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Abstract: Cell dielectric properties, a type of intrinsic property of cells, can be used as
electrophysiological biomarkers that offer a label-free way to characterize cell phenotypes and
states, purify clinical samples, and identify target cancer cells. Here, we present a review of
the determination of cell dielectric properties using alternating current (AC) electrokinetic-based
microfluidic mechanisms, including electro-rotation (ROT) and dielectrophoresis (DEP). The review
covers theoretically how ROT and DEP work to extract cell dielectric properties. We also dive into
the details of differently structured ROT chips, followed by a discussion on the determination of
cell dielectric properties and the use of these properties in bio-related applications. Additionally,
the review offers a look at the future challenges facing the AC electrokinetic-based microfluidic
platform in terms of acquiring cell dielectric parameters. Our conclusion is that this platform will
bring biomedical and bioengineering sciences to the next level and ultimately achieve the shift from
lab-oriented research to real-world applications.

Keywords: electro-rotation; dielectrophoresis; optically-induced dielectrophoreis; alternating current
(AC) electrokinetic; cell dielectric properties; microfluidic

1. Introduction

The intrinsic properties of cells, such as the geometrical parameters [1,2], refractive index [3,4],
stiffness [5], Young modulus [6], and dielectric parameters [7], have received widespread attention
in bio-related fields. More recently, the degradation of cellular mechanics and morphology has been
investigated to predict the biological age of cells and ultimately reveal the ageing process and chronic
disease states of older adults [8]. Furthermore, researchers have discovered that metastatic cancer cells
are more than 70% softer than normal cells, meaning that cellular stiffness can be used for the label-free,
early, and real-time detection of cancer cells, although normal cells and cancer cells may have similar
sizes [9]. Using the differences in dielectric properties between different cells, the separation of Raji
cells from red blood cells (RBCs) can be achieved without the aid of any biochemical labels [10], which
offers an alternative solution to characterizing clinical cancer treatments by anti-cancer drugs. In
addition, based on the density and compressibility differences between cells, exosomes can be isolated
from whole blood with a purity of over 99.999%, which can also be accomplished in a label-free and
contact-free manner [11]. The real-time characterization of the deformation parameter of RBCs reveals
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that the increase in the cytoskeletal tension of RBCs and the decrease in the bending modulus of
RBCs are directly correlated with the parasite invasion efficiency, thereby implying the occurrence
of malaria parasite invasion [12]. It has been demonstrated that cell membrane capacitance, a type
of cell dielectric parameter, can be used for the real-time, label-free, and contact-free monitoring of
stem cell differentiation [13]. Additionally, whole cell membrane capacitance serving as a label-free
biomarker can be employed to monitor stem cell fate and differentiation, thereby opening new avenues
for regulating stem cell fate and continued progress as well as enhancing our understanding of basic
stem cell biology [14]. Most importantly, the label-free and non-invasive isolation and enrichment of
the circulating tumor cells (CTCs) derived from clinical samples is another application of the extracted
cell dielectric properties, which will give valuable prognostic guides for treating malignant diseases
and detecting the metastasis and deterioration of tumors [15]. Hence, cell dielectric properties, a type
of intrinsic property of cells, can be used as electrophysiological biomarkers that offer a label-free way
to characterize cell phenotypes and states, purify clinical samples, and identify target cancer cells. To
sum up, research into the intrinsic properties of cells has enabled significant progress in the biomedical,
bioengineering, and drug research fields.

The above-mentioned results are supported by a variety of methods which have enabled the
high-throughput and accurate determination of the intrinsic properties of cells and have extended
into a series of applications. The microfluidic method, which is based on custom-designed micro
structures, is widely used to obtain the dielectric parameters [16–18] and mechanical properties [19–22]
of cells. This method is high-throughput, easy-to-use, and rapid. However, the performance of this
method is dependent on cell sizes, which may restrict wide applications of this method. Using the
atomic force microscope (AFM), the mechanical properties of cells can be detected at nanoscale and
used in bio-related applications [23–28]. This method holds a nano-scaled and single-cell resolution.
Nevertheless, this method typically presents a lower manipulation efficiency and features direct contact
with cells. Optical tweezers, utilizing an optical force that results in cell deformation, offer a way
to obtain the mechanical parameters of cells and assess drug effects [29–34]. The advantages of this
method mainly involve it being contact-free and single-cell resolution. However, the high-throughput
detection of a number of cells is generally difficult for this method. In addition, combining several
methods into one hybrid approach is another trend in research into the intrinsic properties of cells. For
instance, the combination of bulk acoustic waves with microfluidic chips is a method that examines
cellular motions under the acoustic wave field to enable the non-invasive and contact-free extraction of
cell density and compressibility [35,36]. However, this hybrid method can only obtain the mechanical
properties of cells. A method that incorporates microfluidics into a patch clamp has been designed to
acquire the cell membrane capacitance at a single-cell resolution [37–41]. This method also holds a
lower manipulation efficiency.

The integration of microfluidics with an alternating current (AC) electric field has become a
popular method for extracting a variety of intrinsic properties of cells simultaneously. In general, with
metal-based electrodes that give rise to a non-uniform electric field, two main AC electrokinetic-based
mechanisms are produced: electro-rotation (ROT) and dielectrophoresis (DEP). DEP corresponds to a
non-uniform and non-rotational electric field and ROT to a rotational electric field. With the merits of
being label-free, contact-free, and non-invasive, DEP and ROT make for a more versatile alternative
to extract the intrinsic parameters of cells than other competing lab-on-a-chip techniques. A series
of extracted mechanical properties of cells, such as deformation, viscoelasticity, and stiffness, are
reported [42–46] by these two methods. Most importantly, DEP and ROT have a good prospect for use in
the extraction of such dielectric properties of cells as membrane capacitance/conductance and cytoplasm
conductivity/permittivity and, thereby, in bio-related applications including the identification of target
cells and the detection of cell states [47–53]. Optically-induced dielectrophoreis (ODEP) [54–56],
another DEP-based mechanism, is also proposed to extract the density and mass [57,58] as well as the
electrical [59–61] and mechanical properties [62–65] of cells. With a working principle similar to that of
the DEP method, this method also relies on an AC non-uniform electric field to polarize and drive
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cells. The only difference between the two is that ODEP can make efficient use of optically-projected
images to produce virtual electrodes, meaning that this method can dynamically and programmatically
manipulate cells without requiring any metal electrodes.

