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Abstract
Purpose Electromyostimulation (EMS) induces a short-term change in muscle metabolism, and EMS training induces 
long-term improvements of muscle atrophy and function. However, the effects of EMS training on intramuscular fat in older 
adults are still poorly known. The purpose of this study was to examine whether the intramuscular fat index and biochemical 
parameters change with EMS training of the quadriceps femoris muscles in older adults.
Methods Nineteen non-obese older men and women performed EMS training of the quadriceps femoris for 12 weeks (3 
times/week; single session for 30 min). The intramuscular fat content index was estimated by echo intensity of the vastus 
lateralis and rectus femoris muscles on ultrasonography, and muscle thickness was also measured. Muscle strength was 
assessed as the maximal voluntary contraction during isometric knee extension. Echo intensity, muscle thickness, and muscle 
strength were measured before and after EMS training. A rested/fasting blood samples were collected before and after EMS 
training for measuring plasma glucose, insulin, free fatty acid, triglyceride, and interleukin-6 concentrations. To examine the 
acute effect of a single-EMS session on biochemical parameters, blood samples were taken before and after the EMS session.
Results EMS training did not significantly change echo intensity in muscles, muscle thickness, muscle strength, or biochemi-
cal parameters. Regarding the acute effect on blood lipid concentrations, a single-EMS session increased free fatty acid and 
glucose concentrations.
Conclusion EMS sessions had an acute effect of increasing free fatty acid and glucose concentrations, but EMS training 
intervention did not improve intramuscular fat content.

Keywords Ectopic adipose tissue · Lipid metabolism · Aging · Skeletal muscle

Abbreviations
EMS  Electromyostimulation
HOMA-IR  Homeostasis model assessment of insulin 

resistance
MET h  Metabolic equivalent × hours
MVC  Muscle voluntary contraction
VO2max  Maximum oxygen uptake

Introduction

Primary aging causes changes in the quality and quan-
tity of skeletal muscles (Cartee et al. 2016). The qual-
ity of skeletal muscle, such as metabolic function (i.e., 
mitochondrial dysfunction induces intramyocellular lipid 
accumulation) (Crane et al. 2010) and specific tension 
(i.e., voluntary muscle strength per cross-sectional area) 
(Akima et al. 2001a), decreases with aging. Regarding 
the quantity of skeletal muscle with aging, muscle size 
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decreases, and intramuscular fat content increases (Lex-
ell et al. 1988). These structural changes with aging are 
potentially associated with lifestyle, environmental, or 
various disease (e.g., metabolic syndrome) factors in the 
long term (Lexell 1995; Kohrt and Holloszy 1995; Car-
tee et al. 2016). Middle-aged and older adults with low 
levels of physical activity are mentioned as being likely 
to develop metabolic syndrome, such as type 2 diabetes 
mellitus (Kudo et al. 2021; Wang et al. 2018).

It is well known that the morphological changes with 
aging differ among the skeletal muscles. For example, skel-
etal muscle size decreases with aging, prominently in the 
quadriceps femoris (Lexell 1995; Lexell et al. 1988). Moreo-
ver, there is less accumulation of intramuscular fat content in 
the quadriceps femoris than in the hamstrings of older adults 
(Hioki et al. 2020). This indicates that age-related reductions 
in muscle mass or intramuscular fat content accumulation 
differ between muscles. The morphology of the skeletal 
muscles has been evaluated using non-invasive procedures, 
such as ultrasonography and magnetic resonance imaging. 
Intramuscular fat is ectopic adipose tissue, and extensive 
intramuscular fat accumulation with aging increases insu-
lin resistance and the risk of developing type 2 diabetes 
mellitus (Ryan et al. 2011, 2002). Although several studies 
(Tsintzas et al. 2017; Chee et al. 2016; Hioki et al. 2021) of 
the enhancement of lipid metabolism in muscles have been 
conducted, it is difficult to enhance “metabolic flexibility” 
(i.e., muscle oxidative capacity by stimulation/intervention) 
(Loher et al. 2016) in older adults, because aging induces 
less metabolic flexibility.

