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Following worldwide spread of the novel severe acute respir-
atory syndrome coronavirus 2 (SARS-CoV-2), the implemen-
tation of large-scale non-pharmaceutical interventions has 
led to sustained declines in the number of reported SARS-
CoV-2 infections and deaths from coronavirus disease 2019 
(COVID-19) (1, 2). However, since mid-June 2020, the daily 
number of reported COVID-19 cases is resurging in Europe 
and North America, and surpassed in the United States alone 
40,000 daily reported cases on June 26, and 100,000 on No-
vember 4 2020 (3). Demographic analyses have shown that 
the share of individuals aged 20-29 among reported cases in-
creased most, suggesting that young adults may be driving 
re-surging epidemics (4). However reported COVID-19 case 
data may not be a reliable indicator of disease spread due to 
the large proportion of asymptomatic COVID-19, increased 
testing, and changing testing behavior (5). Here, we use de-
tailed, longitudinal, and age-specific population mobility and 
COVID-19 mortality data to estimate how non-pharmaceuti-
cal interventions, changing contact intensities, age, and other 
factors have interplayed and led to resurgent disease spread. 
We test previous claims that resurgent COVID-19 is a result 
of increased spread from young adults, identify the popula-
tion age groups driving SARS-CoV-2 spread across the US 

through October 29, 2020, and quantify changes in transmis-
sion dynamics since schools reopened. 

Similar to many other respiratory diseases, the spread of 
SARS-CoV-2 occurs primarily through close human contact, 
which, at a population level, is highly structured (6). Prior to 
the implementation of COVID-19 interventions, contacts con-
centrated among individuals of similar age, were highest 
among school-aged children and teens, and also common be-
tween children/teens and their parents, and middle-aged 
adults and the elderly (6). Since the beginning of the pan-
demic, these contact patterns have changed substantially (7–
9). In the US, the Berkeley Interpersonal Contact Study indi-
cates that in late March 2020 after stay-at-home orders were 
issued, the average number of daily contacts made by a single 
individual, also known as contact intensity, dropped to four 
or fewer contacts per day (9). Data from China show that in-
fants and school-aged children and teens had almost no con-
tact to similarly aged children and teens in the first weeks 
after stay-at-home orders, and reduced contact intensities 
with older individuals (7). However, detailed human contact 
and mobility data have remained scarce, especially longitudi-
nally, although such data are essential to better understand 
the engines of COVID-19 transmission (10). 
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Following initial declines, in mid 2020 a resurgence in transmission of novel coronavirus disease (COVID-
19) occurred in the US and Europe. As COVID19 disease control efforts are re-intensified, understanding the 
age demographics driving transmission and how these affect the loosening of interventions is crucial. We 
analyze aggregated, age-specific mobility trends from more than 10 million individuals in the US and link 
these mechanistically to age-specific COVID-19 mortality data. We estimate that as of October 2020, 
individuals aged 20-49 are the only age groups sustaining resurgent SARS-CoV-2 transmission with 
reproduction numbers well above one, and that at least 65 of 100 COVID-19 infections originate from 
individuals aged 20-49 in the US. Targeting interventions – including transmission-blocking vaccines – to 
adults aged 20-49 is an important consideration in halting resurgent epidemics and preventing COVID-19-
attributable deaths. 
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Cell-phone data suggest similar rebounds in mobility 
across age groups 
We compiled a national-level, aggregate mobility data set us-
ing cell phone data from >10 million individuals with Four-
square’s location technology, Pilgrim (11), which leverages a 
wide variety of mobile device signals to pinpoint the time, 
duration, and location of user visits to locations such as 
shops, parks, or universities. Unlike the population-level mo-
bility trends published by Google from cell phone geolocation 
data (12), the data are disaggregated by age. User venue visits 
were aggregated and projected to estimate for each state and 
two metropolitan areas daily percent changes in venue visits 
for individuals aged 18−24, 25−34, 35−44, 45−54, 55−64, and 
65+ years relative to the the baseline period February 3 - Feb-
ruary 9, 2020 (figs. S1 and S2, and supplementary materials). 

Across the US as a whole, the mobility trends indicate sub-
stantial initial declines in venue visits followed by a subse-
quent rebound for all age groups (Fig. 1A and fig. S1). During 
the initial phase of epidemic spread, trends declined most 
strongly among individuals aged 18-24 years across almost all 
states and metropolitan areas, and subsequently tended to 
increase most strongly among individuals aged 18-24 in the 
majority of states and metropolitan areas (fig. S3), consistent 
with re-opening policies for restaurants, night clubs, and 
other venues (10, 13, 14). Yet, considering both the initial de-
cline and subsequent rebound until October 28, 2020, our 
data indicate that mobility levels among individuals aged <35 
years have not increased above those observed among older 
individuals (Fig. 1B and fig. S3). 

Mobile phone signals are challenging to analyze, owing 
e.g., to daily fluctuations in the user panel providing location 
data, imprecise geolocation measurements, and changing 
user behavior (15). We cross-validated the inferred mobility 
trends against age-specific mobility data from a second mo-
bile phone intelligence provider, Emodo. This second data set 
quantified the daily proportions of age-stratified users who 
spent time outside their home location, and also showed no 
evidence for faster mobility rebounds among young adults 
aged <35 years as compared to older age groups (see supple-
mentary materials). While other age-specific behavioral dif-
ferences in for example consistent social distancing, mask 
use, duration of visits, or types of venues visited could also 
explain age-specific differences in transmission risk (10, 13, 
14, 16, 17), these observations nonetheless led us to hypothe-
size that the resurgent epidemics in the US may not be driven 
by increased transmission from young adults aged 20-34. 

