immunohistochemistry for HSV-1 antigen using a 10X

objective. (D) The number of foci positive for HSV-1 antigen in the Poly(C), protein and mRNA groups. P values were obtained using the two-tailed Mann-

Whitney test. Sample size is n = 5 mice per group.

https://doi.org/10.1371/journal.ppat.1008795.g002
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and day four cultures [26]. In Fig 1, we reported that some mice immunized with the mRNA

vaccine had positive day two cultures (16/29 mice) and day four cultures (4/29 mice) when

infected with HSV-1 at 2×106 PFU. The challenge dose for HSV-1 was 40-fold higher than the

highest challenge dose for HSV-2, but 50-fold lower in terms of LD50. Therefore, we next eval-

uated protection provided by the mRNA vaccine when immunized mice were challenged with

comparable HSV-1 and HSV-2 doses.

Immunized mice were challenged intravaginally with HSV-1 or HSV-2 at three doses,

5×104, 2×105, or 2×106 PFU. As a control, mice were immunized with Poly(C) and challenged

with 2×106 PFU HSV-1. The mRNA-immunized mice were totally protected against death

and genital lesions at each HSV-1 and HSV-2 challenge dose, while 10/14 (71%) mice in the

Fig 3. Protection provided by HSV-2 trivalent nucleoside-modified mRNA-LNP against HSV-1 and HSV-2 intravaginal challenge. Mice were

immunized with Poly(C) (control) or HSV-2 mRNA and infected with matched doses of HSV-1 or HSV-2. (A) Survival curves. P value was calculated using

the log-rank test. (B) Mean genital disease score after challenge. (C) Day two vaginal titers and day four vaginal titers. Dotted lines indicate the assay limit of

detection (LOD) of 5 PFU/mL. (D) HSV DNA copy number in DRG of mice sacrificed at humane endpoints or at the end of the study. Green diamonds

represent Poly(C) vaccinated mice sacrificed at humane endpoints (open symbols, 10 animals) or day 56 at the end of experiment (closed symbols, 4 animals

with two of the closed symbols superimposed at 1.3 log10). P values in (C-D) were calculated using the two-tailed Mann-Whitney test.

https://doi.org/10.1371/journal.ppat.1008795.g003
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Poly(C) group developed genital disease and died (Fig 3A and 3B). At the lowest challenge

dose of 5×104 PFU, vaginal swabs were positive on day two in 4/10 (40%) mice challenged

with HSV-1 (mean log10 titer 1.26 PFU/mL), while 0/5 mice challenged with HSV-2 were posi-

tive (Fig 3C, left), consistent with our prior report of total protection in mRNA-immunized

mice challenged with 5×104 HSV-2 [26]. At the next higher dose of 2×105 PFU, 5/5 (100%)

mice challenged with HSV-1 had positive titers on day two compared to 3/5 (60%) mice chal-

lenged with HSV-2, and significantly higher titers of virus were present in the HSV-1 chal-

lenged mice (mean log10 titer 2.51 PFU/mL) than in the HSV-2 group (mean log10 titer 1.01

PFU/mL) (Fig 3C, left). At the highest challenge dose of 2×106 PFU, 12/15 (80%) mice in the

HSV-1 group had positive vaginal titers compared to 5/10 (50%) mice in the HSV-2 group.

Once again, the mean titers in the HSV-1 group were significantly higher compared to HSV-2

(mean log10 titers 2.65 compared to 0.59 PFU/mL) (Fig 3C, left). HSV-1 day two titers were

higher in this experiment than in Fig 1E; however, in both experiments, infection with 2x106

PFU produced higher day two titers for HSV-1 than HSV-2 (Fig 3C, left). The day two vaginal

titers in the Poly(C) group infected with HSV-1 at 2×106 PFU were significantly higher than

day two titers in mRNA-immunized mice challenged with HSV-1 at this dose (Fig 3C, left).