Electromyostimulation (EMS) is commonly used in clini-
cal settings to improve muscular functions in not only older 
adults, but also patients with spinal cord injury, chronic 
obstructive pulmonary disease, and chronic heart failure 
(Sillen et al. 2013; Gorgey et al. 2015). The advantage of 
EMS is that the device is portable and easy to operate. Thus, 
people with lower limb dysfunction and a risk of heart fail-
ure with the above diseases can also perform EMS training 
by themselves in their homes to decrease intramuscular fat 
content and increase muscle size (Sillen et al. 2013; Gorgey 
et al. 2015). Moreover, EMS is used in training for healthy 
athletes or injured athletes, which provides the beneficial 
effect of enhanced performance (Maffiuletti et al. 2002; 
Maffiuletti 2010). Improvement of muscle torque and func-
tional performance in older adults is observed, and it is 
also observed to increase muscle fiber type II size and up-
regulation of insulin-like growth factor 1–1 and modulation 
of MuRF-1, a muscle-specific atrophy-related gene in the 
EMS training (Kern et al. 2014). Especially in less active 
elderly persons, neuromuscular electrical stimulation could 
lead to better gait and balance performance (Langeard et al. 
2017). Therefore, EMS might be able to enhance metabo-
lism in older adults by repetitive and mechanical muscle 

contraction. However, the effects of EMS training on intra-
muscular fat in older adults are poorly known.

Lifestyle intervention strategies in physically activity, 
such as aerobic or anaerobic exercise, improve age-related 
muscle atrophy and muscle metabolism (Cartee et al. 2016; 
Canepari et al. 2005; Verdijk et al. 2009; Caserotti et al. 
2008; Aagaard et  al. 2010). Therefore, type 2 diabetes 
mellitus may be avoided in older adults. The physiologi-
cal responses are determined by exercise time and intensity 
(Garber et al. 2011). With increases of exercise intensity, 
the relative contributions of plasma glucose and muscle gly-
cogen are increased (Egan and Zierath 2013; Romijn et al. 
1993). In contrast, oxidation of lipid sources (mostly plasma 
free fatty acids) accounts for most of the energy provision 
during light intensity exercise (25% of maximum oxygen 
uptake  [VO2max]). Fatty acids are a major oxidative fuel 
not only during exercise, but also at rest (Jensen 2003). The 
lipid (plasma free fatty acids and intramyocellular triglycer-
ides) oxidation rate increases up to 60–70%  VO2max, after 
which it decreases as intensity increases. The concomitant 
mobilization of free fatty acids from adipose tissue results 
in an increase in free fatty acid concentration immediately 
after exercise (Jensen 2003). Thus, it is considered that EMS 
sessions have acute and long-term training effects on plasma 
lipid and glucose concentrations in older adults.

The purposes of this study were to examine: (1) the acute 
effects of a single-EMS session on the biochemical profile; 
and the (2) chronic effects of EMS training for 12 weeks on 
the biochemical profile and intramuscular fat of the quadri-
ceps femoris in older adults. The hypotheses were that a 
single session of EMS would increase free fatty acid con-
centration, EMS training would decrease intramuscular fat, 
increase muscle thickness, and muscle strength, and that it 
would also decrease free fatty acids concentration in older 
adult men and women.

Methods

Participants

Nineteen physically active, non-obese older adults (10 men, 
9 women) participated in this study. All participants were 
living independently. Participants with a clinical history of 
heart disease (myocardial infarction, angina pectoris, cardiac 
insufficiency), cerebrovascular disease (cerebral infarction, 
hemorrhage), extreme hypertension (systolic blood pres-
sure ≥ 180 mmHg; diastolic blood pressure ≥ 110 mmHg), 
or neuromuscular disorders were excluded. Moreover, 
none of the participants had any history of limb surgery. 
All participants provided written, informed consent to par-
ticipate in the study. This study was approved by the Eth-
ics Committee of Teikyo Heisei University and registered 
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with the University hospital Medical Information Network 
(UMIN000043041). This study conformed to the standards 
set forth by the Declaration of Helsinki and adhered to CON-
SORT guidelines (Fig. 1).

