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Abstract: Corn silk tea has been used in folk medicine for anti-hypertensive healthcare.
Angiotensin-converting enzyme (ACE) plays a crucial role on the homeostasis of blood pressure.
However, effects of corn silk tea on ACE activity and the presence of ACE inhibitory constituents in
corn silk are still unknown. Here we applied proteomics and bioinformatics approaches to identify
corn silk bioactive peptides (CSBps) that target ACE from the boiling water extract of corn silk (CSE).
CSE significantly reduced systolic blood pressure (SBP) levels in spontaneously hypertensive rats
and inhibited the ACE activity. By proteomics coupled with bioinformatics analyses, we identified
a novel ACE inhibitory peptide CSBp5 in CSE. CSBp5 significantly inhibited the ACE activity and
decreased SBP levels in a dose-dependent manner. Docking analysis showed that CSBp5 occupied the
substrate-binding channel of ACE and interacted with ACE via hydrogen bonds. In conclusion, we
identified that CSE exhibited anti-hypertensive effects in SHRs via the inhibition of ACE, the target of
most anti-hypertensive drugs. In addition, an ACE inhibitory phytopeptide CSBp5 that decreased
SBP levels in rats was newly identified. Our findings supported the ethnomedical use of corn silk tea
on hypertension. Moreover, the identification of ACE inhibitory phytopeptide in corn silk further
strengthened our findings.
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1. Introduction

Hypertension is the most common serious chronic health problem in the world. The World
Health Organization reports that increased blood pressure affects 1.13 billion people worldwide
and the prevalence in females aged ≥18 years was around 20% and in males around 24% in 2015.
Moreover, hypertension is a major risk factor for the development of stroke, heart failure, coronary artery
disease, and renal failure [1]. Renin-angiotensin-aldosterone system (RAAS) is a well known mechanism
that controls the blood pressure by regulating the volume of fluid in the body. Angiotensin-converting
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enzyme (ACE) is a crucial dipeptidyl carboxypeptidase in RAAS, that converts angiotensin I to the
active vasoconstrictor angiotensin II [2]. ACE consists of two catalytically active domains (N- and
C-domains), which display differences in substrate processing abilities. The C-domain of ACE
hydrolyzes hippuryl-l-histidyl-l-leucine (H-HL) at a faster rate (9-fold) compared to the N-domain,
while both domains hydrolyze N-benzyloxycarbonyl-l-phenyl- alanyl-l-histidyl-l-leucine (Z-FHL)
at an equal rate [3]. Inhibition of ACE activity decreases the production of angiotensin II, leading to
vasodilation and reduced blood pressure. Therefore, ACE inhibitors, such as captopril, lisinopril and
enalapril, are widely used as pharmaceutical drugs for the treatment of hypertension [4].

Food peptides with anti-ACE activities have been identified from plants and animals [5,6].
For example, oligopeptides FDGIP and AIDPVRA are ACE inhibitor derived from Caulerpa lentillifera [7].
ACE inhibitory peptides released from alcalase-hydrolyzed amaranth protein exhibit hypotensive effects
in spontaneously hypertensive rats (SHRs) [8]. ACE inhibitory peptide GAAGGAF from Coix glutelin
has a significant antihypertensive effect [9]. Peptides from auto-digested reishi (Ganoderma lingzhi)
extract show potent inhibition against ACE and hypotensive activities in SHRs [10]. Lacto-tripeptides
Val-Pro-Pro (VPP) and Ile-Pro-Pro (IPP), identified from sour milk, inhibit the ACE activity and protect
the endothelial function in vitro, and exhibit anti-hypertensive effects in SHRs [11]. Clinical trials
on subjects with blood pressure ranging from normal to mild hypertension show that intake of
tablets containing VPP and IPP leads to a mild improvement in hypertension without side effects [12].
These results suggest that the presence of food-derived ACE inhibitory peptides makes foods show
anti-hypertensive potentials.