HSV-1 and HSV-2 titers in mRNA-immunized mice were considerably lower on day four

post-infection. Only 3/30 (10%) mice were positive in the combined HSV-1 groups and 1/20

(5%) positive in the combined HSV-2 groups (Fig 3C, right). The HSV-1 day four vaginal titers

were significantly higher in the Poly(C) control group than in the mRNA group challenged at

2×106 PFU (Fig 3C, right). These results indicate that higher day two vaginal titers in the HSV-

1 group was the only significant difference between protection provided against HSV-1 and

HSV-2.

DRG were harvested at the time of humane euthanasia between days 8–14 for the 10/14

mice that succumbed to HSV-1 infection in the Poly(C) group or on day 56 for the four surviv-

ing Poly(C) animals and all mice in the mRNA groups challenged with HSV-1 or HSV-2 at

5×104 or 2×106 PFU. No HSV DNA was detected in the DRG of any mRNA-immunized

mouse, while 13/14 (93%) mice in the Poly(C) group were positive for HSV-1 DNA. The HSV-

1 DNA copy number in the four surviving animals in the Poly(C) group is denoted by filled

diamonds, while those euthanized earlier for humane reasons are indicated by open diamonds

(Fig 3D). Therefore, in this side-by-side comparison, the HSV-2 mRNA vaccine completely

protected mice from death, genital disease and DRG infection after challenge with HSV-1 or

HSV-2 at doses between 5×104 and 2×106 PFU, but the mRNA vaccine provided better protec-

tion against day two vaginal virus replication after HSV-2 challenge than HSV-1.

Intravaginal HSV-2 in naïve mice

To further assess differences in protection against HSV-1 and HSV-2, we evaluated HSV-2

infection in naïve, unimmunized mice. Our prior studies demonstrated that HSV-2 was lethal

in mock-immunized mice at titers much lower than reported here for HSV-1 (Fig 1A) [26]. To

confirm the HSV-2 LD50, we infected naïve mice using serial 10-fold concentrations ranging

from 1.5×101 to 1.5×104 PFU HSV-2 (Fig 4A). The HSV-2 LD50 was 19 PFU, consistent with

our prior study, and approximately 2,000-fold lower than the HSV-1 LD50 (3.73×104 PFU, Fig

1A). We next compared genital tract replication of the two viruses in naïve mice that were

infected with comparable doses of HSV-1 and HSV-2. Mice infected with HSV-1 at 1×103 or

1x104 PFU had similar day 2 vaginal titers as mice infected with HSV-2 at 1.5×103 or 1.5×104

PFU (Fig 4B). Therefore, virus replication in the genital tract of naïve mice using similar,

although slightly higher doses for HSV-2, does not explain the lower HSV-2 titers on day two

in immunized mice.
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We evaluated whether type-specific immunity may explain the better protection provided

by the HSV-2 mRNA vaccine against HSV-2 than HSV-1. We performed IgG ELISA assays to

assess cross-immunogenicity. The HSV-2 gC2, gD2, gE2 amino acid sequences share 65%

identity for gC1, 82% for gD1 and 73% for gE1, respectively. Sera were obtained from HSV-2

mRNA-immunized mice after the final immunization, prior to virus infection. ELISA IgG

endpoint titers were significantly higher to gC2 than gC1 and to gE2 than gE1, while gD2 and

gD1 titers did not differ significantly (Fig 4C). The type-specific immunity against gC2 and

gE2 may explain the better protection provided by the HSV-2 mRNA vaccine against HSV-2

than HSV-1 in this study.

Summary

Our goals were to compare mRNA with protein immunization for protection against HSV-1

genital challenge and to determine whether an HSV-2 vaccine was more efficacious against

HSV-1 or HSV-2 genital challenge. Table 1 summarizes the results presented in Figs 1 and 2

Fig 4. Intravaginal infection of naïve, unimmunized mice. (A) Survival curves after HSV-2 infection in naïve mice to determine LD50. (B)

Day two vaginal virus titers after infection with HSV-1 at 1×103 or 1×104 PFU or HSV-2 at 1.5×103 or 1.5×104 PFU. (C) Sera from mRNA

vaccinated animals evaluated for IgG ELISA titers to gC1 or gC2, gD1 or gD2, and gE1 or gE2. P values were calculated by two-tailed

Student’s t test.

https://doi.org/10.1371/journal.ppat.1008795.g004
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that compared mRNA and protein vaccines in mice challenged with HSV-1 at 2×106 PFU. The

only significant difference was better protection by the mRNA vaccine against day two and

day four vaginal titers. Table 2 combines results presented in Fig 3 from mRNA-immunized

animals infected with HSV-1 or HSV-2 at three doses. Significant differences were noted

based on fewer animal in the HSV-2 group with positive day two vaginal titers. The clinical rel-

evance of detecting positive vaginal titers on day two or day four is unknown, while HSV DNA

in DRG in mice is an important marker for latent infection and risk for recurrent infection.