Study protocol

The flowchart of the study procedures and participants is 
shown in Fig. 1. This study recruited participants in the age 
range of 60 to 80 years at four local community centers. 
When recruited, the exclusion criteria were shown to poten-
tial participants, and participant eligibility was assessed 
using a questionnaire (n = 28) that resulted in the exclusion 
of a total of 8 participants for the following reasons: did 
not meet inclusion criteria (n = 2) or refused to participate 

(n = 6). Moreover, one participant was discontinued from the 
intervention (at the first body composition measurement). 
Finally, a total of 19 participants (10 men, 9 women), rang-
ing in age from 61 to 78 years, were included in the study.

The signal EMS session and study protocol are showed 
Fig. 2A, B, respectively. The study was performed according 
to the protocol in the morning. However, some participants 
could not follow the order of the specified by the protocol 
due to vaccination, the declaration of a state of emergency in 
Japan due to COVID-19, physical deconditioning, their own 
convenience, or other reasons. This is shown in the supple-
mentary information, Supplementary Material-1. This study 
was not blinded; therefore, all evaluated data were assigned 
serial numbers to prevent individual identification and then 
subsequently analyzed.

Fig. 1  Flow diagram of the 
study

Randomized (n = 20)

Allocated to intervention (n = 20)

Received allocated intervention (n = 20)
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Follow-Up
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Discontinued intervention (n = 1)

Allocated to non-intervention (n = 19)

Did not receive allocated intervention       
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Anthropometric measurements

Body composition was measured before EMS training, in 
the middle of the EMS training period (at 6 weeks), and 
12 weeks after EMS training, another 12 weeks later (at 
24 weeks). The participants were advised to take relaxed and 
natural breaths to minimize the inward pull of the abdominal 
contents during measurement, and the actual waist circum-
ference of the participants was measured. Hip circumference 
was taken as the greatest circumference of the pelvis.

EMS training

Transcutaneous EMS (ESPURGE, Ito Co., Ltd. Saitama, 
Japan) was performed on the vastus lateralis and vastus 
medialis muscles. Voltage was delivered via four (two, 
vastus lateralis; two, vastus medialis) 5 × 9  cm2 electrodes 
(Axelgaard Mfg. Co., Ltd. USA) applied to the skin. Two 
electrodes were placed, one on vastus lateralis at approxi-
mately 5 cm distal to the greater trochanter and one approxi-
mately 5 cm proximal to the superior aspect of the knee 
joint. Two electrodes were placed on vastus medialis at the 
medial distal thigh (approximately 30% of the length of 
the thigh). All participants performed EMS training of the 
quadriceps femoris at home for 12 weeks (3 times/week). 
Before beginning the study protocol, they were familiarized 
with the operation of the EMS device in the laboratory at 
least 3 times. In these sessions and the measurement after 

EMS training, EMS-induced isometric knee extension force 
was recorded by a custom-made dynamometer (Takei Sci-
entific Instruments Co. Ltd., Tokyo, Japan). A single-EMS 
session consisted of 30-Hz, biphasic rectangular pulses with 
a duration of 300 μs, contraction/relaxation durations of 
7.1 s on–7.0 s off, for 30 min (Fig. 2A). EMS intensity was 
set to observe muscle contraction of the quadriceps femoris 
visually, without causing the patient discomfort. A constant 
stimulation current was used throughout the EMS training.