 
Reconstructing human contact patterns and SARS-CoV-
2 transmission 
To test this hypothesis and disentangle the various factors, 
we incorporated the mobility data into a Bayesian contact-
and-infection model that describes time-changing contact 

and transmission dynamics at state and metropolitan area-
level across the US. For the time period prior to changes in 
mobility trends, we used data from pre-COVID-19 contact 
surveys (6), and each locations’s age composition and popu-
lation density to predict contact intensities between individ-
uals grouped in 5-year age bands (figs. S4 to S6), similar as in 
(18). On weekends, contact intensities between school-aged 
children and teens are lower than on weekdays, while inter-
generational contact intensities are higher. In the model, the 
observed age-specific mobility trends of Fig. 1 are then used 
to estimate in each location (state or metropolitan area) daily 
changes in age-specific contact intensities for individuals 
aged 20 and above. For younger individuals, for who mobility 
trends are not recorded, contact intensities during school clo-
sure periods were set to estimates from two contact surveys 
conducted post COVID-19 emergence (7, 8). After school reo-
pening in August 2020, relative changes in disease relevant 
contacts from and to children and teens aged 0-19 were esti-
mated through the model. Contact intensities between chil-
dren and teens were modeled and estimated separately, to 
account for potentially lower or higher disease relevant con-
tacts between children and teens in the context of existing 
non-pharmaceutical interventions within and outside schools 
(see Materials and methods). As in (19), the model further in-
corporates random effects in space, time, and by age to allow 
for unobserved, potential age-specific factors that could mod-
ulate disease-relevant contact patterns. These random effects 
enabled us to identify signatures of age-specific, behavioral 
drivers of SARS-CoV-2 transmission beyond the mobility data 
in Fig. 1, that may underlie the highly heterogeneous epi-
demic trajectories across the US. Finally, the reconstructed 
contact intensities are used in the model to estimate the rate 
of SARS-CoV-2 transmission, and subsequently infections 
and deaths. Figure 0 in the extended abstract provides a 
model overview, and full details are in the supplementary ma-
terials. 
 
Estimated disease dynamics closely reproduce age-spe-
cific COVID-19 attributable death counts 
The contact-and-infection model was fitted to the Foursquare 
mobility trends, and age-specific, COVID-19-attributed mor-
tality time series data, which we recorded daily from publicly 
available sources in 42 US states, the District of Columbia and 
New York City since March 15, 2020 (fig. S7, see also supple-
mentary materials). Our overall rationale was that, reflecting 
the highly structured nature of human contacts, transmis-
sions from age groups are received by specific other age 
groups, and mortality accrues in the age groups receiving in-
fections. Thus, working back from the time evolution of reli-
ably documented, age-specific COVID-19 attributable deaths, 
it is possible to reconstruct age-specific drivers of transmis-
sion during particular periods in time. Inference was 
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performed in a Bayesian framework and restricted to 38 US 
states, the District of Columbia and New York City with at 
least 300 COVID-19-attributed deaths, giving a total of 8,676 
observation days. The estimated disease dynamics closely re-
produced the age-specific COVID-19 death counts (fig. S8). 

Figure 2 illustrates the model fits for New York City, Flor-
ida, California, and Arizona, showing that the inferred epi-
demic dynamics differed markedly across locations. For 
example, in New York City, the epidemic accelerated for at 
least 4 weeks since the 10th cumulative death and until age-
specific reproduction numbers started to decline, resulting in 
an epidemic of large magnitude as shown through the esti-
mated number of infectious individuals (Fig. 2, mid column). 
Subsequently, we find that reproduction numbers for all age 
groups were controlled to well below one except for individ-
uals aged 20-49 (Fig. 2, rightmost column), resulting in a 
steady decline of infectious individuals. In the model, chil-
dren and teens returned to their pre-lockdown contact inten-
sities on August 24, 2020 or later, depending on when state 
administrations no longer mandated state-wide school clo-
sures, and relative decreases or increases in their disease rel-
evant contact intensities after school-reopening were 
estimated. Concomitantly, reproduction numbers from chil-
dren aged 0-9 and teens aged 10-19 increased, but as of the 
last observation week in October 2020 we find no strong evi-
dence that their reproduction numbers have exceeded one at 
population level in most states and metropolitan areas con-
sidered. Detailed situation analyses for all locations are pre-
sented in the supplementary materials. 