Therefore, outcomes that are clearly clinically meaningful include death, genital disease and

HSV DNA in DRG. Based on results shown in Tables 1 and 2 in mRNA-immunized mice, the

mRNA vaccine prevented death and genital disease in 54/54 (100%) mice infected with HSV-1

and 20/20 (100%) with HSV-2, and prevented infection of the dorsal root ganglia in 29/30

(97%) mice infected with HSV-1 and 10/10 (100%) with HSV-2. Therefore, the mRNA vaccine

was highly protective against both HSV-1 and HSV-2 for outcomes that are clinically

meaningful.

Table 1. HSV-2 trivalent mRNA or protein vaccine protect against HSV-1 at 2×106 PFU�.

Outcome Poly(C) mRNA Protein

Clinical disease

Death 16/22 (73%) P<0.0001 0/24 (0%) 0/25 (0%)

Genital disease 16/22 (73%) P<0.0001 0/24 (0%) 0/25 (0%)

Subclinical infection

Day 2 titers 27/27 (100%) P<0.0001 16/29 (55%) P<0.0001 30/30 (100%)

Day 4 titers 27/27 (100%) P<0.0001 4/29 (14%) P<0.0001 22/30 (73%)

Day 4 histopathology & immunohistochemistry 5/5 (100%) P = 0.0476 1/5 (20%) 1/5 (20%)

HSV-1 DNA in DRG# 17/19 (89%) P = 0.0065 1/5 (20%) 1/5 (20%)

Totals

Clinical & subclinical 27/27 (100%) P<0.0001 16/29 (55%) P<0.0001 30/30 (100%)

Clinical & only DRG as subclinical 23/27 (85%) P<0.0001 1/29 (3%) 1/30 (3%)

� Poly(C) animals are from Figs 1–3; mRNA animals are from Figs 1 and 2.
# DRG were harvested on day 4, at time of euthanasia or at the end of experiment. P values�0.05 are indicated. P values were calculated using two-tailed Fisher’s exact

test.

https://doi.org/10.1371/journal.ppat.1008795.t001

Table 2. HSV-2 trivalent mRNA protection against HSV-1 or HSV-2 �.

Outcome HSV-1 HSV-2

Clinical disease

Death 0/30 (0%) 0/20 (0%)

Genital lesions 0/30 (0%) 0/20 (0%)

Subclinical infection

Day 2 titers 21/30 (70%) P = 0.045 8/20 (40%)

Day 4 titers 3/30 (10%) 1/20 (5%)

HSV DNA in DRG day 56 0/25 (0%) 0/10 (0%)

Totals

Clinical & any subclinical 21/30 (70%) P = 0.045 8/20 (40%)

Clinical & only DRG as subclinical 0/30 (0%) 0/20 (0%)

� Animals are from Fig 3. Values represent combining all animals challenged at 5×104, 2×105, and 2×106 PFU. P
values�0.05 are indicated. P values were calculated using two-tailed Fisher’s exact test.

https://doi.org/10.1371/journal.ppat.1008795.t002
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Discussion

An effective prophylactic vaccine is the best approach to limit new HSV-1 and HSV-2 genital

infections. We previously reported that an HSV-2 gC2, gD2, gE2 nucleoside-modified

mRNA-LNP vaccine protects mice and guinea pigs from HSV-2 intravaginal infection and

that the mRNA vaccine outperformed the same antigens expressed using baculovirus proteins

administered with CpG and alum [26]. Multiple immune responses were superior in the triva-

lent mRNA compared with the trivalent protein group, including serum and vaginal IgG