Biochemical profile

Blood samples were collected in EDTA-2 k-containing 
tubes and separating agent-containing tubes with a kit 
from SRL, Inc. (Tokyo, Japan) after an overnight fast. 
Biochemical parameters, such as fasting glucose, insulin, 
free fatty acid, triglyceride, and interleukin-6 concentra-
tions, were measured in a blood sample. Serum free fatty 
acid and triglyceride concentrations were measured using 
enzymatic methods. Plasma concentrations of glucose 
were measured using the hexokinase method, and serum 
concentrations of insulin and interleukin-6 were measured 
using chemiluminescentenzyme immunoassay. To deter-
mine the acute effect of a single-EMS session, biochemical 
tests were performed before and after an EMS session. 
The chronic effect of EMS training was compared between 
biochemical tests before a single-EMS session measured 
before and after an EMS training at rest. To evaluate 

Fig. 2  Contraction/relaxation 
durations of the EMS session 
(A) and the experimental proto-
col of EMS training (B) EMS, 
electromyostimulation training

1.3 sec 1.3 sec
4.5 sec

7 sec

On Off

A

EMS-test
(30min)

before
EMS training

EMS training (12w)

After
EMS training

Normal living
(12w)

EMS-test
(30min)

2 tims2 tims 2 tims

Ultrasonography

BloodB

1 week



European Journal of Applied Physiology 

1 3

insulin resistance, the homeostasis model assessment of 
insulin resistance (HOMA-IR) was used (Matthews et al. 
1985).

Ultrasonography

Before EMS training, ultrasonography measurement was 
done twice with an interval of approximately one week 
to test reliability between measurements. In the middle 
of the EMS training period and 12 weeks and 24 weeks 
after the EMS training, ultrasonography measurement was 
performed twice at each scan location. Measurement and 
analysis were performed according to the previous study 
(Hioki et al. 2020). All participants refrained from par-
ticipating in intense sports causing fatigue to remain for 
2 days before ultrasonography measurement.

B-mode ultrasonography scanning was performed using 
a LOGUQ e V2 (GE Healthcare, Japan) by a single inves-
tigator (MH). System parameters were set as follows: fre-
quency, 8.0 MHz; gain, 80 dB; and depth, 7 cm. All scans 
were made in the transverse plane with a linear transducer. 
Participants were measured in the dorsal position with the 
knee fully extended and relaxed. Ultrasonographic images 
of the lateral (vastus lateralis and vastus intermedius of 
the lateral side) and anterior (rectus femoris and vastus 
intermedius of the anterior side) sites were obtained at 
the mid-thigh between the greater trochanter and the lat-
eral condyle of the femur. Five images were collected and 
stored in the ultrasonographic device in DICOM format for 
future analysis. All ultrasonography images were analyzed 
using Image J software (version 1.51; National Institutes 
of Health, Bethesda, MD).

Intramuscular fat measurement by echo intensity

Intramuscular fat content was estimated as an index based 
on ultrasonography echo intensity, similar to previous 
studies (Hioki et al. 2020, 2021). A region of interest was 
selected in the image of each vastus lateralis and rectus 
femoris, including as much of the muscle as possible, and 
bone and surrounding fascia were excluded. To decrease 
noise in the region of interest, a smoothing function was 
applied. The mean echo intensity of the region of inter-
est was calculated (8-bit resolution, resulting in a value 
between 0 (black) and 255 (white). Mean echo intensity 
within the region of interest in five images was meas-
ured for each vastus lateralis and rectus femoris, and five 
images with the highest and lowest echo intensity val-
ues were excluded to minimize variations resulting from 
technical errors. The echo intensity of the three remaining 
images was averaged for future analysis.

Muscle and subcutaneous thicknesses

Muscle and subcutaneous tissue thicknesses were meas-
ured with electronic calipers placed at the middle of the 
ultrasound image using Image J. Muscle thickness of the 
lateral (vastus lateralis and vastus intermedius of the lat-
eral) and anterior (rectus femoris and vastus intermedius 
of the anterior) sites was measured between the superficial 
and ventral muscle fascia, respectively. Subcutaneous tis-
sue thickness was measured between the uppermost part 
of the skin and the superficial fascia of the muscle at the 
lateral and anterior sites, respectively. Lateral (vastus lat-
eralis and vastus intermedius of the lateral) and anterior 
(rectus femoris and vastus intermedius of the anterior) 
muscle thicknesses were estimated. Three images were 
scanned for each lateral and anterior site of the thigh, and 
these images were averaged for future analysis.

