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Background: Herein, we aimed to analyze cardiac metabolic reprogramming in patients

with tetralogy of Fallot (ToF).

Methods: Cardiac metabolic reprogramming was analyzed through comprehensive

bioinformatics analysis, which included gene set enrichment, gene set variation, and

consensus clustering analyses, so as to assess changes in metabolic pathways.

In addition, full-spectrum metabolomics analysis was performed using right atrial

biopsy samples obtained from patients with ToF and atrial septal defect (ASD) before

cardiopulmonary bypass; ultrahigh performance liquid chromatography–tandem mass

spectrometry (UPLC–MS/MS) was used to construct a metabolic map of cardiac

metabolic reprogramming in cyanotic congenital heart disease.

Results: Themetabolic maps of carbohydrate metabolic process and hememetabolism

were significantly activated, while bile acid metabolism, lipid droplet, and lipid binding

were primarily restrained in ToF samples as compared with that in ASD samples. The

reprogramming of butanoate metabolism was identified basing on the UPLC–MS/MS

detection and analysis in myocardial hypoxia damage in cyanotic heart disease.

Finally, the butanoate metabolism–related hub regulators ALDH5A1 and EHHADH were

identified and they were significantly downregulated in ToF samples.

Conclusions: The metabolic network of butanoate metabolism involved ALDH5A1 and

EHHADH, which could contribute to myocardial tissue damage in cyanotic congenital

heart of ToF. Our results provide further insights into the mechanisms underlying

metabolic reprogramming in cyanotic congenital heart disease and could lead to the

identification of potential therapeutic targets.
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INTRODUCTION

Tetralogy of Fallot (ToF) is the most common cyanotic
congenital heart disease, with an overall incidence of 0.35%,
accounting for ∼3.5–5% of all congenital heart diseases (1).
ToF may arise due to the abnormal development of the
conotruncus during the fetal period, with deviation occurring
between the anterior and cephalad parts of the heart and the
infundibular septum, resulting in malalignment between the
right ventricular inlet and outlet and the ventricular septum.
It mainly manifests as pulmonary stenosis, ventricular septal
defect, overriding aorta, and right ventricular hypertrophy.
Approximately 50% of children present with double outlet
right ventricle and 20% with coronary artery anomalies (2,
3). Children with ToF develop chronic systemic hypoxia,
arrhythmia, pneumonia, and other complications after birth.
The natural prognosis of ToF is poor. In the absence of timely
treatment, as high as up to 90% children do not survive
to adulthood, succumbing mainly to chronic hypoxia-induced
secondary myocardial hypertrophy and heart failure (3). At
present, the vast majority of ToF cases can be corrected owing
to improved surgical repair techniques, but still,∼5% of children
are prone to sudden death or poor long-term outcomes due
to postoperative complications, such as arrhythmias, leading to
heavy economic, and mental burdens on the families and society
(2).

Cardiac development is a multifaceted process, involving
a series of complex and specific signaling pathways and
transcriptional cascades (4). The major gene alterations involved
in ToF as the most common conotruncal anomaly include
22q11.2 deletion syndrome and alterations in genes such
as NKX2.5, TBX20, GATA4, JAG1, FOXC2, and TBX1 (4).
Both environmental and genetic factors play a role in ToF
development (3, 5, 6). Environmental factors mediate its
occurrence mainly through gene mutations and epigenetic
alterations. In children with ToF, long-term chronic cardiac
hypoxia results in metabolic microenvironment changes
and metabolic reprogramming in the myocardial tissue
(7, 8). Naviaux et al. found that in response to myocardial
ischemic injury, cells activate a cascade of pathological
processes, such as energy metabolism, mitochondrial
dysfunction, and fibrosis remodeling. Besides, in response
to cell danger response that persists abnormally, the myocardial
tissue metabolic microenvironment causes reprogramming,
resulting in an induced mitochondrial dysfunction (9).
Mattson et al. suggested that the cardiac T cell oxidation–
reduction (redox) system plays a key role in pathological
conditions, including cardiac hypertension, by regulating
metabolic processes (10). Nguyen et al. illustrated that
cardiac lipid metabolism dysfunction is directly involved
in ATP production, mitochondrial dysfunction, and cell
death, and this occurs via the regulation of mitochondrial
and cellular macromolecular content (11). Nevertheless, the
mechanism underlying cardiac metabolic reprogramming in
ToF remains unclear.