In this paper, we review the advances in the use of an AC electrokinetic-based microfluidic
platform for determination of cell dielectric properties. First, we give a detailed explanation about
the ways ROT and DEP work in extracting cell dielectric properties, followed by an introduction to
differently structured ROT chips. Then, we describe how the dielectric properties of cells are determined
and their applications in biomedical and bioengineering fields. Finally, we outline the current status
and future challenges for the AC electrokinetic-based extraction of cell dielectric parameters.

2. Chip Structure and Working Principle

Figure 1 is a typical schematic illustration of a ROT chip [66]. Four metal-based electrodes
orthogonal to each other were fabricated by conventional micro-lithographic techniques and formed a
crisscross pattern. The four electrodes were each wired to an AC bias potential with a phase difference
of π/2. In this way, a rotating non-uniform electric field would be produced, which generated a torque
exerted onto suspended cells and resulted in the ROT phenomenon. It is worth noting that if there
was no voltage with phase difference among the quadrupole electrodes, no ROT would be generated,
which was reported previously by our group [67]. The time-average torque is expressed as [68]:

〈ΓROT〉 = −4πεmr3Im[ fCM]

∣∣∣∣∣→Erms

∣∣∣∣∣2
fCM =

ε∗c−ε
∗
m

ε∗c+2ε∗m

, (1)

where Im[fCM] is the imaginary part of the Clausius–Mossotti (CM) factor, εm is the permittivity of the
liquid solution, r is the radius of the cells, and Erms is the root-mean-square magnitude of the electric
field. ε* is the complex permittivity, which is expressed as ε* = ε – jσ/(2πf ), where f is the frequency of
the externally applied AC bias potential and σ is the conductivity. The subscript c denotes cells. Based
on a single-shell polarization model for a cell, εc

* is further defined as [69]:
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r
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where d is the thickness of the cell membrane, and the subscripts mem and cyto denote cellular
membrane and cytoplasm, respectively. In this case, Im[fCM] is further rewritten as [69]:

Im[ fCM] = 2π fτmw
[( εc−εm

εc+2εm )−(
σc−σm
σc+2σm )]

1+(2π fτmw)
2

τmw = εc+2εm
σc+2σm

. (3)
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In addition, a more complex double-shell model is proposed to elucidate the polarization of cells
using Equation (2) for each shell [70]. In the double-shell model, the inner layer is the nucleus with
the associated radii rn-dn. The complex permittivities of the nuclear membrane and nucleoplasm are
denoted as εnb

* and εnp
*, respectively. The nuclear layer is separated from the cytoplasm layer by a

nuclear membrane with a thickness of dn. Accordingly, εc
* is defined as:

ε∗c = ε∗mem
2(1− ν1) + (1 + 2ν1)E1

(2 + ν1) + (1− ν1)E1
, (4)

where ν1 = (1-d/r)3 and E1 is expressed as:

E1 =
ε∗cyto

ε∗mem

2(1− ν2) + (1 + 2ν2)E2

(2 + ν2) + (1− ν2)E2
, (5)

where ν2 = (rn/(r-d))3 and E2 is expressed as

E2 =
ε∗np

ε∗nb

2(1− ν3) + (1 + 2ν3)E3

(2 + ν3) + (1− ν3)E3
, (6)

where ν3 = (1-dn/rn)3 and E3 = εnp
*/εnb

*.
As shown in Equation (1), the torque is proportional to the imaginary part of the CM factor related

to the intrinsic properties of the cells. Hence, the dielectric parameters of the cells can be extracted
by the best fitting of the minimization of the root-mean-square error between the experimentally
measured ROT spectra of the cells of interest and Equation (3). The ROT measurements were generally
performed by manually timing the rotational speeds of cells using a stopwatch [71–73]. Additionally, a
series of computer-based machine vision algorithms were reported to accurately and automatically
determine the rotational speeds of cells [65,74,75]. By using a frame-to-frame dynamic tracking method,
the measurement of a single cell’s in-plane rotation was automatically achieved [74]. The automatic
acquisition of the rotational speeds of cells involving the in-plane and out-of-plane was also reported
by optimizing the sum of the absolute difference between a reference frame and the current one [75].
Our group also realized the accurate extraction of the rotational speed of cells using an image-matching
algorithm automatically determining the reference frame [65].