Corn or maize (Zea mays), one of the most important crops in the world, has become a staple
food in many parts of the world. Corn silk is the shiny thread-like fibers that grow as part of ears of
corn. Corn silk tea is an herbal remedy that has been used in folk medicine for healthcare applications,
such as relieving inflammation, edema, hyperlipidemia, hyperglycemia, hypertension, and obesity
in China, Korea, Vietnam, America, and some other countries [13,14]. Corn silk contains a variety
of pharmacologically-active compounds. For example, flavonoids of corn silk exhibit anti-diabetic,
anti-oxidant, and anti-hyperlipidemic activities on diabetic mice [15,16]. Corn silk aqueous extract,
containing alkaloids, flavonoids, phenols, saponins, tannins and phytosterols, inhibits α-amylase
and α-glucosidase activities, and provides an effective strategy to modulate levels of postprandial
hyperglycemia via control of starch metabolism [17]. PSC2, a hetero- polysaccharide from corn silk,
decreases blood glucose and serum insulin levels, and improves glucose intolerance in type 2 diabetic
mice [18]. FK2, the peptide from trypsin hydrolysis of corn silk, inhibits nuclear factor-κB activation and
ameliorates bacterial endotoxin-induced acute systemic inflammation in mice [19]. Anti-hypertensive
effect of corn silk has been reported previously [20]. Recent study conducting systematic review and
meta-analysis of randomized controlled trials also showed that corn silk tea plus antihypertensive
drugs could be more effective on lowering blood pressure than conventional antihypertensive drugs
alone [21]. Corn silk extract reduces intraocular pressure in systemic and non-systemic hypertensive
subjects. Moreover, the reduction of blood pressure by corn silk is due to potassium-induced natriuresis
and diuresis [20]. However, effects of corn silk on the ACE activity and the presence of ACE inhibitory
constituents in corn silk have not been studied so far.

Here we evaluated the effects of corn silk tea on ACE activity in vitro and hypertension in SHRs.
Captopril, lisinopril, and enalapril, the well-known ACE inhibitors, are amino acid or dipeptide
drugs. We hypothesized whether there were ACE inhibitory peptides present in corn silk extract
(CSE). Proteomics and bioinformatics approaches were therefore applied to identify anti-hypertensive
peptides in corn silk tea. Peptide sequences were identified using liquid chromatography coupled with
tandem mass spectrometry (LC-MS/MS). A combination of bioinformatics tools, such as PeptideRanker
and BIOPEP, was applied to select peptides with potential bioactivities. ACE activity assay and
spontaneously hypertensive animal model were applied to evaluate the anti-hypertensive effects of
peptides. Furthermore, molecular docking was carried out to clarify the interaction between ACE and
anti-hypertensive peptides in corn silk. Our data showed that the boiling water extract of corn silk
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inhibited the ACE activity and exhibited anti-hypertension effects in SHRs. In addition, we newly
identify an ACE inhibitory phytopeptide in corn silk that interacted with the substrate-binding channel
of ACE and consequently decreased systolic blood pressure (SBP) levels in rats.

2. Results

2.1. CSE Reduced Blood Pressure In Vivo and Inhibited ACE Activity In Vitro

To analyze whether CSE exhibited anti-hypertensive effects, we treated SHRs with 10 mg/kg
captopril or various amounts of CSE orally. Tail SBP was measured at 0 and 1 h. As shown in
Figure 1a, the SBP level of captopril group was 47.6 ± 4.34 mmHg lower than that of the blank group.
Oral administration of CSE significantly reduced the SBP levels in a dose-dependent manner. The SBP
level of 10 mg/kg CSE was 26.57 ± 9.03 mmHg lower than that of the blank group.

Molecules 2019, 24, x FOR PEER REVIEW 3 of 14 

 

applied to evaluate the anti-hypertensive effects of peptides. Furthermore, molecular docking was 
carried out to clarify the interaction between ACE and anti-hypertensive peptides in corn silk. Our 
data showed that the boiling water extract of corn silk inhibited the ACE activity and exhibited 
anti-hypertension effects in SHRs. In addition, we newly identify an ACE inhibitory phytopeptide in 
corn silk that interacted with the substrate-binding channel of ACE and consequently decreased 
systolic blood pressure (SBP) levels in rats. 

2. Results 

2.1. CSE Reduced Blood Pressure In Vivo and Inhibited ACE Activity In Vitro 

To analyze whether CSE exhibited anti-hypertensive effects, we treated SHRs with 10 mg/kg 
captopril or various amounts of CSE orally. Tail SBP was measured at 0 and 1 h. As shown in Figure 
1a, the SBP level of captopril group was 47.6 ± 4.34 mmHg lower than that of the blank group. Oral 
administration of CSE significantly reduced the SBP levels in a dose-dependent manner. The SBP 
level of 10 mg/kg CSE was 26.57 ± 9.03 mmHg lower than that of the blank group. 