Muscle strength

All participants were familiarized with muscle voluntary 
contraction (MVC) at the laboratory at least 1 week before 
the pre-MVC testing. MVC during isometric knee exten-
sion was measured at the pre-EMS and post-EMS train-
ing sessions using a custom-made dynamometer (Takei 
Scientific Instruments Co. Ltd.), as previously described 
(Hioki et al. 2021). The hip and thigh were strapped to 
the dynamometer, and the knee joint was flexed at 90° 
(0° = full extended). MVC tests of the right leg were 
measured three or four times at approximately 2 to 3-min 
intervals. The maximal attempt of two tests of three or 
four tests that yielded the highest force was recorded. Iso-
metric knee extension force was expressed as an absolute 
value (Nm). During the EMS, the EMS-induced isometric 
knee extension force was normalized to the MVC muscle 
strength.

Physical activity levels and dietary habits

Physical activity levels were estimated from the records 
of the three-dimensional ambulatory accelerometer for 
10 days (Lifecorder; Suzuken Co., Nagoya, Japan). Physical 
activity levels are expressed as time and metabolic equiva-
lent × hours, as in previous studies (Kumahara et al. 2004; 
Hioki et al. 2019).

Habitual dietary intake was estimated using a food fre-
quency questionnaire, Ver. 2.0, by a nutritionist (HT). The 
food frequency questionnaire included 29 food and beverage 
items, and cooking methods of 10 series. The questionnaire 
asked about the average intake and frequency of consump-
tion of each food. Five categories were used (almost always, 
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often, sometimes, rarely, or never) to describe consumption 
frequency.

Statistical analysis

Blood biochemical parameter data were compared using 
two-way analysis of variance (ANOVA) with EMS training 
and time between pre-EMS test and post-EMS test in the 
pre- and post-EMS training periods. The effects of EMS 
training on echo intensity or muscle and subcutaneous thick-
nesses and body profiles were assessed by one-way ANOVA. 
When a significant time effect was obtained, Bonferroni sig-
nificant difference post hoc analysis was used to evaluate 
changes between individual time points.

Using the paired Student’s t-test, the chronic effects 
of EMS training on muscle strength and habitual dietary 
intake were assessed between the points before and after 
EMS training.

Ultrasonography measurements were performed twice at 
each scan location. The mean coefficient of variation was 
calculated before EMS training, in the middle of the EMS 
training period (at 6 weeks), and 12 weeks after EMS train-
ing, and another 12 weeks following that (at 24 weeks).

The effect size of EMS training was estimated using 
Cohen’s d as trivial (0–0.19), small (0.2–0.49), medium 
(0.5–0.79), or large (> 0.8) (Cohen 1988). All statistical 
analyses were performed using SPSS version 28.0 software 
(SPSS Inc., Chicago, IL). Data are presented as means ± SD. 
P < 0.05 was used to denote significance.

Results

Table 1 summarizes the participants’ characteristics and 
subcutaneous and muscle thicknesses before EMS train-
ing, in the middle of the EMS training period (at 6 weeks), 
12 weeks after EMS training, and another 12 weeks later (at 
24 weeks). Main effect on height was obtained by ANOVA 
(p < 0.001), and post hoc test showed a significantly decrease 
at 24  weeks compared with that before EMS training 
(p = 0.03).