 
SARS-CoV-2 transmission is sustained primarily from 
age groups 20-49 
Figure 3 summarizes the epidemic situation for all states and 
metropolitan areas evaluated, and the age groups that sustain 
COVID-19 spread. In the last observation week in October 
2020, the estimated reproduction number across all locations 
evaluated was highest from individuals aged 35-49 (1.39 [1.34-
1.44]) and 20-34 (1.29 [1.24-1.36]), and around one for age 
groups 1019 and 50-64 (tables S1 and S2). These trends across 
age groups were largely consistent over time. The primary 
mechanisms underlying the high reproduction numbers from 
20–49-year-olds are that at population level, adults aged 20-
49 naturally have most contacts to other adults aged 20 and 
above, which are more susceptible to COVID-19 than younger 
individuals, paired with increasing mobility trends for these 
age groups since April 2020 (Fig. 1 and fig. S6). In addition, 
from the death time series data, the model inferred charac-
teristic random effect signatures in time and by age across 
locations (fig. S9), which indicate elevated transmission risk 
per venue visit for individuals aged 20-49 relative to other 
age groups. Figure S10 visualizes the combined, estimated ef-
fects of mobility and behavior on transmission risk, and 

reveals together with Fig. 3 considerable heterogeneity in 
age-specific transmission dynamics across locations. While 
the model consistently estimates effective reproduction num-
bers close to or above one across all locations from adults 
aged 35-49, disease dynamics are more variable from young 
adults aged 20-34, with some states (Arizona, Florida, Texas) 
showing sustained transmission from young adults in May 
and June, and other states (e.g., Colorado, Illinois, Wisconsin) 
showing sustained transmission from young adults since Au-
gust. This suggests that additional interventions to adults 
aged 20-49, including rapid mass vaccination if vaccines 
prove to block transmission, could bring resurgent COVID-19 
epidemics under control. 
 
The majority of COVID-19 infections originate from age 
groups 20-49 
To quantify how age groups contribute to resurgent COVID-
19, it is not enough to estimate reproduction numbers, be-
cause reproduction numbers estimate the number of second-
ary infections per infectious individual, and the number of 
infectious individuals varies by age as a result of age-specific 
susceptibility gradients and age-specific contact exposures. 
We therefore considered the reconstructed transmission 
flows and calculated from the fitted model the contribution 
of each age group to new infections in each US location over 
time. Across all locations evaluated, we estimate that until 
mid-August 2020, before schools were considered to re-open 
in the first locations in the model, the percent contribution 
to onward spread was 41.1% [40.7%-41.4%] from individuals 
aged 35-49, compared to 2.1% [1.6%-2.8%] from individuals 
aged 0-9, 4.0% [3.5%-4.6%] from individuals aged 10-19, 
34.7% [33.9%-35.5%] from individuals aged 20-34, 15.3% 
[14.8%-15.8%] from individuals aged 50-64, 2.5% [2.2%-2.9%] 
from individuals aged 65-79 age group, and 0.3% [0.3%-0.3%] 
from individuals aged 80+ (table S4). Spatially, the contribu-
tion of adults aged 35-49 were estimated to be remarkably 
homogeneous across states, whereas the estimated contribu-
tions of young adults aged 20-34 to COVID-19 spread tended 
to be higher in Southern, South-western, and Western re-
gions of the US (Fig. 4), in line with previous observations (4). 
 
No substantial shifts in age-specific disease dynamics 
over time 
Over time, we found that the share of age groups among the 
observed COVID-19 attributable deaths was remarkably con-
stant (Fig. 5A and fig. S11), which stands in contrast to the 
large fluctuations in the share of age groups among reported 
cases (4). To test for shifts in the share of age groups among 
COVID-19 infections, we next back-calculated the number of 
expected, age specific infections per calendar month of aggre-
gated COVID-19 attributable deaths using meta-analysis esti-
mates of the age-specific COVID-19 infection fatality ratio 
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(20). This empirical analysis suggested no statistically signif-
icant trends in the share of age groups among COVID19 in-
fections (Fig. 5B and fig. S12), which is further supported by 
model estimates (Fig. 5C and fig. S13). Based on the combined 
mobility and death data, we find the reconstructed fluctua-
tions in age-specific reproduction numbers had only a rela-
tively modest impact on the contribution of age groups to 
onward spread over time, and no evidence that young adults 
aged 20-34 were the primary source of resurgent COVID-19 
in the US over summer 2020. These results underscore that, 
when testing rates are heterogeneous and not population rep-
resentative, it is challenging to determine the age-specific 
pattern of transmission based only on reported case data. 
 
School reopening has not resulted in substantial in-
creases in COVID-19 attributable deaths 
Between August and October 2020, school closure mandates 
have been lifted in 39 out of 40 of the US locations evaluated 
in this study, and provided 2,570 observation days to estimate 
the impact of school reopening on COVID-19 spread. The fol-
lowing analyses are therefore based on fewer data points than 
those aforementioned, rely on mortality figures accrued until 
end of October 2020, as well as reported school case data 
from Florida and Texas, which were used to define lower and 
upper bounds on cumulative attack rates among children and 
teens aged 5-18 (see Materials and methods). Reflecting stut-
tering transmission chains in school settings, reproduction 
numbers from children aged 0-9 and teens aged 10-19 were 
estimated at below one (respectively 0.52 [0.42-0.60] and 0.73 
[0.57-0.88]) after schools were considered to have reopened 
in the model (Fig. 3 and table S2). Reproduction numbers 
from children were lower than from teens because at popula-
tion-level preschoolers have fewer contacts than school-aged 
children (fig. S6). 