 
Figure 1. Effects of CSE on blood pressure and ACE activity. (a) Anti-hypertensive effects 
of CSE in rats. SHRs were orally given with 10 mg/mL captopril or various dosages of CSE. 
Tail SBP was measured at 0 and 1 h. Data are expressed as changes in SBP (mmHg). Values 
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activity assay. Various amounts of captopril or CSE were mixed with serum ACE and 
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Figure 1. Effects of CSE on blood pressure and ACE activity. (a) Anti-hypertensive effects of CSE in rats.
SHRs were orally given with 10 mg/mL captopril or various dosages of CSE. Tail SBP was measured at
0 and 1 h. Data are expressed as changes in SBP (mmHg). Values are mean ± standard error (n = 6).
** p < 0.01, *** p < 0.001, compared with blank. (b) ACE activity assay. Various amounts of captopril or
CSE were mixed with serum ACE and substrates (H-HL or Z-FHL). The hydrolyzed substrates were
then labeled with fluorescence and measured using a fluorometer. Data are expressed as relative ACE
activity (%), which is presented as the comparison with the fluorescence relative to blank. Values are
mean ± standard error (n = 6).

We further analyzed the effects of CSE on the ACE activity using H-HL and Z-FHL substrates.
As shown in Figure 1b, captopril inhibited the hydrolysis of H-HL and Z-FHL substrates by ACE
in a dose-dependent manner. CSE also suppressed the ACE activity in a dose-dependent manner.
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The hydrolysis of H-HL and Z-FHL substrates by ACE was inhibited by CSE, with IC50 values of
53.95±0.58 µg/mL and 87.26±2.68 µg/mL, respectively. These findings suggested that CSE inhibited
the ACE activity and sequentially reduced SBP levels in rats.

2.2. Identification of Bioactive Peptides with Blood Pressure Lowering-Potentials in CSE

The well-known ACE inhibitors, such as captopril, lisinopril and enalapril, are amino-acid or
dipeptide drugs. Moreover, CSE was a protein-rich extract and the protein content of CSE was
10.86%. Therefore, we analyzed protein profiles of CSE by sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE) and two-dimensional electrophoresis (2-DE). As shown in Figure 2a,
CSE was composed of various proteins, with the molecular weight ranging from 10 to 100 kDa. 2-DE
analysis showed that there were several visible protein spots and some smears in the gels. Eleven protein
spots with neutral pH were further excised from stained gels, digested by gastrointestinal protease
(trypsin), and identified using LC-MS/MS analysis. The identified protein spots of CSE are summarized
in Table 1.
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Figure 2. Analysis of potential bioactive peptides in CSE. (a) Protein profiles of CSE. Proteins in
CSE were separated by SDS-PAGE (left) and 2-DE (right) on 15% polyacrylamide gels. Proteins were
visualized by Coomassie Brilliant Blue R-250. Protein spots in red circles were further analyzed by
LC-MS/MS. Protein size markers (in kDa) are shown at the left. Photographs are representative images
of three independent experiments. (b) Prediction of potential bioactive peptides using PeptideRanker
and BIOPEP. Dots represent PeptideRanker scores. Bars represent potential ACE inhibitor activity
analyzed by BIOPEP.
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Table 1. CSE proteins identified by LC-MS/MS.

Spot Number Protein Name Accession
Number Length Molecular Weight

(Da) Score 1 PSM 2 Coverage (%) 3

1 Acidic endochitinase ONM51744 308 33,748 274 17 31.82
2 Lipoxygenase NP_001105003 873 98,164 206 32 4.81
3 Heat shock 70 kDa protein 4 ACG43420 848 93,569 166 7 5.90
4 Ascorbate peroxidase ACO90192 250 27,597 78 8 8.00
5 Adenosylhomocysteinase NP_001148534 485 53,248 349 22 22.06
6 APx3-Peroxisomal ascorbate peroxidase NP_001148710 290 32,072 67 7 2.76
7 Uncharacterized LOC100216603 NP_001336786 129 14,353 45 3 15.50
8 60S Ribosomal protein L37a-2 ONM18155 194 21,777 152 5 12.37
9 NADP-dependent malic enzyme ACX50497 608 67,164 154 15 9.87

10 Trypsin inhibitor precursor NP_001152433 175 19,060 120 6 17.14
11 Cytochrome P450 CYP74A19 ACG28578 483 53,105 96 11 13.67

1 The sum of MASCOT MS/MS ion scores of all peptides that were identified. 2 The total number of identified peptide spectra matches for the protein. 3 The percentage of the protein
sequence covered by identified peptides.
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A total of 133 peptide spectra matched to aforementioned proteins was screened using
PeptideRanker. Top 10% of peptides, which had cut-off scores of approximately 0.8, were considered as
potential corn silk bioactive peptides (CSBps) (Figure 2b). The MS data of these peptides were shown
in Table 2. These peptides were further subjected to BIOPEP database to calculate the potential ACE
inhibitor activity. Top 5 peptides with potential ACE inhibitor activity were CSBp9 (GLIYPPFSNIR),
CSBp10 (EPFIRPPR), CSBp11 (MNVPPGPFMAR), CSBp5 (SKFDNLYGCR), and CSBp7 (AMPTFFLIK).