MATERIALS AND METHODS

Transcriptome Microarray Analysis
The gene expression profile of ToF was downloaded from
the Gene Expression Omnibus (GEO) database GSE132176
(https://www.ncbi.nlm.nih.gov/geo/) (12). Ten ToF and 10 atrial
septal defect (ASD) right atrium (RA) specimens collected from
patients before cardiopulmonary bypass (CPB) were chosen from
GSE132176 (13). Subsequently, CEL raw data were normalized
with the “affyPLM” and “affy” algorithms. The analytical process
included the following steps: (1) matrix file obtained from
fluorescent images based on the permuted language model, (2)
probe profiling normalized using the robust multiarray average
method (14), (3) gene symbol matching achieved based on
the GPL13158 Affymetrix HT HG-U133+ PM Array Plate, (4)
missing values filled in via the k-nearest neighbor algorithm,
and (5) differentially expressed genes (DEGs) detected by linear
models for microarray data analysis (15). Benjamini–Hochberg-
adjusted p ≤ 0.05 and log2|fold change (FC)| ≥ 1.0 were the
criteria to identify DEGs. The analysis flowchart of this study is
shown in Figure 1.

Metabolic Pathway and Network
Interaction Analyses
The ToF and ASD RA specimens collected from patients
before CPB were subjected to gene set enrichment analysis
(GSEA; http://software.broadinstitute.org/gsea/index.jsp) with
the “clusterProfiler” and “AnnotationHub” algorithms (16). The
number of genes in the minimum gene set was 10 and that in the
largest gene set was 500. ToF-related DEGs were then subjected
to gene ontology (GO) term enrichment analysis. Benjamini–
Hochberg-corrected p < 0.05 and number of permutations
= 1,000 were the criteria to identify significantly enriched
pathways. Of the pathway score, the gene list of hallmark:
heme metabolism, GOBP: carbohydrate metabolic process,
hallmark: fatty acid metabolism, GOCC: lipid droplet, hallmark:
xenobiotic metabolism, hallmark: bile acid metabolism, GOMF:
lipid binding, and GOBP: response to xenobiotic stimulus were
obtained from the GSEA database. In addition, the score of
metabolic related maps was calculated using the “GSVA” and
“msigdbr” R packages (17). Finally, partial correlation analysis
was performed to analyze the normalized pathway score to detect
interaction relationships.

Mass Spectrometry (MS)–Based
Metabolomic Profiling
We selected 12 samples and detected 1,402 metabolites using
widely targeted metabolomics. Metabolomic differences between
samples were compared by performing ultrahigh performance
liquid chromatography (UPLC; ExionLC AD, USA)–tandem
mass spectrometry (MS/MS; QTRAP, USA), constructing a
database, and employing multivariate statistical analysis (18).
Metabolomics data were acquired through experimental design,
sample collection and processing, and metabolite extraction
and measurement, followed by metabolite identification and
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quality control analysis of sample data, screening for metabolites
showing differences, and functional prediction and analysis of
sample metabolites.

Analyst 1.6.3 (SCIEX) was used to process MS data (19).
Pooled samples were used for quality control. Total ion
current (TIC) and multiple reaction monitoring chromatograms
were plotted. Using a triple quadrupole mass spectrometer,
the characteristic ion of each substance was screened, and
signal intensity (counts per second) of the characteristic
ion was measured in a detector. MultiQuant was used for
chromatographic peak integration and correction using mass
spectrometer output files (20). Peak area represented the relative
content of a specific substance. All chromatographic peak area
integration data were exported and saved. To compare the
content of each detected metabolite in different samples, the
chromatographic peak was corrected based on the retention time
and peak type of a metabolite, which ensured qualification and
quantification accuracy.

Principal Component Analysis (PCA)
PCA was performed to investigate overall metabolic differences
among all groups of samples and variations within groups (21).
PCA helped us determine whether there was separation in the
metabolome among groups, which in turn indicated if differences
were present in the metabolome.

Hierarchical Cluster Analysis (HCA)
HCA clusters individuals or objects based on their characteristics,
with individuals or objects within one cluster being as
homogeneous as possible, with clusters being as heterogeneous
as possible (22). Metabolite content data were normalized by the
unit variance scaling method. HCA was performed to analyze the
accumulation pattern of metabolites in different samples.