Since school closure mandates were lifted, the higher re-
production numbers from children and teens resulted in age 
shifts in the sources of SARS-CoV-2 infections. In October 
2020 an estimated 2.7% [1.8%-3.7%] of infections originated 
from children aged 0-9, 7.1% [4.5%-10.3%] from teens aged 
10-19, 34.0% [31.9%-36.4%] from 20-34, 38.2% [36.7%-39.4%] 
from 35-49, 15.1% [14.1%-16.1%] from 50-64, 2.5% [2.2%-2.9%] 
from 65-79, and 0.3% [0.2%-0.3%] from individuals aged 80+ 
across all locations evaluated (table S5 vs table S4). The re-
constructed shifts in the age of COVID-19 sources after school 
reopening are relatively modest compared to the typical age 
profile of infection sources of pandemic flu (21), and reflect 
lower age-specific susceptibility to SARS-CoV-2 transmission 
among children and teens, but also substantially fewer, in-
ferred disease relevant contacts from children and teens than 
would be expected from their corresponding pre-pandemic 
contact intensities. The mechanisms behind these beneficial 
effects remain unclear, but the model suggests they are 

substantial. In retrospective counterfactual scenarios we ex-
plored what COVID-19 case and death trajectories would 
have been expected if schools had remained closed, and find 
a large overlap between the counterfactual and actual case 
and death trajectories (Fig. 6, fig. S15). However, since chil-
dren and teens seed infections in older age groups that are 
more transmission efficient, as of October 2020, school open-
ing is associated with an estimated 25.7% [14.5%-40.5%] in-
crease of COVID-19 infections and a 5.9% [3.4%-9.3%] 
increase in COVID-19 attributable deaths (table S7). Larger 
proportions of COVID-19 infections and deaths are attributed 
to school re-openings if the actual number of cases among 
school-aged children is more than six times larger than the 
number in school situation reports (table S7). These findings 
indicate that adults aged 20-34 and 3549 continue to be the 
only age groups that contribute disproportionally to COVID-
19 spread relative to their size in the population (fig. S14), and 
that the impact of school reopening on resurgent COVID-19 
is mitigated most effectively by strengthening disease control 
to adults aged 20-49. 

 
Caveats 
The findings of this study need to be considered in the con-
text of the following limitations. Rossen and colleagues (22) 
observed that US excess deaths between the beginning of the 
pandemic and October 2020 were by 38% higher than the re-
ported COVID-19 attributable deaths, suggesting that the 
death data on which this analysis rests are subject to under-
reporting. The scale of the US epidemics may be larger than 
we infer, and our age-specific analyses may be biased if un-
derreporting of deaths depends on age. However, due to the 
high proportion of asymptomatic COVID-19 cases (5), un-
derreporting is a substantially larger caveat for reported case 
data, and in particular the observed shifts in the share of age 
groups among reported cases (4, 23), which are absent from 
the share of age groups among reported deaths (fig. S11). This 
suggests that age-specific death data provide a more reliable 
picture into resurgent COVID-19 epidemics than reported 
cases. We further rely on limited data from two contact sur-
veys performed in the United Kingdom and China to charac-
terize contact patterns from and to younger individuals 
during school closure periods (7, 8), and this could have bi-
ased our findings that children and teens have contributed 
negligibly to SARS-CoV-2 spread until school reopening. To 
address this limitation, we explored the impact of higher in-
ter-generational contact intensities involving children during 
school closure periods, and in these analyses the estimated 
contribution of children aged 0-9 to onward spread until Au-
gust 2020 remained below 5% and the contribution of teens 
aged 10-19 remained below 12.5% (see supplementary mate-
rials). Epidemiologic models are sensitive to assumptions on 
the infection fatality ratio (IFR) that enables the estimation 
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of actual cases from observed deaths by age. Our analyses are 
based on a meta-analysis that consolidates estimates from 27 
studies and 34 geographic locations (20). To test the assumed 
IFR, we compared the scale of the estimated resurgent epi-
demics against data from sero-prevalence surveys conducted 
by the Centers for Disease Control and Prevention (CDC) (24), 
and found good congruence (table S6 and supplementary ma-
terials). The COVID19 epidemic is more granular than con-
sidered in our spatial modelling approach. Substantial 
heterogeneity in disease transmission exists at county level 
(25), and our situation analyses by state and metropolitan ar-
eas need to be interpreted as averages. To no exception, the 
model underlying our analyses also relies on simplifying 
mathematical assumptions on population-level disease 
spread, which may be shown unsuitable as further evidence 
on SARS-CoV-2 transmission accumulates (26). For instance, 
the model assumes children and teens are as transmissible as 
adults, which has been challenging to quantify to date (27), 
and falls short of accounting for population structure other 
than age, such as household settings, where attack rates have 
been estimated to be substantially higher than in non-house-
hold settings (28). It is possible that the model under-esti-
mates the impact of school reopening on SARS-CoV-2 
transmission. 

Data from countries that have re-opened schools have 
provided little evidence for substantial transmission in 
schools, nor significantly increased community-level infec-
tion rates after school reopening until the emergence of more 
transmissible SARS-CoV-2 variants (29, 30), but this might 
reflect frequent sub-clinical infection among school-aged 
children. More transmissible SARS-CoV-2 variants could in-
crease reproduction numbers to above one for all age groups, 
which implies substantial spread from all age groups, and re-
quire generally stricter control measures across all ages to 
prevent COVID-19 attributable deaths (31). 