Table 2 show the acute effects of a single-EMS session 
before and 12 weeks after EMS training. A single-EMS 
session increased glucose and free fatty acid concentra-
tions before EMS training. In contrast, a single-EMS ses-
sion increased only the glucose concentration after EMS 
training. No significant changes in insulin, triglyceride, 

Table 1  Participant characteristics

n = 19 (M/F: 10/9). Value are means ± SD. BMI body mass index. Cohen’s d shows only the chronic effects of EMS training for 12  weeks. 
Because Cohen’s d is similar between pre and 6th weeks, between 6th and 12 weeks, between 12 and 24 weeks after EMS training

Before EMS training After EMS training

pre 6w 12w 24w p d

Age (year) 71.5 ± 5.4
Blood pressure
 Systolic (mmHg) 134.4 ± 16.2 132.3 ± 15.5 130.7 ± 15.8 129.3 ± 14.6 0.41 0.27
 Diastolic (mmHg) 77.6 ± 10.7 76.5 ± 7.5 75.4 ± 11.7 74.2 ± 8.4 0.34 0.27

Body composition
 Height (cm) 160.5 ± 7.8 160.3 ± 7.7 160.3 ± 7.7 160.1 ± 7.8 0.00 0.42
 Weight (kg) 59.3 ± 10.5 59.3 ± 10.8 59.3 ± 10.7 59.4 ± 10.6 0.74 0.01
 BMI (kg/m2) 22.9 ± 2.8 22.9 ± 3.0 23.0 ± 3.0 23.1 ± 3.0 0.27 0.16
 Waist circumference (cm) 85.9 ± 7.6 84.9 ± 7.6 85.2 ± 8.3 85.1 ± 7.7 0.24 0.28
 Hip circumference (cm) 93.0 ± 5.8 93.9 ± 9.4 92.6 ± 6.3 92.6 ± 6.2 0.34 0.19
 Waist-to-hip ratio 0.9 ± 0.0 0.9 ± 0.1 0.9 ± 0.0 0.9 ± 0.0 0.31 0.08

Subcutaneous thickness
 Lateral site 0.7 ± 0.4 0.7 ± 0.4 0.7 ± 0.4 0.7 ± 0.4 0.04 0.43
 Anterior site 0.8 ± 0.4 0.8 ± 0.4 0.8 ± 0.4 0.8 ± 0.4 0.19 0.09

Muscle thickness
 Vastus lateralis 2.0 ± 0.3 2.0 ± 0.3 2.0 ± 0.3 2.0 ± 0.3 0.18 0.33
 Vastus intermedius of the lateral sites 1.6 ± 0.5 1.5 ± 0.5 1.5 ± 0.5 1.6 ± 0.5 0.13 0.25
 Vastus lateralis + vastus intermedius of the lateral site 3.5 ± 0.7 3.5 ± 0.7 3.5 ± 0.7 3.6 ± 0.7 0.60 0.04
 Rectus femoris 1.2 ± 0.2 1.2 ± 0.3 1.2 ± 0.2 1.2 ± 0.3 0.77 0.00
 Vastus intermedius of the anterior sites 1.1 ± 0.3 1.1 ± 0.4 1.1 ± 0.3 1.1 ± 0.4 0.02 0.28
 Rectus femoris + vastus intermedius of the anterior site 2.3 ± 0.5 2.3 ± 0.5 2.3 ± 0.5 2.3 ± 0.5 0.17 0.15
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interleukin-6 concentrations, or HOMA-IR were seen after 
a single-EMS session, both before and after EMS training.

Table 3 show the chronic effects of EMS training for 
12  weeks on the biochemical profile, habitual dietary 
intake, and muscle strength. EMS training did not cause 
significant changes in biochemical parameters and habitual 
dietary intake. The peak force of isometric knee exten-
sion before and after EMS training was 133.0 ± 43.4 and 
134.1 ± 42.7 Nm, respectively. The EMS-induced peak 
force before and after EMS training corresponded to 
5.2% ± 4.1% (range 0.6–16.7%) and 6.9% ± 4.0% (range 
0.7–14.1%) of MVC, respectively.

The physical activity levels of participants are shown 
in Table 4.

Figure 3 show the effects of EMS training on echo 
intensity in vastus lateralis and rectus femoris. No signifi-
cant changes in echo intensity of the vastus lateralis and 
rectus femoris were seen after EMS training.