Orthogonal Partial Least Squares
Discriminant Analysis (OPLS-DA)
To avoid missing the information pertaining to differentially
expressed metabolites (DEMs) between low-correlation samples
in PCA, we performed PLS-DA, a supervised multivariate
statistical method (23). This method extracts the components of
independent and dependent variables separately and calculates
the correlation between components. In comparison with PCA,
PLS-DA maximizes differences between groups, facilitating the
identification of DEMs. OPLS-DA, which combines orthogonal
signal correction and PLS-DA, can decompose the matrix
information of independent variables into dependent variable–
related and dependent variable–unrelated information, and
remove unrelated differences to screen for differential variables,
considerably enriching differential analysis results (23). Variable
importance in projection (VIP) score, which was derived from
the OPLS-DA model, was used to preliminarily identify DEMs;
in addition, p or FC in univariate analysis was used for further
screening. VIP ≥1.0 and log2|FC| ≥1.0 were used as the criteria
to identify DEMs.

Functional Annotation and Enrichment
Analysis of DEMs
Based on Kyoto Encyclopedia of Genes and Genomes (KEGG,
https://www.genome.jp/kegg/), we studied the interactions
and pathways of DEMs, mainly including the possible
metabolic pathways of carbohydrate, nucleotide, and amino acid
metabolism and organic compound biodegradation; moreover,
comprehensive annotation of enzymes for each reaction step
was performed (24). A p < 0.05 for pathway enrichment was
considered to be statistically significant.

Metabolite Set Enrichment Analysis
(MSEA)
Hypergeometric distribution-based traditional enrichment
analysis is mainly applied to significantly up- or downregulated
DEMs, and some metabolites showing no significant differences
but having important biological significance are thus overlooked.
Basing on the MetaboAnalyst (https://www.metaboanalyst.
ca/) database, we performed MSEA, which identifies a series
of metabolic sets without specifying the threshold for DEMs,
and enriches metabolomics data into these metabolic sets so as
to identify those with significant differences (25). A p < 0.05
indicated statistical significance.

Hub Regulators and Functional Detection
The gene list of most significant metabolic pathways was
downloaded from the GSEA database. Subsequently, differential
expression levels of these genes were further analyzed. The
validation dataset GSE169214 was downloaded in response to
the hypoxic or normoxic environment of the cardiac tissue
in the mouse model for cyanotic congenital heart disease.
The “Oligo” algorithm was used for raw data preprocessing
(26). Consequently, the online version of ToppGene Suite
(https://toppgene.cchmc.org/) was used for hub gene functional
enrichment (27). Terms with p < 0.05 were considered to be
significantly enriched.

RESULTS

Detecting DEGs and Enriched Pathways
Overall, 128 significant DEGs were detected, which included
108 down- and 20 upregulated DEGs, in ASD RA samples
compared with ToF samples. A volcano plot and expression
heatmap are shown in Figure 2A and Supplementary Table 1,
respectively. The downregulated DEGs significantly correlated
with the maps of response to bacterium (p = 3.68E−06, gene
count = 15), acute inflammatory response (p = 2.21E−05,
gene count = 6), and genitalia development (p = 1.05E−04,
gene count = 4), in addition to regulation of endodermal cell
differentiation (p = 8.80E−06, gene count = 2), regulation of
presynapse assembly (p = 4.50E−04, gene count = 2), and
regulation of presynapse organization (p = 5.21E−04, gene
count= 2) (Figure 2B; Supplementary Table 1). Furthermore,
GSEA results showed that the metabolic categories of regulation
of triglyceride metabolic process (size = 26, enrichment score
= −0.69, NES = −2.07, adjusted p = 0.003), carbohydrate
kinase activity (size = 18, enrichment score = −0.68, NES =
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FIGURE 1 | Workflow of metabolic reprogramming analysis.

−1.88, adjusted p = 0.037), triglyceride biosynthetic process
(size = 23, enrichment score = −0.64, NES = −1.87, adjusted
p = 0.041), neutral lipid biosynthetic process (size = 24,
enrichment score = −0.64, NES = −1.87, adjusted p =

0.042), and cholesterol efflux (size = 32, enrichment score =

−0.59, NES=−1.86, adjusted p = 0.038) were significantly
associated with chronic hypoxia-induced ToF-relatedmyocardial
pathogenesis (Figure 2C; Supplementary Table 2).