In general, an array of metal-based electrodes powered by an externally applied AC bias potential
with no phase difference would produce a non-uniform electric field resulting in cell polarization, as
shown in Figure 2 [76]. The interaction between the cell and the non-uniform electric field would
generate a DEP force exerted onto the cell, which is expressed as [77]:〈

→

FDEP

〉
= 2πr3εmRe[fCM]∇

∣∣∣∣∣→Erms

∣∣∣∣∣2, (7)

where Re[fCM] is the real part of the CM factor.
The changed AC frequency would lead to either a positive or negative DEP force acting on the

cells, depending on the dielectric parameters of the cells and the liquid solution used. Specifically,
when the Re[fCM] value was higher than zero under a given condition, the cells would experience a
positive DEP force, being attracted into the edges of electrodes, as experimentally shown in the inset of
Figure 2. Alternately, when the Re[fCM] value was lower than zero, they would experience a negative
DEP force, being pushed away from the electrodes. In this case, there existed a critical frequency that
led the DEP force to go from positive to negative or vice versa (i.e., Re[fCM] = 0), which was named the
crossover frequency. The crossover frequency of cells could be derived as [60]:

fcrossover =

√
2

2πrCmem
σm −

√
2G∗mem

8πCmem
, (8)
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where Cmem and Gmem denote the cell membrane capacitance and conductance, respectively.
Furthermore, the crossover frequency would increase proportionally with the increase in liquid
conductivity with a slope and a fcrossover-axis intercept. Hence, the cell membrane capacitance and
conductance could be further deduced as [60]:

Cmem =
√

2
2πr×slope

G∗mem = −
4×intercept fcrossover

r×slope

. (9)

In addition, a ROT chip with a millimeter-level working area was developed, as shown in
Figure 3 [78]. This ROT chip was a sandwich structure formed by the top and bottom pieces of glass.
Three-dimensional interdigitated array electrodes were fabricated onto the two pieces of glass and AC
bias potentials with a π/2 phase difference between adjacent electrodes were also applied. A polyester
film serving as a spacer was placed between the two pieces of glass. Then, a rotating electric field
was produced by arranging those two interdigitated array electrodes orthogonally and face-to-face.
Accordingly, a large number of measurement chambers, i.e., 2401 regions, were simultaneously created
with one ROT chip. The total area of this ROT chip reached 1.74 mm2. This type of ROT chip made a
significant improvement in its parallel and high-throughput measurement capability.
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Figure 3. Schematic illustration of a ROT chip. (a) Two glass substrates coated with interdigitated array
electrodes were arranged orthogonally and face-to-face; (b) a rotating electric field was produced by
applying an electrical connection with a π/2 phase difference between adjacent electrodes; (c) overview
of the ROT chip; (d) enlarged view of the ROT chip. Reproduced with permission from Ino et al.,
Sensors Actuators B Chem. 153, 468 (2011). Copyright 2011 Elsevier Publishing.
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A 3D cell ROT chip capable of measuring biophysical properties and reconstructing the 3D
cell morphology was proposed [79]. The working principle of the chip, including single-cell
loading and 3D rotation, is shown in Figure 4. Generally, this chip was composed of four vertical
carbon-black-nanoparticle-PDMS (C-PDMS) electrodes for connecting one end of the AC bias potential,
one bottom indium tin oxides (ITO) electrode for connecting the other end of the AC bias potential,
and one V-shaped constriction fabricated by SU-8 for a single cell trap/release. The gap of the
custom-designed SU-8-based trap module was 10 µm, meaning that only one single cell could be
trapped between the two pillars. Accordingly, when the applied fluid flow drove the cells in one way,
as shown in Figure 4a, only the cell with a size matching the gap would be captured in the trap unit.
After that, a back flow was applied to move the trapped cell away from the V-shaped constriction to
the rotation chamber. Simultaneously, a negative DEP force was produced against the fluid drag force
to stabilize the cell, as shown in Figure 4b. Figure 4c shows the simulation result of the negative DEP
force, serving as a guide for how the negative DEP force could balance the drag force to successfully fix
one single cell into the rotation chamber. Once one single cell was located in the rotation chamber,
3D rotation could be realized along three axes (Figure 4d–f) independently by switching proper AC
signals on. As shown in Figure 4d, four sidewall electrodes were applied with four AC signals of equal
amplitude but a phase shift of π/2, respectively, and the ITO electrode was set as floating. Then, the
cell would experience in-plane rotation along the Z-axis. When five AC signals of equal amplitude
but a selected phase shift were applied to the five electrodes, the cell would experience out-of-plane
rotation along the Y-axis (Figure 4e) and X-axis (Figure 4f). The in-plane cell rotation spectrum was
employed to determine the dielectric parameters, and the out-of-plane cell rotation was demonstrated
to be able to reconstruct the 3D cell geometrical morphology. In this study, the microscope dynamically
captured a series of cell rotation images in two dimensions: X-axis and Y-axis. Hence, the cell rotation
was in-plane when it occurred along the Z-axis. However, when the rotation occurred along both the
Y-axis and the X-axis, it was out-of-plane in terms of the field of view of the microscope. Accordingly,
with out-of-plane rotation that allowed capturing the 3D cell motion, a stack of cellular contour images
was observed in several rounds by keeping the cell rotation at the lowest possible speed and using the
maximum frame rate of the camera. Using these images, the 3D cell geometrical morphology was
reconstructed. As this study showed, the cells would not simultaneously experience ROT and DEP
under the same condition that involved custom-designed electrode structures and an externally applied
AC bias potential. This is because a rotational electric field in which four electrodes are orthogonal to
each other with a π/2 phase-shift between any adjacent electrodes is required to generate ROT onto the
cells. Under this condition, no DEP would be produced onto the cells, in that the π phase difference
between a pair of electrodes or adjacent electrodes is essential to produce DEP.
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Figure 4. Working principle of a 3D cell ROT chip. (a) One single cell hydrodynamically trapped by a
SU-8-based unit; (b) a trapped single cell was released by back flow and stayed in the rotation chamber
after a negative DEP force was applied from the two electrodes; (c) simulation result of the negative DEP
force; (d–f) are AC signals for cell rotation along the Z-axis, Y-axis, and X-axis, respectively. Reproduced
with permission from Huang et al., Lab Chip 18, 2359 (2018). Copyright 2018 RSC Publishing.
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A two-electrode-based ROT chip capable of rotating cells in a microfluidic platform was proposed,
as shown in Figure 5 [80].
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from Huang et al., Electrophoresis 40, 784 (2019). Copyright 2019 Wiley Publishing.