Table 2. LC-MS/MS and docking parameters of corn silk peptides.

Peptide 1 Amino Acid
Sequence

Molecular
Weight (Da)

Ion
Score 2

Mass Error
(ppm)

Docking
Score 3 Area 4

CSBp1 CGFPPAGYLRR 1293 24 −1.470 10,718 1569.4
CSBp2 DAPWWPK 898 31 0.557 7890 1018.7
CSBp3 DLASFPFR 951 37 0.420 9928 1215.1
CSBp4 NCAPLMLR 989 27 0.616 9788 1429.9
CSBp5 SKFDNLYGCR 1258 65 0.715 10,872 1498.7
CSBp6 NCAPIMLR 989 27 −6.670 8938 1111.3
CSBp7 AMPTFFLIK 1066 11 0.554 10,596 1438.5
CSBp8 YFCEFCGK 1109 36 0.811 8318 1203.8
CSBp9 GLIYPPFSNIR 1275 56 0.784 9930 1630.6
CSBp10 EPFIRPPR 1010 31 1.880 9828 1479.5
CSBp11 MNVPPGPFMAR 1215 58 −3.537 10,428 1380.1

1 Table shows the peptides listed in Figure 2b. 2 Ion Score is a measure of how well the observed MS/MS spectrum
matches to the stated peptide. 3 Score: Geometric shape complementarity score. 4 Area: Approximate interface area
of the complex.

Docking analysis was further performed to evaluate the interaction between ACE and CSBps.
As shown in Table 2, CSBp5 had a highest docking score, followed by CSBp1, CSBp7, and CSBp11.
CSBp9 displayed a largest interface area of peptide-ACE complex, followed by CSBp5, CSBp1,
and CSBp10. Because CSBp5 displayed a potential ACE inhibitor activity and has a highest docking
score with ACE interaction, CSBp5 was synthesized for in vitro ACE activity assay and in vivo
hypertensive assay.

2.3. CSBp5 Inhibited ACE Activity In Vitro and Reduced Blood Pressure In Vivo

Various amounts of CSBp5 were mixed with mouse sera in the presence of H-HL or Z-FHL substrate,
and the ACE activity was determined by measuring the fluorescence-labeled hydrolyzed substrates.

As shown in Figure 3a, captopril inhibited the hydrolysis of both H-HL and Z-FHL substrates by
ACE in a dose-dependent manner. The IC50 values of captopril were 0.68 ± 0.09 µM (H-HL substrate)
and 1.08 ± 0.09 µM (Z-FHL substrate). CSBp5 also inhibited the ACE activity and the inhibition
displayed a dose-dependent manner. The IC50 value of CSBp5 for the hydrolysis of H-HL by ACE
was 44.11 ± 1.04 µM, while IC50 value for the hydrolysis of Z-FHL was 81.71 ± 1.06 µM. Moreover,
our findings suggested that CSBp5 exhibited a more effective inhibition on the C-domain of ACE.
Anti-hypertensive effects of CSBp5 were further evaluated by administering (intraperitoneally)
various amounts of CSBp5 in SHR. Tail SBP was measured 1 h after injection. As shown in
Figure 3b, a slight decrease of SBP was observed 1 h later in blank group, while a significant
decrease (52.83±19.06 mmHg) was observed in captopril group. Intraperitoneal injection of CSBp5
decreased SBP levels in a dose-dependent manner. A significant decrease (28.33 ± 12.5 mmHg injection)
was observed in 10 µmol/kg CSBp5 group. Oral administration of CSBp5 also decreased the SBP
levels in a dose-dependent manner and a significant decrease (36.78 ± 13.25 mmHg) was observed in
10 µmol/kg CSBp5 group (Figure 3c). Time-course effect of anti-hypertensive ability of CSBp5 was
further evaluated in SHR. SHRs were orally given with 10 µmol/kg captopril or CSBp5, and the tail
SBP was measured at 0, 1, 2, 4, and 6 h. As shown in Figure 3c, oral administration of water (blank) did
not affect SBP levels. However, administration of captopril and CSBp5 caused a significant decrease
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in SBP, with SBP falling by approximately 60 mmHg and 30 mmHg, respectively, at 2 h. Moreover,
the decrease SBP level by CSBp5 was persistent during a 6-h measurement. The changes in diastolic
blood pressures were also consistent with the changes in SBP (Supplementary Materials Figure S1).
Therefore, these data suggested that CSBp5 inhibited ACE activity and decreased SBP levels in rats.Molecules 2019, 24, x FOR PEER REVIEW 7 of 14 
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Figure 3. Effects of CSBp5 on ACE activity and blood pressure. (a) ACE activity assay. Various
amounts of captopril or CSBp5 were mixed with serum ACE and substrates (H-HL (top panel) or
Z-FHL (bottom panel)). The mixtures were incubated at 37 ◦C for 20 min, and the resulting products
were labeled with fluorescence and measured using a fluorometer. Data are expressed as relative ACE
activity (%), which is presented as the comparison with the fluorescence relative to blank. Values are
mean ± standard error (n = 6). (b) Anti-hypertensive effect of CSBp5 by intraperitoneally injection.
SHRs were intraperitoneally given with 10 µmol/kg captopril or various dosages of CSBp5. Tail SBP
was measured at 0 and 1 h. Data are expressed as SBP (mmHg) (top panel) or changes in SBP (mmHg)
(bottom panel). Values are mean ± standard error (n = 6). * p < 0.05, ** p < 0.01, *** p < 0.001, compared
with SBP at 0 h (top panel) or with blank (bottom panel). (c) Anti-hypertensive effect of CSBp5 by
oral administration. SHRs were orally given with 10 µmol/kg captopril, various dosages of CSBp5
(top panel), or 10 µmol/kg CSBp5 (bottom panel). Tail SBP was measured at 0 and 1 h (top panel), or at
indicated time point (bottom panel). Data are expressed as changes in SBP (mmHg). Values are mean ±
standard error (n = 6). * p < 0.05, ** p < 0.01, *** p < 0.001, compared with blank.
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2.4. Interaction between CSBp5 and ACE by Docking Analysis