Metabolic Pathway and Network
Interaction Analyses
Gene set variation analysis (Figure 3A; Supplementary Table 3)
revealed that ToF and ASD RA samples showed a significant
difference in the metabolism-related pathways of lipid droplet
(p = 0.011), lipid binding (p = 0.0037), carbohydrate metabolic
process (p = 3.23E−06), and heme metabolism (p = 0.011).
In addition, partial correlation analysis demonstrated a direct
association among these metabolism-related terms (Figure 3B).
These results suggested that metabolic reprogramming changes
were related to myocardial pathogenesis in ToF-related
chronic hypoxia.

Qualitative and Quantitative Analysis of
Metabolites
Overall, 12 male patients (6 with ToF and 6 with ASD) were
included. All were diagnosed based on cardiac color Doppler
ultrasound or cardiac CT examination. Those with severe

pulmonary stenosis, severe heart failure, and other complex
malformations were excluded. Herein, the age of ToF ranged
from 13 to 18 months and that of ASD ranged from 15 to 19
months. The right ventricle end diastolic volume in patients with
ToF ranged from 55 to 185 ml/m2. The pro-brain natriuretic
peptide level in patients with ToF and ASD ranged from 3.6
to 25.1 and 1.5 to 14.6 pmol/L (within limit), respectively.
Of the metabolite analysis, the superposition of the TIC of
the MS detection of the quality control sample indicated that
the curve overlap of the TIC of the metabolite detection was
high, and the MS signal for sample detection was stable. PCA
results showed the separation trend of the metabolome between
groups, suggesting the presence of significant differences in the
metabolome between sample groups (Figure 3C). Furthermore,
after normalization of the metabolite expression profile, sample
clustering analysis was applied to comprehend the cluster tree
distribution of metabolites among ToF and ASD RA samples
(Figure 3D).

PLS-DA
To mine the weak-correlated features in these metabolites, the
widely used method based on the OPLS-DA for metabolite
detection is carried out (Figure 4A).

Detecting DEMs
Based on VIP scores derived from the OPLS-DA model,
DEMs associated with ToF-related myocardial pathogenesis were
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FIGURE 2 | Differentially expressed gene (DEG) identification and functional enrichment analysis. (A) Volcano plot showing DEG distribution. (B) Clustering heatmap

and biological analysis presenting the biological function of up- and downregulated DEGs. (C) Biological function terms based on gene ontology were calculated by

the GSEA algorithm in response to the comparison between ToF and ASD RA specimens.

identified. In total, 73 metabolites showed significant differential
expression, 49 of which were overexpressed in ToF and 24 in
ASD (Figure 4B). Figure 4C shows the DEM clustering tree
and heatmap for class II metabolites (Supplementary Table 4).
Of the clustering results, the components were classified
as nucleotide and its metabolomics, glycerol phospholipids,
and glycerol lipids showing significant differences. To avoid
interference of abnormal distributed metabolomics data, we
applied standardized Z-score to analyze and visualize differences
in metabolomics data (Figure 4D).

Herein TG (8:0_18:1_18:2) (VIP score = 1.08; log2FC
= −3.17), 2-methylsuccinic acid (VIP score = 1.19;
log2FC=−2.95), glutaric acid (VIP score = 1.19; log2FC
= −2.95), ethylmalonate (VIP score = 1.19; log2FC =

−2.94), and dimethylmalonic acid (VIP score = 1.19; log2FC
= −2.94) were primarily downregulated, while adenosine-
5′-monophosphate (VIP score = 1.38; log2FC = 3.08),

2′-deoxyguanosine-5′-monophosphate (VIP score = 1.38;
log2FC= 3.08), guanosine-5′-monophosphate (VIP score =

1.47; log2FC = 2.35), xanthosine-5′-monophosphate (VIP score
= 1.42; log2FC = 2.21), and 3′-aenylic acid (VIP score = 1.32;
log2FC = 2.20) were overexpressed in ASD samples (Figure 4D;
Supplementary Table 4).