ELISA titers, HSV-2 neutralizing antibody titers, antibodies that block gC2 and gE2 immune

evasion domains, antibody responses to gD2 epitopes involved in virus entry and cell-to-cell

spread, CD4+ T follicular helper and germinal center B cell responses [26]. The induction of T

follicular helper cells occurs independent of Toll-like receptors and type 1 interferon [29]. The

T follicular helper cells stimulate germinal center B cell responses that likely account for the

high titers of neutralizing antibodies and antibodies that block C3b binding and IgG Fc bind-

ing that are the proposed mechanisms for the improved protection with nucleoside-modified

mRNA-LNPs compared to adjuvanted protein.

Here, we evaluated whether the mRNA vaccine protected mice against intravaginal HSV-1

challenge and compared protection against HSV-1 and HSV-2. Both mRNA and protein for-

mulations completely prevented death, weight loss and genital disease after HSV-1 infection.

Both formulations reduced the number of mice positive for HSV-1 DNA in DRG and signifi-

cantly reduced HSV-1 DNA copies present. However, mice immunized with the mRNA vac-

cine had lower day two and day four vaginal titers and fewer animals had evidence of HSV-1

infection in the female genital tract by histopathology and immunohistochemistry. Comparing

mRNA immunization for protection against HSV-1 or HSV-2, the vaccine was more protec-

tive against HSV-2 based on day two vaginal titers. We previously reported total protection

against 5×103 or 5×104 HSV-2 challenge in mRNA-immunized mice [26]. Here, we detected

positive vaginal titers on day two and day four after HSV-2 challenge at 2×105 and 2×106 PFU.

Despite these positive titers, the trivalent mRNA vaccine provided complete protection against

HSV-2 clinical disease and no viral genomes were detected in lumbosacral DRG at these chal-

lenge doses that were 40-fold higher than previously tested (100,000 LD50) [26]. The absence

of HSV-2 DNA in DRG suggests that vaccine-induced immunity may prevent DRG infection

despite local virus replication in genital tract tissues, or possibly that the qPCR assay may not

be sufficiently sensitive to detect low level DRG infection despite being able to detect one copy

of HSV-2 DNA per 105 copies of adipsin DNA.

We proposed that pre-clinical genital herpes vaccines should meet a high standard of pro-

tection in animal models before proceeding to human clinical trials [32]. Our results support

better protection by the HSV-2 mRNA vaccine against HSV-2 than HSV-1, raising a question

whether the protection against HSV-1 is good enough to proceed to human trials. We propose

that the answer is affirmative based on the following reasoning. First, no animal (0/54) that

was immunized with the mRNA vaccine and challenged with HSV-1 developed genital lesions,

weight loss or died. Second, only 1/30 (3%) mice had HSV-1 DNA detected in DRG when

challenged. Third, the evidence of breakthrough infections is based on day two and day four

vaginal titers. The histopathology and immunohistochemistry identified a focus of infection in

1/5 mRNA-immunized mice infected at 2×106 HSV-1, indicating that day two titers are not

merely residual input virus. However, DRG infection was rare, suggesting potent protection

when using DRG as a marker for vaccine efficacy. Fourth, HSV-1 comprises only 5% of the

global burden of genital herpes [3]. HSV-1 genital infections reactivate at a lower frequency

than HSV-2 [5]. Individuals with dual oral and genital HSV-1 infections have many fewer epi-

sodes of genital reactivation than oral [33]. Taken together, we consider the protection
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provided by the HSV-2 mRNA vaccine against HSV-1 meets our standards for proceeding to

human trials.