The possible ACE inhibitory mechanism of CSBp5 was investigated by molecular docking in
silico. ACE comprises two similar protein domains (N- and C-domains) and C-domain of ACE is
mainly responsible for angiotensin II formation [22]. In addition, our data showed that the selectivity
of CSBp5 for C-domain versus N-domain was approximately 2-fold. The crystal structure of C-domain
of human ACE (PDB ID: 4APH) was therefore applied as a target for docking analysis.

As shown in Figure 4, CSBp5 occupied the substrate-binding channel of ACE. Moreover, CSBp5
formed potential interactions with residues Asn277, Gln281, Thr282, Thr302, His353, Asn374, His513,
Ser516, Ser517, and Tyr523 of ACE through hydrogen bonds. Four residues, including Gln281,
His353, His513 and Tyr523, were commonly observed among CSBp5-ACE and angiotensin II-ACE
interaction [23]. The distance between Gln281 of ACE and Asp4 of CSBp5 was 2.99 Å, while the
distances between His353, His513, and Tyr523 of ACE and Gly8 CSBp5 were 2.85, 3.29, and 3.06 Å,
respectively. These findings suggested that CSBp5 might interact with the substrate-binding channel
of ACE and prevent angiotensin I from entering the catalytic pocket of ACE.
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3. Discussion

Although corn silk has been used as an aqueous decoction for anti-hypertensive healthcare in folk
medicine, there are few reported studies on the certification of anti-hypertensive effects and mechanisms
of corn silk in human subjects or animal models. Martín et al. [24] reported that intravenous injection
of 1.342 mg/kg boiling dialysate of corn silk decreases diastolic blood pressure by 63.8% ± 33.6% in
normotensive anaesthetized dogs. George and Idu [20] reported that oral administration of 260 mg/kg
corn silk aqueous extract reduces the intraocular pressure in eyes with ocular hypertension and
lowers the blood pressure in systemic and non-systemic hypertensive subjects. Because the high
potassium content is observed in the corn silk extract, and diuretic and uricosuric properties have been
discovered in corn silk, they proposed that the fall in blood pressure by corn silk may result from the
diuretic activity or direct vasodilatation [25]. Anti-hypertensive activities of CSE were analyzed in
SHRs by tail-cuff method in this study. Telemetric blood pressure monitoring system is a direct and
effective method for measuring blood pressure of laboratory animals. However, implantation of a
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radio transmitter is required for this method. Moreover, the cost of a telemetry apparatus is quite
high. Tail-cuff sphygmomanometer has been used as an indirect method to monitor blood pressure
in rats for many years. Although multiple factors, such as stress and temperature, may affect the
measurement, previous report indicated that tail-cuff method is as good as telemetry for measuring
blood pressure in the conscious rats [26]. We found that corn silk extract displayed anti-hypertensive
effects in SHRs. Moreover, in vitro serum ACE activity was inhibited by corn silk in a dose-dependent
manner. These findings suggested that corn silk exhibited anti-hypertensive abilities via the inhibition
of ACE, the target of anti-hypertensive pharmaceutical drugs.