Functional Analysis of DEMs
KEGG pathway analysis revealed that DEMs associated with
chronic hypoxia-induced ToF-related myocardial pathogenesis
were mainly enriched in the AMPK signaling pathway (cluster
frequency = 5.88%, p = 1.80E−03), aldosterone synthesis
and secretion (cluster frequency = 5.88%, p = 5.80E−03),
purine metabolism (cluster frequency = 11.76%, p =

5.80E−03), longevity regulating pathway (cluster frequency
= 3.92%, p = 9.93E−03), and cGMP–PKG signaling pathway
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FIGURE 3 | Metabolic pathway detection and interaction network construction. (A) Clustering heatmap showing GSVA-quantized pathway score of metabolic maps.

(B) Metabolic map interaction analysis was identified via weighted partial correlation analysis. (C) Differential analysis of metabolic pathways of GSVA score in

Figure 2C. (D) Three-dimensional principal component analysis, showing right atrial biopsy sample distribution of ToF and ASD patients before cardiopulmonary

bypass. (E) Clustering heatmap depicting the standard quantification of metabolites in ToF and ASD RA specimens. #p < 0.05.
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FIGURE 4 | Detection of differentially expressed metabolites in ToF and ASD RA specimens via the UPLC–MS/MS spectra. (A) T-score of OPLS-DA showing the

distribution of ToF and ASD specimens. (B) Volcano plot showing the distribution of differentially expressed metabolites. (C) Differential expression of metabolites in

ToF and ASD specimens. (D) Scatter diagram of Figure 3D showing the standardized Z-score for each sample.

(cluster frequency= 3.92%, p = 9.93E−03) (Figures 5A,B;
Supplementary Table 5).

MSEA revealed the enrichment of the butanoate metabolism
(p = 0.0029; hit compound: 2-hydroxyglutarate), purine
metabolism (p = 0.0029; xanthine, L-glutamine, ADP,
adenosine, xanthosine, IDP, hypoxanthine, inosine, guanine,
deoxyguanosine, guanosine, adenine, and urea), pantothenate
and CoA biosynthesis (p = 0.0029; pantetheine, L-valine,
L-cysteine, and uracil), fructose and mannose metabolism
(p= 0.0029; D-fructose and D-mannose), and starch and sucrose

metabolism (p = 0.0029; D-fructose and D-glucose) pathways
(Figure 5C; Supplementary Table 5).

Detecting Butanoate Metabolism–Related
Regulators
After overlap, the hub regulators 3-hydroxyacyl-CoA
dehydrogenase (EHHADH) and aldehyde dehydrogenase 5
family member A1 (ALDH5A1) were detected in response
to transcriptome DEGs and butanoate metabolism pathway
(Figure 5D). In addition, ALDH5A1 and EHHADH expression
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FIGURE 5 | Pathway enrichment analysis with differentially expressed metabolites. (A) The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis

involved in classification of environmental information processing, metabolism, and cellular processes were identified. (B) Of the biologic procession, the significantly

enriched terms were identified in Figure 4B. (C) Metabolic pathway enrichment was detected based on metabolite set enrichment analysis. (D) Overlap between the

gene list involved in butanoate metabolism and DEGs of GSE132176.

levels were significantly downregulated in ToF samples
in GSE132176, as the cyanotic congenital heart tissues in
GSE169214 (Figures 6A,B).

Functional enrichment analyses revealed the involvement of
carboxylic acid catabolic (p= 1.54E−04; gene list: EHHADH and
ALDH5A1), organic acid catabolic (p = 1.73E−04; EHHADH
and ALDH5A1), and gamma-aminobutyric acid catabolic (p =

1.98E−04; ALDH5A1) processes (Figure 6C).

DISCUSSION

In this preliminary study, we used microarrays to analyze ToF
and ASD RA specimens to explore changes in the transcriptomic
profile and metabolic pathways, and mapped a metabolic
pathway regulatory network for chronic hypoxia in ToF (4, 7).
We also performed metabolomic profiling to study changes in
metabolites in myocardial tissues, assess the association between

these changes and ToF progression, establish metabolic profiles
of ToF, and analyze metabolomic changes in patients with ToF,
with the aim of providing novel insights into the etiology and
pathogenesis of ToF.