 
Conclusions 
This study provides evidence that the resurgent COVID-19 ep-
idemics in the US in 2020 have been driven by adults aged 
20-49, and in particular adults aged 35-49, before and after 
school reopening. Unlike pandemic flu, these adults ac-
counted after school reopening in October, 2020 for an esti-
mated 72.2% [68.6%-75.9%] of SARS-CoV-2 infections in the 
US locations considered, whereas less than 5% originated 
from children aged 0-9 and less than 10% from teens aged 10-
19. The population mobility data, and the death data pro-
vided by state and city Departments of Health reveal hetero-
geneous disease spread in the US, with higher transmission 
risk per venue visit attributed to individuals aged 20-49 over 
distinct time periods, and younger epidemics with a greater 
share of individuals aged 20-34 among cumulated infections 
in the South, South-western, and Western regions of the US. 

Over time, the share of age groups among reported deaths 
has been remarkably constant, suggesting that young adults 
are unlikely to have been the primary source of resurgent ep-
idemics since summer 2020, and that instead changes in mo-
bility and behavior among the broader group of adults aged 
20-49 underlie resurgent COVID-19 in the US in 2020. This 
study indicates that in locations where novel highly-transmis-
sible SARS-CoV-2 lineages have not yet established, addi-
tional interventions among adults aged 20-49, such as mass 
vaccination with transmission-blocking vaccines, could bring 
resurgent COVID-19 epidemics under control and avert 
deaths. 
 
Materials and Methods 
To characterize the role of age groups in driving resurgent 
COVID-19, we have taken a systematic approach that in-
volved data collection, mathematical modelling, likelihood-
based inference, and validation against external data. The fol-
lowing sections summarize our materials and methods, and 
full technical details are in the Data Availability Statement 
and the supplementary Materials. 
 
Data and data processing 
The analyses presented in this study are based on age-specific 
COVID-19 attributable mortality counts that were collected 
daily from US state and city Departments of Health (DoH), 
all-age COVID-19 death counts, all-age COVID-19 case counts, 
COVID-19 case counts in school settings K1-K15, human con-
tact data before and during the pandemic, and human mobil-
ity data during the pandemic. 

Briefly, age-specific COVID-19 cumulative death counts 
were retrieved for 42 US states, the District of Columbia and 
New York City from city or state DoH websites, data reposi-
tories, or via data requests to DoH (table S8). Data were 
checked for consistency and adjusted when necessary. Age-
specific COVID-19 death time series were reconstructed from 
cumulative counts, and the time series were used for model 
fitting (32). 

All-age daily COVID-19 case and death counts from Feb-
ruary 01, 2020 until October 30, 2020 regardless of age were 
obtained from John Hopkins University (JHU) for all U.S. 
states and the District of Columbia (3), except New York 
State. For New York State, daily COVID-19 death counts from 
February 01, 2020 until October 30, 2020 were obtained from 
the New York Times’ (NYT) data (33). For New York City, 
daily COVID-19 deaths counts were obtained from the 
GitHub Repository (34). The all-age death counts were used 
for model fitting prior to when age-specific death counts were 
reported for each location, and all-age case counts were used 
for model fitting for the entire study period. 

COVID-19 case counts in school settings K1-K15 were re-
trieved for Florida and Texas and matched with student 
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enrolment numbers in each school from the Common Core of 
Data Americas Public Schools database (35). Cumulative at-
tack rates were obtained by dividing cumulative reported 
cases among students by student numbers, and used for 
model fitting. 

Human contact data before the pandemic were obtained 
from the Polymod study (6), and used to predict baseline con-
tact matrices during the early part of the pandemic for each 
location, similar as in (18). Given the variation in contact pat-
terns seen across survey settings, baseline contact matrices 
for each study location in the US were predicted based on 
each location’s population density and age composition with 
a log linear regression model. Age-specific population counts 
were obtained from (36). Area measurements were obtained 
for every US states and for New York City respectively from 
(37) and (38). Contact matrices were predicted by 5-year age 
bands for weekdays and weekends, and used in the model. 
Human contact data during the pandemic were retrieved 
from two surveys (7, 8), and used in the model to specify con-
tact patterns from and to individuals aged 0-19 during peri-
ods of school closure. 

Age-specific human mobility trends were derived from the 
Foursquare Labs Inc. US first-party panel that includes >10 mil-
lion of opt-in, always-on active users. From operated and part-
ner apps, Foursquare collect a variety of device signals against 
opted-in users including intermittent device GPS coordinate 
pings, WiFi signals, cell signal strength, device model, and oper-
ating system version. A smaller set of labeled explicit check-ins 
are captured from a portion of the user panel. Check-ins are ex-
plicit confirmations that a user was at a given venue at a given 
point of time, and serve as training labels for a non-linear model 
that is used to predict visits among users with unlabeled visits 
in terms of probabilities as to which venue users ultimately vis-
ited (11). Visit probabilities among panellists were processed and 
aggregated by day, age, and study location, and standardised to 
daily per capita visits using latest US Census data. Percent 
changes in daily venue visits by age and study location were ob-
tained relative to the baseline period February 3 to February 9, 
2020, and used for analysis and model fitting. For validation 
purposes, a second mobility data set was obtained from Emodo. 
The Emodo data set quantifies the proportion of individuals 
with at least one observed ping outside the user’s home location, 
out of a panel of individuals whose GPS enabled devices emitted 
at least one ping on the corresponding day. Primary data were 
similarly aggregated by day, age, and study location, standard-
ised to daily per capita visits using latest US Census data, and 
mobility trends were calculated relative to the baseline period 
February 19 to March 3, 2020. 