CSE was a protein-rich extract and the protein content of CSE was 10.86%. Moreover, the well-known
ACE inhibitors are amino acid or dipeptide drugs. Therefore, we proposed that there were bioactive
peptides responsible for the anti-hypertensive activities of CSE. Proteomics and bioinformatics analyses
were further applied to identify the anti-hypertensive bioactive peptides in CSE. Peptides with
anti-hypertensive potentials have been determined from corn. For example, dipeptide Ala-Tyr (AY)
has been identified from corn gluten meal, a major byproduct of corn wet milling. AY affects the ACE
activity with an IC50 of 14.2 µM and a maximal reduction (9.5 mmHg) of SBP is observed 2 h after
oral administration of 50 mg/kg AY in SHRs [27]. Several corn peptides have been identified from
zein, an alcohol soluble protein present in corn gluten meal. Tripeptide (Leu-Arg-Pro, Leu-Ser-Pro,
and Leu-Gln-Pro), identified from thermolysin-hydrolyzed zein, inhibited the ACE activity in vitro with
IC50 values of 0.25–1.9 µM. Moreover, thermolysin hydrolysate (5 g/kg) of zein reduces SBP (14 mmHg)
at 6 h after oral administration in SHRs [28]. Oral administration of corn peptides (10 mg/kg) from
hydrolyzed zein decreased SBP (42.5 mmHg) in SHRs at 8 h. Further HPLC-MS/MS analysis identified
that a tetrapeptide Met-Ile/Leu-Pro-Pro exhibited effective ACE inhibitory activities with an IC50 of
70.32 µg/mL (155 µM) in vitro [29]. Interestingly, we did not find the presence of these corn peptides in
the aqueous extract of corn silk by LC-MS/MS analysis. This might be because the previously reported
peptides were from protein digests or the previously reported extract was not like the sample used in
this work. Moreover, our data showed that CSBp5 inhibited the ACE activity with an IC50 value of
44.11 ± 1.04 µM and decreased SBP levels (28.33 ± 12.5 mmHg injection; 36.78 ± 13.25 mmHg oral) at 1 h
after administration of 10 µmol/kg (12 mg/kg) CSBp5. Therefore, our study first identified the presence
of anti-hypertensive peptide (CSBp5) in corn silk. Furthermore, in comparison of ACE inhibitory
peptides in corn, our findings suggested that CSBp5 showed more effective ACE inhibitory activity
and anti-hypertensive abilities in SHRs. Moreover, our study showed that CSBp5, like captopril,
was an ACE inhibitory peptide. ACE inhibition has been demonstrated in both healthy human subjects
and animals by showing that the elevation of blood pressure caused by exogenously administered
angiotensin I was attenuated or abolished by captopril. Therefore, we expect that CSBp5 may reduce
angiotensin I-induced SBP in normal animal.

CSBp5 was an ACE inhibitory peptide that exhibited a more effective inhibition on the C-domain
of ACE. Somatic ACE is composed of two similar catalytic domains (N- and C-domains). Both domains
are efficient for the cleavage of angiotensin I. However, RXP407, an ACE N-domain selective inhibitor,
displays no effect on blood pressure, suggesting that C-domain is the dominant site for angiotensin II
formation [22,23]. Moreover, previous study indicated that C-domain selective ACE inhibitors are
likely to reduce blood pressure by lowering angiotensin II and have improved side effect profiles [30].
Docking analysis was therefore performed to elucidate the interaction between CSBp5 and C-domain of
ACE. The crystal structure of human C-domain somatic ACE in complex with angiotensin II has been
elucidated [23]. The co-crystal structure showed that angiotensin II (Asp-Arg-Val-Tyr-Ile-His-Pro-Phe)
can be observed in the substrate-binding channel of ACE. The main interacting residues at the
ACE active site are divided into three substrate binding pockets S1 (Ala354, Glu384 and Tyr523),
S2’ (Gln281, Tyr520, Lys511, His513 and His353), and S1’ (Glu162) [31]. Ile5 and His6 residues of
angiotensin II interact with Ala354 residue of S1 pocket and all the active site residues of S2’ pocket [23].
In this study, we found that CSBp5 (Ser-Lys-Phe-Asp- Asn-Leu-Tyr-Gly-Cys-Arg), like angiotensin II,
was located in the substrate-binding channel of ACE. CSBp5 exhibited hydrogen bonds with 10 amino
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acid residues of ACE. Asp4 and Tyr7 residues of CSBp5 interacted with Tyr523 residue of S1 pocket,
and Gln281, His513, and His353 active site residues of S2’ pocket. Therefore, we propose that CSBp5
might be a competitive inhibitor by preventing substrates from binding to the active sites of ACE.
Nevertheless, proteins are usually digested to amino acid residues or small peptides by pepsin in the
stomach and pancreatin in the small intestine after ingestion. Endocytosis, phagocytosis, transcytosis,
direct penetration, and paracellular transport are usually responsible for the transport of peptides
in the intestinal epithelial [32]. The detailed gastrointestinal transport mechanism of CSBp5 after
ingestion remained to be further elucidated. In addition, short half-life is one of the key challenges
of therapeutic peptides. Peptide database covering 1,193 unique peptides shows that the half-life of
these peptides ranges from 60 sec to 86,400 sec [33]. The exact half-life of CSBp5 needs to be verified by
further experiments.