Transcriptomic and metabolomic analyses suggested
that metabolic reprogramming is involved in the process
of myocardial damage and remodeling in ToF. At the
gene expression level, the metabolic pathway changes
mainly involved regulation of lipase activity, regulation of
phospholipase activity, and regulation of protein metabolic
process (11). The genes encoding EHHADH and ALDH5A1
showed differences in the pathological progression of ToF.
Through metabolomic profiling, we identified 49 up- and 24
downregulated DEMs from a total of 1,402 metabolites; of
them, adenosine 5′-monophosphate, 2′-deoxyguanosine-5′-
monophosphate, guanosine-5′-monophosphate, xanthosine-
5′-monophosphate, and 3′-adenylic acid were found to
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FIGURE 6 | Hub regulator expression and functional enrichment analysis of ToF and ASD RA specimens. (A,B) Hub genes showed differences in ToF and ASD RA

specimens in the GSE132176 and GSE169214 datasets, respectively. (C) Hub terms were enriched in response to hub regulators. #p < 0.05.

be significantly upregulated, while TG (8:0_18:1_18:2),
2-methylsuccinic acid, glutaric acid, ethylmalonate, and
dimethylmalonic acid were significantly downregulated.
Furthermore, metabolic pathway enrichment analysis
indicated that butanoate and purine metabolism might
be involved in the pathological progression of ToF at the
metabolite level.

Butanoate, a short-chain fatty acid, is closely associated
with cell proliferation, apoptosis, and carcinogenesis. It
can be used to regulate or treat intestinal flora imbalance,
enteritis, diarrhea, and other diseases. In the cardiovascular
field, industry is closely related to myocardial infarction,
hypertension, and the risk of cardiovascular disease (28, 29).
Based on the PROMINENT study, Pradhan et al. reported that
butanoate metabolism dysfunction, which is involved in lipid
peroxidation, is significantly correlated with myocardial
infarction, stroke, and coronary revascularization (30).
In addition, in patients with type II diabetes, Araki et al.
reported a significant correlation between lipid and butanoate
metabolism markers and pathological changes involved in
vascular sclerosis, inflammation, and abnormal lipid deposition
(31). Walejko et al. identified that in the newborn heart,
DEMs were significantly related to lipid metabolism, fatty
acid function, and mitochondrial oxidative phosphorylation,
which provides a basic understanding of the mechanism
underlying cardiogenesis, fibrosis remodeling, and heart
failure (32).

Xu et al. found that the high expression level of the gene
encoding EHHADH may be closely related to heart damage

caused by exposure to hexafluoropropylene oxide dimer acid
(33). Gholaminejad et al. suggested that the gene encoding
EHHADHplays an important role in the development of diabetic
nephropathy in end-stage renal disease (34). In addition, Chen
et al. illustrated that EHHADH expression was significantly
upregulated in the left atrial biopsy specimens of patients with
mitral regurgitation compared with those with aortic valve
disease (35). Niimi et al. suggested that ALDH5A1 expression
is significantly correlated with the pathogenesis of diabetic
neuropathy, a peripheral nervous system disorder (36). Gibson
et al. indicated that the protease of succinate semialdehyde
dehydrogenase, coded by Aldh5a1, seems to play a chief role
in regulating myocardial metabolism and energy balance (37).
Fuentealba et al. found that ALDH5A1 expression is upregulated
in long-lived mouse models of aging as compared with that in
short-lived models, suggesting that ALDH5A1 is a hub regulator
and that it might be closely related to life- and healthspan (38)
(Figure 6).

This study is of certain research significance considering that
it involves transcriptomic and metabolomic analyses of clinical
samples. However, limited by sample size and long-term follow-
up data, we cannot explain the translational importance of
relevant core metabolites for prognosis prediction or clinical
treatment of ToF. Another limitation is the discussion of
pertinent molecular mechanisms. Validation based on in vivo
and in vitro experiments is necessary. In the future, our aim
is to increase sample size and conduct a prospective clinical
follow-up study to explore metabolites of significant clinical
translational value.
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CONCLUSIONS

Through public database-based transcriptomic and metabolomic
analyses of clinical samples, we elucidated the pathological
development of ToF at the gene and metabolite level, revealing
the potential role of cardiac metabolic reprogramming in
cyanotic congenital heart disease.
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