 
Statistical analysis of human mobility data and 
COVID-19 attributable death data 
The age-specific human mobility data showed marked time 

trends, which were characterised in terms of three phases de-
fined by the dip date after which the 15-day moving average 
fell below 10% compared to the average value in the two prior 
weeks, and the rebound date that corresponded to the date 
at which the 15-day moving average was lowest. Differences 
in the mobility trends relative to the February baseline pe-
riod, before and after rebound dates, and relative to individ-
uals aged 35-44 were assessed using Gamma regression 
models using log link and location by age interaction covari-
ates. 

To characterize the time evolution of deaths across loca-
tions and validate model fits, age-specific COVID-19 attribut-
able deaths among the same age strata across locations were 
predicted by month with Dirichlet-Multinomial regression 
models. Trends in the share of age groups among monthly 
deaths were assessed by testing for differences in the propor-
tions in the first month relative to subsequent months. 

To test for potential differences in age-specific transmis-
sion dynamics based on the collected death data and without 
epidemic models, meta-analysis estimates of age-specific in-
fection fatality ratios (20) were used to predict the share of 
age groups among infections from monthly age-specific 
deaths. Trends in the share of age groups among monthly in-
fections were assessed by testing for differences in the pro-
portions in the first month relative to subsequent months. 

 
Contact-and-infection model 
To quantify age-specific aspects of COVID-19 spread in heter-
ogeneous populations, we formulated an age-specific, dis-
crete-time renewal model in which disease transmission 
occurs via contact intensities between population groups 
stratified by 5-year age bands. The model has four key fea-
tures described below. First, contact intensities vary in time 
and are inferred from signatures in the age-specific mortality 
and mobility data. This feature aims to reflect the substantial 
changes in human contact patterns during the pandemic (7–
9). Second, the challenge and value of the model to produce 
generalizable knowledge is to explain disease spread across 
multiple locations with distinct demographics simultane-
ously. To this end, the renewal equations were embedded into 
a hierarchical model in which information on disease spread 
is borrowed across locations (1, 39). Third, the model de-
scribes disease spread during the initial and later phase of 
the pandemic, as mobility patterns become less correlated 
with transmission risk and schools reopen (40, 41). This fea-
ture allowed us to test for changes in disease dynamics over 
time. Fourth, the model is fitted in a Bayesian framework to 
the all-age and age-specific death data, all-age case data, case 
data from schools, and age-specific human mobility trends 
(42). This feature forced us to focus on a model whose param-
eters are inferable from the data across all locations. The 
model is described in detail in the supplementary materials. 
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Briefly, we consider populations stratified by the 5-year 
age bands A, such that 

 a ∈ A = {[0-4], [5-9], …, [75-79], [80-84], [85+]}  (1) 
and denote the number of new infections, c, on day t, in age 
band a, and location m as , ,m t ac . In the renewal equation, past 

infections are weighted by their relative infectiousness on day 
t, and the sum of these individuals has contacts with individ-
uals in other age groups. Contacts are described by the ex-
pected number of disease relevant human contacts one 
person in age a has with other individuals in age band a’ on 
day t in location m, , , ,m t a ac ′ . Upon contact, a proportion , ,m t as ′

of individuals of age a’ on day t in location m remains sus-
ceptible to SARS-CoV-2 infection, and transmission occurs 
with probability ρ𝑎𝑎′ . Thus, the age-specific renewal equation 
with time-changing contact intensities is  

 ( )
1

, , , , , , , , ,
1

ρ  
t

m t a m t a a m t a a m s a
a s

c s C c g t s
−

=
′ ′ ′ ′

 
= − 

 
∑ ∑   (2) 

where g quantifies the relative infectiousness of individuals s 
days after infection. An important feature of SARSCoV-2 
transmission is that similarly to other coronaviruses but un-
like pandemic influenza (43), susceptibility to SARS-CoV-2 in-
fection increases with age (7, 21, 44). Here, we used contact 
tracing data from Hunan province, China (7) to specify lower 
susceptibility to SARS-CoV-2 infection among children aged 
0-9, and higher susceptibility among individuals aged 60+, 
when compared to the 10-59 age group as part of the trans-
mission probabilities ρa′ . Previously infected individuals are 

assumed to be immune to re-infection within the analysis pe-
riod, consistent with mounting evidence for sustained anti-
body responses to SARS-CoV-2 antigens (45, 46), so that 

 

1
, ,1

, ,
,

1
t

m t as
m t a

m a

c
s

N

−
′

′
=

′

= − ∑   (3) 

where ,m aN ′  denotes the population count in age group a’ and 

location m. 
For adults aged 20+, the time changing contact intensities 

were described in terms of the pre-pandemic baseline contact 
intensities in location m, which we denote by , , ,m t a a′C , and 

expected reductions in disease relevant contacts from con-
tacting individuals of age a on day t in location m, which we 
denote by , ,ηm t a , and contacted individuals of age a’ on day t 

in location m, , ,ηm t a′ , 

 , , , , , , , , ,η ηm t a a m t a m a a m t a′ ′ ′=C C  (4) 

where a, a’ ∈ {[20−24], ..., [85+]}. Expected reductions in 
disease relevant contacts were specified as a random effects 
model that included the observed, age-specific mobility 
trends as covariates. In the model, each age-specific mobility 
trend was decoupled into three separate covariates that re-
flect the initial pre-pandemic, dip, and rebound phases in 

human mobility trends, so that previously observed decreases 
in correlation between mobility trends and transmission risk 
could be captured (40, 41, 47). As the same number of venue 
visits in e.g., Wyoming may translate to different transmis-
sion risk than in e.g., New York City, spatial random effects 
allowed for scaling of mobility trends during the dip and re-
bound phase in each location. As venue visits do not capture 
all aspects of transmission risk, the model further incorpo-
rates independently for each location autocorrelated bi-
weekly random effects to capture information on elevated, 
disease relevant contact intensities and transmission risk 
that is present in the death time series data. To test for age-
specific signatures of elevated transmission risk, the model 
further included for each location age-specific random effects 
for individuals aged 20-49. 