4. Materials and Methods

4.1. Chemicals

All chemicals, except indicated, were purchased from Sigma-Aldrich (St. Louis, MO, USA).
ACE substrates, including H-HL (Catalog No. M-1485) and Z-FHL (Catalog No. M-1305), were purchased
from Bachem (Bubendorf, Switzerland). H-HL and Z-FHL were dissolved at 100 mM in 80% acetic acid
and in 100% methanol, respectively.

4.2. Plant Materials and Extraction Procedure

Maize plants (Zea mays L. var. rugosa Bonaf.) were harvested from corn fields in Taichung city,
Taiwan. Corn silk (Stigma maydis) at milky stage of corns was collected in April 2017 and authenticated
at Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical
University. Voucher specimen has been deposited at LiFu Museum of Chinese Medicine, China Medical
University (Taichung, Taiwan). CSE was prepared by mixing 10 g of fresh corn silk with 30 mL
of distilled water at 100 ◦C for 30 min. The supernatant was then collected by centrifugation and
stored at −20 ◦C for further analysis. Protein concentration was quantified by a Bradford method
(Bio-Rad, Hercules, CA, USA; Catalog No. 500-0006).

4.3. Animal Experiments

Male SHRs (200–250 g, 10 week-old) were purchased from National Laboratory Animal Center
(Taipei, Taiwan). Rats were maintained under a 12 h day/12 h night cycle and had free access to water
and food. Rat experiments were conducted under ethics approval from China Medical University
Animal Care and Use Committee (Permit No. 104-75-N).

SHRs with tail SBP ≥ 180 mmHg were randomly divided into five groups with six rats per group.
Rats were given intraperitoneally or orally with 400 µL of distilled water (blank), captopril (Catalog No.
C4042), or various dosages of CSE or peptide (dissolved in water). SBP was measured by a tail-cuff

apparatus (Non-Invasive Blood Pressure System, Panlab, Barcelona, Spain). Rats were placed in a
warm holder kept at 37 ± 1 ◦C for 10 min before the measurement. Changes in SBP were calculated by
subtracting SBP at indicated time point from SBP at 0 h.

4.4. ACE Activity Assay

ACE activity assay was performed as described previously with a slight modification [34].
Mouse sera collected from normal BALB/c mice were used as the source of soluble somatic ACE.
ACE activity in mouse serum was determined as described previously [35]. One unit of ACE converts
1 µmol HL/min at 37 ◦C and the ACE unit in mouse serum was 2 U/µL. A 25-µL reaction mixture,
containing 2 µL mouse serum, indicated concentrations of inhibitors (captopril, CSE, or peptide),
400 mM boric acid (pH 8.3) and 300 mM sodium chloride, were incubated at 37 ◦C for 20 min.
Ten microliters of 7 mM H-HL or 3.5 mM Z-FHL were added and the mixture was incubated at 37 ◦C
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for 2 h. The ACE activity was then stopped by the addition of 150 µl of 0.34 M NaOH. The free
N-terminus of product HL was fluorogenically labeled with o-phthaldialdehyde (OPA, Catalog No.
P1378) by adding 20 µl of 20 mg/mL OPA and incubating at room temperature for 10 min. The reaction
was then stopped by the addition of 50 µL of 3 M HCl and the fluorescent product was measured
using a fluorometer (Fluoroskan Ascent FL, Thermo Fisher, Waltham, MA, USA) with an excitation
wavelength at 355 nm and an emission wavelength at 535 nm. To correct the intrinsic fluorescence of
mouse serum, blank was performed according to the aforementioned procedures without inhibitors.
Relative ACE activity (%) was calculated as:

(fluorescence intensity of inhibitor/fluorescence intensity of blank) × 100. (1)

IC50 represents the concentration of the drug that is required for 50% inhibition in vitro.