Unlike conventional ROT chips that use four electrodes to produce a rotating electric field in
Figure 5a, this design, as shown in Figure 5b, only featured two planar and parallel electrodes, with
trapped cells used as extra electrodes. This ROT chip consisted of two electrodes, a trench-patterned
insulating layer, and microfluidic channels, as shown in Figure 5c. The trench-patterned insulating
layer was fabricated on the substrate. Firstly, a positive DEP force was generated by the two parallel
electrodes, which moved and trapped cells into the mechanical trenches, as shown in Figure 5d. At this
point, the cells polarized due to a non-uniform electric field could in turn affect the distribution of the
electric field; the trapped cells in the trenches came into direct contact with the two planar electrodes,
which resulted in a phase delay due to their capacitance. Based on this theory, the trapped cells in
the trenches could be formed into a line which behaved as an isolated electrode and interacted with
the two parallel electrodes, thereby producing a rotating electric field. Consequently, cells near and
outside of the trenches could be rotated, and the rotation speed was demonstrated to be adjustable
by tuning the electric signal. They simulated the influence of various factors on the ROT model to
evaluate the AC signal parameter range, involving the AC frequency and amplitude. Additionally,
the influence of the trench-patterned insulating layer thickness on the electric field was analyzed to
fix the electrode structure. They further confirmed that this design of this ROT chip could produce a
rotational electric field driving the cell to rotate through simulation. Using Equations (1)–(3), the ROT
chip proposed in this study realized the extraction of the dielectric properties of cells, eliminating the
four-electrode requirement while achieving the same functionality.

3. ROT-Based Extraction of Cell Dielectric Parameters and Its Applications

Table 1 shows a summary on the extraction of cell dielectric parameters using ROT.
Through ROT experiments and Equation (3), the dielectric parameters of the four main leukocyte

subpopulations, including B- and T-lymphocytes, monocytes, and granulocytes, were extracted [71].
The ROT spectra of the cells were normalized against the square of an externally applied AC bias
potential. The results showed that the cells rotated clockwise when the frequency was below 6 MHz
and anticlockwise when it was above 6 MHz, as illustrated in Figure 6. From Equation (1), the cell
would present a clockwise rotation if the torque in Equation (1) was higher than zero; instead, an
anticlockwise rotation of the cell would be observed when this torque was lower than zero.
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Table 1. ROT (electro-rotation)-based method for the extraction of cell dielectric parameters.

Cell Type Dielectric Parameters
Reference

Cmem
(mF/m2) σmem (µS/m) εmem/ε0 σcyto (S/m) εcyto/ε0

T-lymphocytes
B-lymphocytes

Monocytes
Granulocytes

10.5 ± 3.1
12.6 ± 3.5
15.3 ± 4.3
11.0 ± 3.2

- -

0.65 ± 0.15
0.73 ± 0.18
0.56 ± 0.10
0.60 ± 0.13

103.9 ± 24.5
154.4 ± 39.9
126.8 ± 35.2
150.9 ± 39.3

[71]

HL-60 15.4 ± 0.8 - - - - [73]

HeLa
C3H10

B lymphocyte
HepaRG

13.11 ± 0.11
14.73 ± 0.14
10.14 ± 0.08
15.83 ± 0.12

- -

0.36 ± 0.05
0.31 ± 0.04
0.55 ± 0.07
0.26 ± 0.05

- [79]

MDA231
T lymphocytes
Erythrocytes

26 ± 4.2
11 ± 1.1
9 + 0.80

- -
0.62 ± 0.073
0.76 ± 0.058
0.52 ± 0.051

52 ± 7.3
64 ± 5.9
57 ± 5.4

[81]

Friend murine
erythroleukaemia

cells
18.5 - - 0.77 92 [82]

Neurospora
Myeloma

4.0
4.5 - - > 1.0

0.068 - [83]

MCF/neo
MCF/HER2-11
MCF/HER2-18

20.9
17.0
25.7

- - - - [84]

Trophoblast
Cytotrophoblast

17.8 ± 9.6
26.6 ± 6.2 - - - - [85]

Daudi
NCI-H929

9.0 ± 0.4
4.2 ± 0.3 - - - - [86]

Jurkat cells 11.5 ± 1.6 - - - - [87]

Murine fibroblasts 8 ± 1 - - - - [88]

T lymphocyte
B lymphocyte
Granulocyte

Monocyte
SkBr3
A549

7.01 ± 0.91
10.33 ± 1.6
9.14 ± 1.06

11.77 ± 2.12
14.83 ± 1.74
16.95 ± 2.93

- -

0.53 ± 0.1
0.41 ± 0.1

0.31 ± 0.06
0.37 ± 0.15
0.34 ± 0.06
0.23 ± 0.05

100
100
100
100
100
100

[89]

K562 8.93 ± 1.43 - 10.09 ± 1.61 0.32 ± 0.08 - [66]

HEK293 7.94 ± 0.4 - - 0.408 ± 0.019 85 ± 4 [52]

Jurkat E 6.1
B16F10 - 40

4.9
6.30
8.20

0.19
0.10

40.00
44.70 [90]

Insulin secreting cells - 0.7043 11.3 1.3 170.3 [91]

White blood cells
U937

PANC1
BxPC3

9.8
14

20.2
22.5

- -

0.721
0.750
0.476
0.453

111
106
90
91

[92]

T-lymphocyte
HEK293

Hela
M17

8.05 ± 0.47
9.81 ± 0.39

17.51 ± 0.75
7.49 ± 0.39

- -

0.5
0.5

0.84
0.5

78
78
60
78

[93]

MOSE-E
MOSE-L

MOSE-LTICν
-

32
52
61

30
30
30

0.90
1.0
1.3

45
45
45

[70]
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(•) in an isotonic solution. Reproduced with permission from Yang et al., Biophys. J. 76, 3307 (1999).
Copyright 1999 Elsevier Publishing.