For children and teens aged 0-20, mobility data are not 
available, and during periods of school closure the contact 
intensities from and to children and teens were set to the av-
erage contact intensities reported in (7). This implied that rel-
ative to pre-pandemic contact patterns, peer-based contacts 
were substantially reduced, whereas contacts from an adult 
to children and teens increased slightly. In the model, schools 
were set to re-open on or after August 24, 2020 when state 
administrations no longer mandated state-wide school clo-
sures by that date (48, 49). Thereafter, Eq. 4 was extended to 
include children and teens, and expected mobility reductions 
were estimated from the case and death data. In the absence 
of further data, a common average effect could be estimated 
across locations and children and teen age groups for the last 

two observation months, children
, ,η ηm t a =  for a ∈ [0 − 20]. A 

further compound effect γ was added to modulate the num-
ber of disease relevant child/teenchild/teen contacts, which 
we interpreted as reduced infectiousness from children and 
teens and/or a positive impact of non-pharmaceutical inter-
ventions among school-aged children and teens. 

 
Bayesian inference 
Past age-specific disease dynamics across all locations were 
inferred from age-specific death data available across loca-
tions, and age-specific mobility data. To do this, in the model, 
a proportion ,πm a  of new infections in location m of age a die, 

and the day of death is determined by the infection-to-death 
distribution, which was assumed to be constant across age 
groups. The proportions ,πm a  were associated with a strongly 

informative prior derived from the meta-analysis of (20), but 
were allowed to deviate from the baseline infection fatality 
ratio through location-specific random effects. The expected 
number of deaths in location m on day t in age band a, , ,m t ad
, were aggregated to the reporting strata in each location, and 
fitted to the observed data using a Negative Binomial likeli-
hood model. When age-specific death data were not available, 
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the model was fitted to all-age death data with a Negative 
Binomial likelihood model. All-age case data were smoothed, 
and used to specify a lower bound on the overall number of 

infections , , ,m t m t a
a

c c= ∑  through a student-t cumulative den-

sity likelihood model. Case data from schools were used to 
calculate empirical attack rates in school settings during 
specified observation windows. In turn, the empirical attack 
rates were used to describe a lower bound on the actual at-
tack rate among 5-18 year old children and teens in the same 
observation periods in the model, using a normal cumulative 
density likelihood model. An upper bound on the actual at-
tack rates was also specified by assuming that actual cases in 
school settings were under-reported at most 10-fold, using a 
normal complementary cumulative density likelihood model. 
The contact-and-infection model was fit with CmdStan re-
lease 2.23.0 (22 April 2020), using an adaptive Hamiltonian 
Monte Carlo (HMC) sampler (42). 8 HMC chains were run in 
parallel for 1,000 iterations, of which the first 400 iterations 
were specified as warm-up. There were no divergent transi-
tions. 
 
Generated quantities 
Results were reported in the age bands d ∈ D = 
{[0−9],[10−19],[20−34],[35−49],[50−64],[65−79],[80+]}.The 
primary model outputs were aggregated correspondingly, e.g. 
the number of new infections in location m on day t in re-

porting age band d was , , , ,m t d m t a
a d

c c
∈

= ∑ . The effective number 

of infectious individuals c∗ in location m and age band d on 
day t was calculated based on the renewal model (2), 

( )
1

*
, , , ,

1

t

m t d m s d
s

c c g t s
−

=

= −∑ , and is shown in Fig. 2. Following (2), 

the time-varying reproduction number on day t from one in-

fectious person in a in location m is , , , , , , ,ρm t a m t a a m t a a
a

R s ′ ′ ′
′

= ∑ C

, and the reproduction numbers were aggregated to the re-
porting strata based on the identity 

( )* *
, , , , , , , ,/m t d m t a m t k m t a

a d k d

R c c R
∈ ∈

 
=  

 
∑ ∑ , and are shown in Fig. 2 and 

tables S1 and S2. The transmission flows from age group a to 
age group a’ at time t in location m are given by 

( )
1

, , , , , , , , , ,
1

ρ
t

m t a a m t a a m t a a m s a
s

F s c g t s
−

=
′ ′ ′ ′

 
= − 

 
∑C , and are aggre-

gated using , , , , , ,
,

m t d d m t a a
a d a d

F F′ ′
′∈ ′∈

= ∑ . In turn, the contributions 

of age groups to COVID-19 spread are 

, , , , , , , ,/m t d m t d d m t d d
d d d

S F F′ ′
′ ′

   
=    
   
∑ ∑∑ , and are reported in tables 

S4. Cumulated COVID-19 attack rates were calculated 

through ( ), , , , ,
1

/
t

m t d m s d m d
s

A c N
=

 
=  
 
∑ , where ,m dN  is the number 

of individuals in location m and age band d, and are reported 
in table S6. 
 