Echo intensity was measured by ultrasonography twice 
before EMS training, in the middle of the EMS training 
period (at 6 weeks), 12 weeks after EMS training, and again 
another 12 weeks later (at 24 weeks); echo intensity meas-
urement before EMS training was performed twice with an 
interval of approximately one week. The mean coefficients 
of variation of the first and second measurements were 

Table 2  Acute effects of a single-EMS session on biochemical parameters

n = 19. Value are mean ± SD. HOMA-IR homoeostasis model assessment index, Cohen’s d shows only the acute effects of a single-EMS session 
after EMS training

Before EMS training After EMS training EMS effect Time effect Interaction d

Pre-test Post-test Pre-test Post-test

Glucose (mg/dL) 96.4 ± 11.7 98.8 ± 13.1 95.6 ± 8.9 99.6 ± 10.9 1.00 0.00 0.06 1.04
Insulin (μIU/mL) 5.2 ± 2.3 5.0 ± 2.0 5.3 ± 2.0 5.7 ± 2.8 0.19 0.77 0.22 0.26
Free fatty acid (μEq/L) 523.3 ± 187.0 606.9 ± 185.2 503.5 ± 223.0 554.8 ± 190.8 0.36 0.00 0.41 0.42
Triglyceride (mg/dL) 111.6 ± 47.6 112.3 ± 46.9 112.7 ± 55.2 114.1 ± 55.3 0.86 0.10 0.58 0.37
Interleukin-6 (pg/mL) 1.2 ± 0.8 1.2 ± 0.7 1.3 ± 0.5 1.3 ± 0.6 0.45 0.33 0.75 0.15
HOMA-IR 1.2 ± 0.5 1.2 ± 0.4 1.2 ± 0.5 1.4 ± 0.7 0.14 0.37 0.12 0.41

Table 3  Chronic effects of 
EMS training on biochemical 
parameters, muscle profiles, and 
habitual dietary intake

n = 19. Value are mean ± SD. Results showed pre-data of the single-EMS session performed before and 
after EMS training. HOMA-IR homoeostasis model assessment index

Before EMS training After EMS train-
ing 12 weeks

p d

Biochemistry profiles
 Glucose (mg/dL) 96.4 ± 11.7 95.6 ± 8.9 0.53 0.14
 Insulin (µIU/mL) 5.2 ± 2.3 5.3 ± 2.0 0.81 0.06
 Free fatty acid (µEq/L) 523.3 ± 187.0 503.5 ± 223.0 0.63 0.11
 Triglyceride (mg/dL) 111.6 ± 47.6 112.7 ± 55.2 0.89 0.03
 Interleukin-6 (pg/mL) 1.2 ± 0.8 1.3 ± 0.5 0.41 0.19
 HOMA-IR 1.2 ± 0.5 1.2 ± 0.5 0.86 0.04

Habitual dietary intakes
 Energy (kcal/body weight) 38.2 ± 7.3 39.7 ± 9.2 0.26 0.26
 Carbohydrates (g/body weight) 4.6 ± 0.9 4.8 ± 1.3 0.45 0.17
 Protein (g/body weight) 1.4 ± 0.3 1.5 ± 0.4 0.24 0.27
 Fat (g/body weight) 1.4 ± 0.4 1.5 ± 0.5 0.62 0.11

Muscle profile
 Muscle voluntary contraction (Nm) 133.0 ± 43.4 134.1 ± 42.7 0.69 0.09

Table 4  Physical activity levels

Value are mean ± SD. MET h metabolic equivalent × hours

Physical activity min MET h

Light 58.1 ± 20.9 2.1 ± 0.8
Moderate 20.6 ± 19.0 1.4 ± 1.4
Vigorous 2.4 ± 7.3 0.3 ± 0.8
Total 81.1 ± 32.2 3.76 ± 2.98
Number of steps 7530.8 ± 3583.6 –
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3.2% ± 3.0% in the vastus lateralis and 5.3% ± 4.0% in the 
rectus femoris (before training), 4.0% ± 2.4% in the vastus 
lateralis and 2.3% ± 1.4% in the rectus femoris (6 weeks), 
3.6% ± 2.4% in the vastus lateralis and 2.9% ± 2.3% in the 
rectus femoris (12 weeks), and 3.3% ± 2.4% in the vastus 
lateralis and 4.6% ± 3.7% in the rectus femoris (24 weeks 
after EMS training), respectively.