Furthermore, the clockwise peaks were generally located around 350 kHz for B- and T-lymphocytes,
200 kHz for monocytes, and 300 kHz for granulocytes. However, the anticlockwise peaks occurred at
frequencies around 40 MHz for all leukocytes. Then, the dielectric parameters of the cells—i.e., the
cell membrane capacitance and the cytoplasm permittivity and conductivity—were acquired using
the best curve-fitting method. The biggest membrane capacitance was found in monocytes, and the
smallest one in T-lymphocytes. In addition, B-lymphocytes exhibited a larger membrane capacitance
and cytoplasm permittivity and conductivity than the T-lymphocytes. This finding offers an alternative
method to separate and purify cells of similar sizes. An example of this application is that ROT
was employed to characterize the cell membrane capacitance changes in hypotonic solutions, which
provided a non-invasive way to investigate the exocytosis-like mechanism [72]. Furthermore, the
use of ROT spectra for detecting cell membrane capacitance changes, thereby enabling the real-time
monitoring of cell apoptosis [87] and virus-infected cells [88] and the assessment of multidrug-resistant
human leukemia cells [66], was also reported.

Cell membrane permeabilization permits the transfer of extracellular molecules into the cytoplasm.
A method that combines a pulsed electric field and ROT for the in situ characterization of the
permeabilization of a single cell was reported [90]. Typically, the application of a pulsed electric field
would lead to the permeabilization of cells; then, the cells before and after the pulse (BP and AP)
application could be monitored and identified by investigating their dielectric parameters using ROT
spectra. Here is an explanation of how the method worked in detail. An AC bias potential was firstly
applied to generate a DEP force to trap a single cell and move it to the central area of a four-electrode
pattern. Then, a rotating electric field was switched on to generate a rotating electric field that induced
ROT in this single cell. The dielectric parameters of the cells were extracted using the ROT spectra and
Equation (3). Once a pulsed electric field was triggered, the corresponding dielectric parameters could
be acquired. In this method, the Jurkat and B16F10 cell lines were selected as the target cells; their
ROT spectra are shown in Figure 7. After the application of a pulsed electric field, a decrease in the
rotational speed of these two types of cells could be observed all across the ROT spectra. This should
be attributed to the changes in the cell dielectric parameters caused by the cell permeabilization, which
verified ROT’s ability to monitor the level of cell permeabilization. In addition, how much this method
helped with improving the drug delivery efficiency could be detected using ROT.
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Figure 7. ROT spectra of the B16F10 (a) and Jurkat (b) cell lines before and after the application of a
pulsed electric field. Reproduced with permission from Trainito et al., Electrophoresis 36, 1115 (2015).
Copyright 2015 Wiley Publishing.

The simultaneous ROT determination of the dielectric parameters of multiple individual cells
was reported [93]. Multiple individual cells were trapped in 39 separate and arrayed micro cages that
could selectively release the cells by adjusting the AC power parameters. The suspended cells were
injected into the chip by a fluid flow. Initially, two signals with an amplitude of 1 V and a phase shift
of π and another two signals with an amplitude of 5 V and a phase shift of π were applied to the
entrance and exit of the ROT chip, respectively. Hence, a lower DEP barrier was created at the entrance
and a higher DEP barrier at the exit. This allowed the cells to pass through the entrance barrier, but
they were trapped in the rotation chamber due to the limit of the higher exit barrier. After a cell was
trapped in a single-cell micro cage, the voltage at the entrance was increased to 5 V, blocking other cells
from moving into this cage. Then, the phase shift between the adjacent electrodes was tuned to π/2 to
produce ROT. After the ROT spectra were acquired, the trapped cells could be selectively released by
switching off the corresponding AC signals at the exit electrodes. Figure 8a shows the ROT spectra of
the four types of cells. The dielectric parameters of M17 neuroblastoma cells were reported for the
first-time using ROT. Furthermore, an acquisition of the spectra of cells was performed consecutively
to validate the stability of this method over time. The ROT of 63 cells was conducted before and after 5
minutes of exposure to the rotating electric field; a comparison of the peak frequency results is shown
in Figure 8b. A total of 36 out of 63 cells showed a variation of less than 5%, lower than that presented
by other techniques.
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A method that employs ROT spectra to extract dielectric parameters for the characterization of
sequentially-staged cancer cells was demonstrated [70]. The mouse ovarian surface epithelial cell line
(MOSE) at three stages of malignancy—from an early stage (MOSE-E), to a malignant stage (MOSE-L,
slow-developing disease), to a late and highly aggressive/invasive stage (MOSE-LTICν, fast developing
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disease)—was selected to analyze the corresponding ROT spectra. The results in Figure 9 indicated that
the cancer cells would experience a decreased rotational speed as they became more aggressive. The cell
dielectric parameters extracted from Figure 9, including the cell membrane conductance/capacitance
and the cytoplasm conductivity, all increased as the phenotypic malignancy increased. This finding
demonstrated the feasibility of using ROT as a label-free and non-invasive means to determine the
dielectric parameters and thus characterize the cancer malignancy and progression.
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Reproduced with permission from Trainito et al., PLoS One 40, e0222289 (2019). Copyright 2019
PLoS Publishing.