Validation and sensitivity analyses 
Reconstructed past transmission dynamics were assessed 
against external data on the scale of the epidemic from sero-
prevalence surveys conducted across the US by the CDC (24). 
Validation results are reported in the supplementary materi-
als, suggesting larger discrepancies between model fit and se-
roprevalence data for Connecticut and New York City, with 
larger epidemics reconstructed in the model than the data 
suggest. The contact-and-infection model does not account 
for sustained spatial importation of SARS-CoV-2 infections 
such as from New York City to Connecticut, and may have 
over-estimated the magnitude of self-sustaining epidemic in 
locations receiving sustained SARS-Cov-2 importations. How-
ever, we also note that the Connecticut seroprevalence esti-
mates predict an infection to observed case ratio that is 
substantially below those of the other CDC seroprevalence 
studies. The inferred contact patterns were assessed against 
external data from the BICS study that quantified human 
contact patterns during the pandemic (9) Validation results 
are reported in the supplementary materials, suggesting sim-
ilarly strong reductions in human contact intensities as in the 
survey data. Disaggregated by age, the model reproduces 
highest contact intensities among 35-44 year old individuals, 
comparatively lower contact intensities from individuals 
aged 45+, and largest reductions in contact intensities from 
individuals aged 25-34. The survey data suggest that contact 
intensities from individuals aged 18-24 could be higher than 
reconstructed through the contact-and-infection model, but 
we also note large confidence intervals around the survey es-
timates. 

Sensitivity analyses were conducted to assess central mod-
elling assumptions on the infection fatality ratio, contact in-
tensities among children and teens during periods of school 
closure, relative susceptibility of children and teens to SARS-
CoV-2 infection, and are reported in the supplementary ma-
terials. Our findings on the age groups that drive SARS-CoV-
2 transmission were found to be robust to these assumptions. 
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Fig. 1. Mobility trends, and estimated time evolution of contact intensities in the United States. (A) National, 
longitudinal mobility trends for individuals aged 18-24, 25-34, 35-44, 45-54, 55-64, 65+, relative to the baseline 
period February 3 to February 9, 2020. Projected per capita visits standardised daily visit volumes by the 
population size in each location and age group. The vertical dashed lines show the dip and rebound dates since 
when mobility trends began to decrease and increase, which were estimated from the time series data. (B) 1-
week average of age-specific mobility trends between October 22, 2020 - October 28, 2020 across the United 
States. (C) Inferred time evolution of contact intensities in California, calculated as per Eq. 4. 
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Fig. 2. Model fits and key generated quantities for New York City, California, Florida and Arizona. (Left) 
Observed cumulative COVID-19 mortality data (dots) versus posterior median estimates (line) and 95% credible 
intervals (ribbon). The vertical line indicates the collection start date of age-specific death counts. (Middle) 
Estimated number of infectious individuals by age (posterior median). (Right) Estimated age-specific effective 
reproduction number, posterior median (line) and 95% credible intervals (ribbon). 
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Fig. 3. Time evolution of estimated age-specific SARS-CoV-2 reproduction numbers across the US. Each 
panel shows for the corresponding location (state or metropolitan area) the estimated posterior probability that 
the daily effective reproduction number from individuals stratified in 7 age groups were below one. Darker colors 
indicate low probability that reproduction numbers were below one. 
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Fig. 4. Estimated spatial variation in the share of young adults aged 20-34 and adults aged 35-49 to COVID-
19 spread until mid August, 2020. Posterior median estimates of the contribution to cumulated SARS-CoV-2 
infections until August 17, 2020, prior to school reopening in the first states in the model. State-level COVID-19 
epidemics not considered in this study are in grey. 
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Fig. 5. Share of age groups among COVID-19 attributable deaths and infections in the United States. (Top) 
Proportion of monthly observed deaths attributed to COVID-19 by age group. Age-specific COVID-19 
attributable deaths were recorded from state or city Departments of Health. Departments of Health used their 
own age stratification, and the observed data were re-estimated into common age groups across states with a 
Dirichlet-Multinomial model (see supplementary materials). A star (∗) next to a location’s name indicates that 
there was a statistically significant shift in the share of individuals aged 80+ among deaths in the corresponding 
location. (Middle) Proportion of monthly reported cases among 20-49 year olds. Monthly cases were back-
calculated using the meta-analysis infection fatality rate estimates of (20). The figure shows the estimated share 
of individuals aged 20-49 among monthly cases (posterior median: line, 95% credible interval: ribbon). 
(Bottom) New daily estimated infections by age group for New York City, Florida, California and Arizona 
(posterior median). 
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Fig. 6. Retrospective counterfactual modelling scenarios exploring the impact of school reopening on 
COVID-19-attributable cases. Shown in blue and red are estimated, daily COVID-19 cases (posterior median: 
line, 95% credible interval: ribbon) under the model until October 29, 2020, assuming reported cases among 
school-aged children from Florida and Texas under-report actual cases by a factor of 6 or less. In counterfactual 
modelling scenarios, the retrospective impact of continued school closures was explored until October 29, 
2020, and the predicted case trajectories are shown (posterior median: black line, 95% credible interval: black 
ribbon). 
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