4.5. 2-DE and LC-MS/MS Analysis

Protein components of CSE were identified by 2-DE and LC-MS/MS as described previously [36].
Briefly, CSE (200 µg protein) was applied to IPG strips (7 cm, pH 3–10) and isoelectric focusing
was performed using a Protean IEF Cell (Bio-Rad, Hercules, CA, USA). Focused IPG strips were
separated by SDS-PAGE and protein spots on the gels were visualized by Coomassie Brilliant Blue
R-250. Protein spots were then excised from stained gels, digested by trypsin, and identified using an
Ultimate capillary LC system (LC Packings, Amsterdam, The Netherlands) coupled to a QSTAR® XL
quadrupole-time-of-flight mass spectrometer (Applied Biosystem/MDS Sciex, Foster City, CA, USA),
which was served by Biotechnology Center, National Chung Hsing University (Taichung, Taiwan) [37].
MS/MS data were matched against green plant (Viridiplantae) taxonomy using the MASCOT search
program [38]. Protein score (Table 1) reflects the combined scores of all observed mass spectra that
can be matched to amino acid sequences within that protein. In general, a higher score indicates a
more confident match. Peptide score (Table 2) is a measure of how well the observed MS/MS spectrum
matches to the stated peptide. In this study, ion scores >38 indicate homology and ion scores >50
indicate identity (p < 0.05) [38].

4.6. Bioinformatics Analysis

Peptides identified by LC-MS/MS were screened by PeptideRanker, a bioinformatics tool for
the prediction of bioactive peptides based on a novel N-to-1 neural network [39]. Peptides with the
score ≥ 0.8 were selected as potential bioactive peptides and further subjected to BIOPEP database to
calculate the potential ACE inhibitor activity of peptide [40].

4.7. Preparation of Synthetic Peptides

Peptides were synthesized in solid phase using Fmoc and Noc chemistry (LifeTein, Somerset, NJ,
USA). The purities and the amino acid sequences of peptides were identified by high-performance
liquid chromatography and MS, respectively. The peptides with purities ≥ 95% were used in this study.

4.8. Docking Analysis

Docking analysis was performed by PatchDock [41]. The crystal structure of C-domain of human
ACE (PDB ID: 4APH) was obtained from protein data bank. Chain A of 4APH structure was chosen
as a target using the target selection tab in PatchDock. The structures of peptides were generated
using PEPstrMOD [42] and saved as a pdf format. The pdb files were uploaded using the ligand
molecular selection tab in PatchDock. Enzyme-inhibitor complex type was selected to restrict the
search space in the cavities of ACE structure. The binding mode and binding affinity were evaluated
by the geometric shape complementarity score. All docking structures were generated by UCSF
Chimera [43]. The interaction of residues between peptide and ACE was analyzed by LigPlot [44].
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4.9. Statistical analysis

Data were presented as mean ± standard error. Data were analyzed by one-way ANOVA and
post hoc Bonferroni test using SPSS Statistics v20 (IBM, Armonk, NY, USA). A p-value < 0.05 was
considered as statistically significant

5. Conclusions

Corn silk has no significant adverse effects in rats orally given corn silk extract for 90 consecutive
days [45]. Subchronic oral administration of corn silk extract shows the no-observed-adverse-effect level
is 10 g/kg/day for both male and female mice. Moreover, micronucleus assay and sperm malformation
assay showed corn silk is not a genotoxic substance [46]. These studies suggested that corn silk tea is
an herbal remedy with low toxicity. In this study, we identified that the boiling water extract of corn silk
exhibited anti-hypertension effects in SHRs via the inhibition of ACE, the target of anti-hypertensive
drugs. In addition, an ACE inhibitory phytopeptide CSBp5 that decreased SBP levels in rats was
identified in corn silk. Therefore, our findings provided a reasonable explanation on why corn silk tea
displays anti-hypertensive effects in folk medicine. Moreover, the identification of ACE inhibitory
phytopeptide in corn silk extract further strengthened our findings.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/24/10/1886/s1,
Figure S1: Effects of CSBp5 on diastolic blood pressure.
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