4. DEP/ODEP-Based Determination of Cell Dielectric Parameters and Its Applications

Table 2 presents a summary of the determination of cell dielectric parameters using DEP/ODEP.
Using the crossover frequency of cells, a method that identifies dying and dead cells without

using any cell-type biomarker to label cells, was proposed [104]. It was demonstrated that the dielectric
properties of dying and dead yeast cells were highly dependent on the method employed to induce
cellular death. In sum, methods having direct effects on cell membrane permeability would result in
large changes in cell dielectric parameters; however, those having little effects on cell membranes would
cause few or no changes in the cell dielectric parameters. In this study, yeast cells being exposed to two
lethal environmental stresses—i.e., thermal and chemical—were investigated. The results showed that
heating indirectly affected the cell membrane, which led dead cells to show similar dielectric properties
to live cells; additionally, cells killed with iso-octanol at different concentrations exhibited a lower
internal conductivity than those killed with heating.

A method that examines the dielectric parameters of cells in whole blood samples (MDA-MB231,
THP-1 and PC1 cells) was demonstrated [94]. By experimentally measuring cellular response under
a positive/negative DEP force with the frequency sweeping of an AC bias potential, the cellular
area-specific membrane capacitances of MDA-MB231, THP-1, and PC1 cells were extracted, which were
15.18 ± 1.3, 17.19 ± 2.0, and 12.75 ± 1.8 mF/m2, respectively. As shown in Figure 10a, the real part of the
CM factor was about the same between MDA-MB231 and THP1 cells, ranging between 100 Hz and 10
MHz; however, PC1 cells and RBCs had distinctly different CM factor curves. The corresponding DEP
force exerted onto each cell is presented in Figure 10b, which shows that MDA-MB231 and THP1 cells
experienced different magnitudes of DEP forces due to differences in cell membrane capacitance and
radius. In addition, the PC1 cells and RBCs were smaller than the cancer cells and hence experienced
a significantly lower DEP force. Figure 10c shows the difference in the real part of the CM factor
between MDA-MB231, THP-1, PC1, and RBCs due to their variations in cell membrane capacitance.
This method offers a feasible way to detect, enrich, and isolate rare CTCs from whole blood and could
potentially facilitate patient health forecasting by distinguishing CTCs from cells in biopsy.
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Table 2. DEP/ODEP (optically-induced dielectrophoreis)-based method for the extraction of cell
dielectric parameters.

Cell Type Dielectric Parameters
Reference

Cmem
(mF/m2) σmem (µS/m) εmem/ε0 σcyto (S/m) εcyto/ε0

MDA-MB231
THP-1

PC1
RBC

15.18 ± 1.3
17.19 ± 2.0
12.75 ± 1.8

10.89

- - - - [94]

HT-29 - 34.82 ± 1.36 6.01 ± 0.59 0.203 ± 0.017 61.14 ± 10.19 [95]

C. parvum
G. lambia
C. muris

-
0.186
2.47

0.095

9.84
12.11
4.39

0.047
0.016
0.052

61.35
65.58
60.46

[96]

MOSE-E
MOSE-E/I, MOSE-I

MOSE-L

15.39 ± 1.54
19.87 ± 0.74
18.33 ± 2.46
26.42 ± 1.22

- - - - [97]

Raji
MCF-7

HEK293
K562

11.1 ± 0.9
11.5 ± 0.8
9.0 ± 0.9

10.2 ± 0.7

- - - - [60]

HeLa
MCF-7
Jurkat

GM12878

14. 6 ± 3.7
10.7 ± 2.7
13.5 ± 6.9
21.9 ± 7.1

- -

0.56 ± 0.07
0.53 ± 0.08
0.39 ± 0.09
0.56 ± 0.11

- [98]

BT-549
HS 578T
SF-268
U251

14.4 ± 5.0
18.5 ± 5.6
27.5 ± 6.3
35.8 ± 6.5

- - - - [99]

Normal erythrocytes
Parasitized

erythrocytes
- < 1

70 ± 20
4.44 ± 0.45
9.03 ± 0.82

0.31 ± 0.03
0.052 ± 0.003

59 ± 6
58 ± 10 [100]

Normal erythrocytes
Parasitized

erythrocytes

11.8
6–9.9 - - - - [101]

K562 9.7 (8.9–10.6) - - 0.28
(0.27–0.32) - [102]

T-lymphocytes
B-lymphocytes

Monocytes
Neutrophils
Eosinophils
Basophils

13.29 ± 1.82
9.91 ± 0.80
14.23 ± 0.81
9.84 ± 0.07
9.39 ± 0.41
11.2 ± 1.25

- - - - [103]

A DEP-based method for the characterization of the dielectric properties of microorganisms was
reported [96]. The cellular cytoplasm and membrane compartments of C. parvum, G. lambia, and C.
muris were extracted by the spectral measurement of the critical voltage for the release of trapped cells
with respect to frequency. From the spectra, two peaks of critical voltage for the release of cells were
obtained with respect to AC frequency, through which two DEP crossover frequencies were located for
the cells. The two frequencies were regarded as the first and second critical frequencies where the real
part of the CM factor became zero. Specifically, the cells exhibited opposing dielectric behaviors around
the two frequencies, meaning that a positive DEP force would shift to a negative one and vice versa.
Then, the dielectric parameters of the cell compartments were determined. Based on the acquired
dielectric parameters, the G. lambia and C. muris samples were successfully separated at a voltage of 3
Vpp and a frequency of 10 MHz. Using this DEP-based capture voltage spectrum method, the dielectric
properties of HT-29 colon cancer cells were obtained [95]. It was reported that the cell cytoplasm
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permittivity and conductivity were independent from changes in liquid conductivity; instead, the cell
membrane permittivity and conductivity increased with the increase in liquid conductivity.