The Herpevac Trial for Women reported that the HSV-2 gD2 vaccine provided better pro-

tection against HSV-1 than HSV-2 [8]. Two pre-clinical studies in cotton rats and guinea pigs

also reported somewhat better protection by gD2 against HSV-1 than HSV-2 [18, 30]. In con-

trast, we noted that the HSV-2 trivalent mRNA vaccine protects better against HSV-2 than

HSV-1. We offer the following explanations for these differences. First, HSV-1 is less virulent

than HSV-2 in the female genital tract of mice and possibly of women. At comparable chal-

lenge doses, HSV-1 is less likely to produce genital disease than HSV-2; therefore, it is not sur-

prising that a gD2 vaccine with 82% amino acid identity with gD1 protected better against

HSV-1 genital disease than HSV-2. Second, our vaccine candidate contains gC2 and gE2

immunogens in addition to gD2. Both gC2 and gE2 are relatively type-specific antigens, which

may explain the enhanced protection by the trivalent vaccine against HSV-2. Despite adding

two rather type-specific antigens, protection was only slightly better against HSV-2 than HSV-

1, supporting the concept that it is easier to protect against genital HSV-1 than HSV-2. Our

efforts with mRNA to date have focused on preventing genital herpes; however, we are also

interested in evaluating whether mRNA immunization will be efficacious if used as a therapeu-

tic vaccine [26]. We conclude that the HSV-2 trivalent mRNA vaccine is a promising candidate

for clinical trials for preventing both HSV-1 and HSV-2 genital herpes.

Materials and Methods

Ethics statement

All animal studies were conducted under protocol 805187 approved by the University of Penn-

sylvania Institutional Animal Care and Use Committee. The authors strictly followed the

“Guide for the Care and Use of Laboratory Animals” by the Committee on Care of Laboratory

Animal Resources Commission on Life Sciences, National Research Council. The animal facil-

ities are fully accredited and certified by the American Association for Accreditation of Labo-

ratory Animal Care (AAALAC).

Production of bac-gC2, bac-gD2 and bac-gE2 subunit proteins in Sf9 cells

Bac-gC2(426t) expresses gC2 amino acids 27–426, bac-gD2(306t) expresses gD2 amino acids

26–333, and bac-gE2(24-405t) expresses gE2 amino acids 24–405 [27, 34, 35]. Each protein

subunit extends from the first amino acid after the signal sequence to just prior to the trans-

membrane domain.

Production of mRNA and formulation in lipid nanoparticles

Trivalent nucleoside modified mRNAs encoding the same amino acid sequence as the baculo-

virus-produced proteins were synthesized as previously described [26]. Poly(C) RNA was used

as a control and is similar to antigen-encoding mRNA in that it does not induce type 1 inter-

ferons or proinflammatory cytokines and is immunologically silent [29].

Immunizations

Female BALB/c mice (Charles River Laboratories) were 8–9 weeks old when first immunized.

The gC2, gD2, and gE2 protein antigens were administered using 5 μg of each protein per

mouse. The proteins were individually incubated at room temperature for two hours with

16.7 μg of CpG oligonucleotide 5’-TCCATGACGTTCCTGACGTT-3’ (Coley Pharmaceutical)

and 25 μg of alum per μg protein (Alhydragel; Accurate Chemical and Scientific Corp.). The
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proteins were combined just prior to immunization in a total volume of 50 μl. Mice were

immunized three times at two-week intervals into the gastrocnemius muscle [27]. For the

mRNA immunizations, 10 μg of each gC2, gD2, and gE2 mRNA was combined prior to LNP

encapsulation. Mice were immunized two times at four-week intervals into the gastrocnemius

muscle in a volume of 50 μl. Thirty days after the final immunization mice were bled and

infected intravaginally.

Vaginal infection and scoring for disease

Mice were injected subcutaneously with 2 mg of medroxyprogesterone and five days later

inoculated intravaginally with 10 μl containing various concentrations of HSV-1 strain NS or

HSV-2 strain MS [36, 37]. Mice were weighed daily for two weeks and virus cultures were

obtained by swabbing the vagina at varying times post-infection. Some animals were sacrificed

on day four to collect DRG and genital tract tissues. Animals were scored daily for genital dis-

ease on a scale of 0 to 4 by assigning 1 point each for erythema, perianal hair loss, urinary stain-

ing, and necrosis. Mice were humanely euthanized when they reached 20% body weight loss

or a disease score of 3. DRG were collected and frozen at the end of the experiment.