A DEP-based crossover frequency method that uses the specific membrane capacitance parameter
to discriminate four different stages of MOSE cells was presented [97]. Four stages of MOSE cancer cells
were established by their phenotype, i.e., early (MOSE-E), early intermediate (MOSE-E/I), intermediate
(MOSE-I), and late (MOSE-L). In this study, the second term of Equation (8)—i.e., the fcrossover-axis
intercept—could be neglected, considering the employed liquid conductivity was 0.01 S/m and
the cell sizes [97]. Hence, the cellular crossover frequency was inversely proportional to the cell
membrane capacitance. The cell membrane capacitance could be directly determined by measuring
the corresponding crossover frequency rather than employing a series of liquid conductivities and the
subsequent curve-fitting function. The measured crossover frequencies were divided by the liquid
conductivity in each performed experiment to give a comparison between the four different stages
of MOSE cells and the experimental runs. Figure 11 shows the crossover frequencies divided by the
liquid conductivity and specific membrane capacitances measured for the four types of cells. The
specific membrane capacitances extracted for MOSE-E, MOSE-E/I, MOSE-I, and MOSE-L were 15.39
± 1.54, 19.87 ± 0.74, 18.33 ± 2.46, and 26.42 ± 1.22 mF/cm2, respectively (Figure 11b). The specific
membrane capacitance increased from a non-malignant stage to the most aggressive stage. Further
study showed that the changed cell actin and tubulin organization during the MOSE progression
highly affected the cytoskeleton structures of cancer cells. In addition, using DEP-based field-flow
fractionation, the correlations between the dielectric parameters and the exterior morphology of
cells were presented, thereby opening up new possibilities for the application of DEP-based cell
separation [99]. The apoptosis progression of Chinese hamster ovary (CHO) cells under controlled
starvation was also revealed using the cytoplasm conductivity measured by the characterization of
a single-cell DEP response [105]. The results indicated that apoptotic CHO cells had a cytoplasm
conductivity of ~0.05 S/m, significantly lower than that of viable cells, which was ~0.45 S/m.
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Figure 10. (a) The real part of the Clausius–Mossotti (CM) factor of MDA-MB231, THP-1, PC1, and
RBCs; (b) DEP forces exerted on MDA-MB231, THP-1, PC1, and RBCs with respect to AC frequency;
(c) difference in CM factor between MDA-MB231 (solid), THP-1 (dotted), PC1 (dash-dot), and red blood
cells (RBCs) (broken lines). Reproduced with permission from Sano et al., Electrophoresis 32, 3164
(2011). Copyright 2011 Wiley Publishing.
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An optically-induced DEP (ODEP)-based method proposed by our group was demonstrated to
be capable of obtaining the membrane capacitance of Raji cells, which was found to vary with the
diameter of these cells (Figure 12) [59].
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The only difference between metal-electrode-based DEP and ODEP was how the non-uniform
electric field was produced. Instead of using metal electrodes, the OEDP-based method used
optically-projected patterns as virtual electrodes to trigger the photosensitive material, thereby
generating a non-uniform electric field around the illumination areas in the liquid layer with suspended
cells. Furthermore, our group managed to determine the membrane capacitance and conductance
of the Raji cells, MCF-7 cells, HEK293 cells, and K562 cells simultaneously by using ODEP [60]. On
this basis, our group also explored the application of cell membrane capacitance to the quantitative
estimation of drug concentration while explaining the mechanism behind such application.

The dielectric properties of RBCs with oblate spheroids were investigated [106]. The impacts of the
Triton X-100 surfactant on human RBCs were reported in this study. The RBCs were suspended at 1.0%
v/v while reaching final Triton X-100 concentrations of 0.00, 0.07, 0.11, 0.17, and 0.50 mM, respectively.
Herein, the RBC suspensions in the absence of Triton X-100 (0.00 mM) were used as negative controls,
and the 0.50 mM Triton X-100/RBC suspensions were employed as positive controls to achieve an
expected 100% RBC lysis. The DEP responses of native RBCs and RBCs treated with low concentrations
of Triton X-100 (0.07, 0. 11, and 0.17 mM) were measured experimentally to obtain the corresponding
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crossover frequencies. Figure 13 shows the experimental results of the DEP responses of native and
Triton X-100-treated RBCs. When the Triton X-100 concentration increased, the corresponding crossover
frequency decreased. No crossover frequency was observed when the concentration was 0.17 mM,
which was due to the occurrence of a negative DEP force for all frequencies. Then, the membrane
capacitances extracted for the 0.00 mM (native), 0.07 mM, and 0.11 mM Triton X-100-treated RBCs were
11.51, 14.05, and 13.61 mF/m2, respectively. One possible explanation given in the study was that the
membrane permittivity of the Triton X-100-treated RBCs resulted in interfacial polarization changes.
These findings revealed that low concentrations of surfactant altered the polarization of the RBCs.
This study also suggested the necessity to test surfactant molecules separately in order to accurately
determine cell properties and to engineer portable and reliable electrokinetic chips.
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Triton X-100-treated RBCs with respect to AC frequency (300 to 700 kHz). Reproduced with
permission from Habibi et al., Biomicrofluidics 13, 054101 (2019). Copyright 2019 American Institute of
Physics Publishing.

A DEP model reduction approach for the real-time and in situ determination of the dielectric
properties of four typical cell lines—i.e., adherent cells (HeLa and MCF-7), suspension cells (Jurkat and
GM12878), cancer cells (HeLa, MCF-7 and Jurkat), and normal cells (GM12878)—was presented [98].
After the redundant parameters were removed from the DEP formula, the remaining ones were
decoupled to establish a solvable measurement model that allowed the direct extraction of the cell
radius, membrane capacitance, and cytoplasm conductivity. In addition, the AC frequencies of DEP
were optimized, which led to significantly improved measurement accuracy and efficiency. Figure 14a–c
shows the determined membrane capacitances, cytoplasm conductivities, and radii, respectively. The
results indicated that there was a significant difference between the normal cells and cancer cells in
membrane capacitance, meaning that this parameter could be used as a biomarker to identify and
isolate cancer cells from normal cells. Furthermore, the cytoplasm conductivity of Jurkat cells showed
a significant difference from that of the other three types of cells. The GM12878 cells had considerably
lower radii than and also showed a significant difference from the other three types of cells, meaning
that the cancer cells were typically larger than the normal cells. The distribution percentages of the
parameters for the four types of cells are shown in Figure 14d–f. The curve-fitting function followed a
normal distribution, which clearly indicated the differences between the four types of cells.
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5. Conclusions and Prospects

This paper aims to give a comprehensive and systematic view of the advances in the determination
of cell dielectric parameters using the ROT, DEP, and ODEP methods. Although some of these advances
come from other competing lab-on-a-chip technologies, the AC electrokinetic-based microfluidic
platform is relatively more advantageous in that it is label-free, contact-free, non-invasive, easy to
fabricate, and easy to use. Accordingly, we offer a broad and in-depth review of how this hybrid
platform can be used to extract cell dielectric parameters as well as how these parameters can be used
as label-free biomarkers in biomedical and drug research applications. In general, ROT is mainly used
to extract cell dielectric parameters and, together with the biomarkers mentioned in this paper, to
achieve bio-related applications. Compared with the ROT method, DEP/ODEP can not only determine
cell dielectric parameters, but also separate different types of cells using those parameters. Hence,
DEP/ODEP has been widely pursued by researchers around the world. Nevertheless, it is indeed
difficult for one method to always be superior or far superior to others for all applications. Hence, the
challenges facing ROT, DEP, and ODEP are discussed here.

When adopting ROT, DEP, and ODEP methods, the first challenge is the need to change the cell
culture solution to an isotonic solution. The cell culture solution is generally conductive, which will
short-circuit the ROT, DEP, and ODEP chips. Consequently, to ensure the chips work properly, an
isotonic solution consisting of 8.5% (w/v) sucrose and 0.3% (w/v) glucose was proposed. However,
this isotonic solution cannot serve as a cell culture solution and the cells can only remain active for
several minutes. Although this isotonic solution has no negative effect on the application of AC
electrokinetic-based microfluidics in bio-related fields, it may impede the integration of this mechanism
with other fashionable micro/nano-robotic manipulation tools—such as AFM [107–109], scanning ion
conductance microscopy [110–112], and acoustic tweezers [113–115]—to rapidly and simultaneously
acquire the intrinsic properties of cells. The integration of DEP with AFM was demonstrated to be
capable of manipulating and assembling nanoparticles accurately [116–118]. However, to the best of
our knowledge, no published studies have provided convincing evidence for the feasibility of this
integration. The incorporation of surface acoustic tweezers into DEP was presented for trapping cells
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and measuring cell aggregation [119,120]. However, it has not been reported whether this hybrid
mechanism is capable of testing cell dielectric parameters without changing the liquid solution. In
addition, although the combination of ODEP with acoustic tweezers was reported to perform cell
lysis and manipulation [121,122], an isotonic solution is still required for the ODEP part, and the
improvement in manipulation performance is not significant. By fabricating a pixelated phototransistor
array in a photosensitive material, a phototransistor-based ODEP chip was for the first time reported
to directly manipulate cells in a cell culture solution [123]. However, this ODEP chip involves
a complicated fabrication process, and its integration with other tools has not been reported. A
continuous medium exchange of ODEP was proposed to allow the use of a cell culture solution in
place of an isotonic solution outside the ODEP chamber [124]. This hinders the integration of ODEP
with other tools, and the use of an isotonic solution is still required during the ODEP manipulation.

Focus should also be put on the application of the extracted dielectric parameters of cells. Currently,
the dielectric parameters are mainly intended to characterize cells at different stages in order to support
drug research activities [59,60,70,90,97,125] and facilitate the separation of cancer cells from cell lines
or CTCs from clinical samples by DEP [126–128] and ODEP [129–131]. These functions are still at the
lab research level, and they have a long way to go to realize real-world applications and bring tangible
benefits to the end user. Hence, it is critical to explore new solutions to expand the application of the
extracted dielectric parameters to other bio-related fields. One solution is to separate target viruses
from clinical samples by using ROT, DEP, and ODEP. Another solution is to use the various crossover
frequencies to rapidly and accurately identify rare CTCs from billions of normal blood cells while
ensuring no CTCs are driven out of the chip. More recently, CELLSEARCH (Menarini) Inc., Precision
For Medicine LLC. (formerly known as ApoCell using ApoStreamTM CTC enrichment technology),
and ClearCell of Biolidics Limited (formerly known as Clearbridge BioMedics) have commercialized
their DEP-based technologies for the separation of CTCs. It is worth noting that Berkeley Lights Inc.
has also been successful in commercializing its ODEP-based technology for the separation of cells.
These commercialization successes suggest a promising prospect for the use of extracted dielectric
parameters to shift from lab-level research to commercial applications.

To sum up, most new technologies will become outdated and even obsolete if they fail to be
commercialized and made accessible to the end user. Thanks to numerous efforts by researchers, the
AC electrokinetic-based microfluidic platform has come a long way in the biomedical and drug research
fields over the past few decades. If the same efforts are to continue to be applied towards addressing
the above-mentioned challenges, this mechanism will be sure to move to real-world applications.
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