Virus cultures from vaginal swabs

Vaginal swabs were placed in one mL Dulbecco’s modified Eagle’s medium (DMEM) contain-

ing 5% fetal bovine serum supplemented with 25 μg/mL vancomycin [37]. For viral titers,

200 μl of undiluted and 10-fold serial dilutions of swab media were added to Vero cells for one

hour at 37˚C, overlaid with 1.5% carboxy methylcellulose, and incubated for 72 hours. Plates

were fixed and stained with 0.1% crystal violet. Plaques were counted and expressed as PFU/

mL [37]. The limit of detection of the assay is 5 PFU/mL.

HSV DNA isolation and real-time qPCR for HSV DNA copy number in

DRG

Viral genomic DNA was isolated from mouse DRG samples and qPCR performed as previ-

ously described [26]. Taqman qPCR was used to amplify the HSV-1 Us9 gene (F: ACGGCC

TCGCCAGTTTC, R: TTGGCCGCCTCGTCTTC, probe: 6FAM-TCGAAGCCTACTACT

CG-MGBNFQ) or the HSV-2 Us9 gene (F: GGCAGAAGCCTACTACTCGGAAAA, R:

CCATGCGCACGAGGAAA) from 5 μL of sample DNA. In a separate reaction, the mouse

adipsin gene (F: GCAGTCGAAGGTGTGGTTACG, R: GGTATAGACGCCCGGCTTTT)

was amplified from 5 μL of sample DNA. HSV DNA copy number was expressed as log10 HSV

DNA copies per 105 adipsin gene copies. Samples that did not yield a positive signal in dupli-

cate wells by 40 cycles were considered negative.

Endpoint dilution ELISA titers

Mice were bled 30 days after the final immunization. Microtiter plates were coated with 100 ng

of purified gC1, gC2, gD1, gD2, gE1 or gE2 and IgG ELISA performed [25, 38]. Endpoint titers

in immunized mice were calculated as the dilution that had at least a 2-fold higher OD value

than Poly(C) control sera at the same dilution.

Histopathology

Mice were sacrificed 4 days post-challenge, vaginal tissues removed and fixed for 48 hours at

room temperature in freshly prepared 4% formaldehyde. The tissues were washed, dehydrated,

cleared, and infiltrated with paraffin. The vaginal tissues were embedded to allow the entire
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length of the vagina to be viewed in a single tissue block. Serial 4 μm sections were cut at two

depths of the tissue block 100 μm apart. Slides were stained with hematoxylin and eosin and

imaged on a Nikon Eclipse 1000 microscope. Images were obtained with 10, 20, and 40X

objectives using a Spot model 4.2 CCD color camera and Spot version 4.04 software.

Immunohistochemistry

Serial sections of vaginal tissue were deparaffinized and rehydrated. Sections were subjected to

Heat Induced Epitope Retrieval in 10 mM Sodium Citrate buffer, 0.05% Tween-20, pH 6.0.

The sections were heated and maintained at a temperature above 100˚ C for 10 mins, cooled,

and permeabilized with 0.1% Triton-X-100 for 10 mins. The sections were washed and blocked

with 10% normal goat serum. Rabbit anti-HSV-1 (Abcam) was used to detect HSV-1 antigen

in the tissue. HSV-antibody negative, isotype-control IgG served as a control. Antibodies were

incubated overnight at 4˚C, washed, and goat anti-rabbit biotin secondary antibody added for

60 min at room temperature followed by avidin-biotin-HRP complex (Thermo Fisher Scien-

tific) for 30 min. 3,30-Diaminobenzidine (Thermo Fisher Scientific) was used to detect the

HSV-1 antigen, counter-strained with hematoxylin, dehydrated, cleared, and mounted with

cytoseal 60 (Electron Microscopy Sciences). Slides were imaged with a 10X objective. To mea-

sure the number of HSV-1 antigen foci, slides were imaged with a 2X objective, imported into

Image J and manually counted.

Statistical analysis

The log-rank test was used to calculate P values for survival curves. The Mann-Whitney test

was used to calculate P values in experiments evaluating vaginal titers, foci of disease by immu-

nohistochemistry and virus DNA copy number in DRG. The two-tailed Student’s t-test was

used to calculate P values comparing serum ELISA titers. All significance tests were two-tailed

with an alpha value of 0.05. Analysis were done using GraphPad Prism version 6.0 (GraphPad

software Inc).
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