Cohen’s d showed a chronic effect of EMS training for 
12 weeks on participants’ characteristics and subcutaneous 
and muscle thicknesses (Table 1). Cohen’s d showed the 
acute effects of a single-EMS session after EMS training 
on biochemical parameters (Table 2), as well as chronic 
effects of EMS training on biochemical parameters and 
muscle strength (Table  3). Cohen’s d showed chronic 
effects of EMS training for 12 weeks on echo intensity in 
the vastus lateralis (d = 0.16, p = 0.81) and rectus femoris 
(d = 0.38, p = 0.32).

Supplementary Materials 2 and 3 compare the partici-
pants’ characteristics, physical activity levels, and dietary 
habit characteristics between men and women, respectively.

Discussion

This study examined the acute effects of a single-EMS ses-
sion on biochemical parameters and the chronic effects of 
EMS training for 12 weeks on biochemical parameters and 
echo intensity of the quadriceps femoris in older adults. A 
single-EMS session increased fasting free fatty acid and 
glucose concentrations, but not triglyceride, insulin, inter-
leukin-6, and HOMA-IR. EMS training did not cause sig-
nificant changes in echo intensity-estimated intramuscular 
fat, muscle thickness, muscle strength, or resting/fasting any 
biochemical parameters (free fatty acids, triglycerides, glu-
cose, insulin, interleukin-6, and HOMA-IR). These results 
suggest that a single-EMS session has acute effects on 
increasing serum/plasma lipid and glycolytic metabolism, 
and they suggest that EMS training for 12 weeks did not 
improve intramuscular fat content of the quadriceps femoris 
or biochemical parameters in older adult men and women.

Acute effects of an EMS session on biochemical 
parameters

The magnitude of the increase in muscle lipid and glucose 
uptake is affected by exercise duration and intensity (Rom-
ijn et al. 1993; Egan and Zierath 2013). Egan and Zierath 
(2013) demonstrated that the absolute power output deter-
mines the rate of adenosine triphosphate demand and energy 
expenditure, whereas the relative exercise intensity affects 
the relative contributions of carbohydrate and lipid sources 
and circulating (extramuscular) and intramuscular fuel stores 
to energy provision. Up to 30% maximum oxygen uptake 
 (VO2max), oxidation of lipid sources (mostly plasma free 
fatty acids) accounts for most of the energy provision. The 
lipid oxidation rate increases up to 60–70%  VO2max, after 
which it declines with increases in intensity. As exercise 
intensity increases, the absolute carbohydrate oxidation rate 
(glycolysis system) and its relative contribution to energy 
provision increase. To enable provision of plasma free fatty 
acids to the contracting muscle, adipose tissue lipolysis is 
substantially increased (Jensen 2003). Therefore, plasma 
free fatty acid concentrations increase during exercise, and 
that increase remains for some time. The present results sug-
gest that the EMS protocol increases free fatty acid concen-
trations, namely that an exercise effect was provided.

In the current study, a single-EMS session increased the 
plasma glucose level. This finding contradicts those of our 
previous study (Hioki et al. 2021), in which a single-EMS 
session decreased the plasma glucose concentration. In our 
previous study (Hioki et al. 2021), only two electrodes were 
placed on the vastus lateralis, and the mean EMS-induced 
knee extension (only vastus lateralis) force corresponded 
to 17.4% MVC of the entire quadriceps muscle group (i.e., 
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vastus lateralis, vastus intermedius, vastus medialis, and 
rectus femoris). Since the vastus lateralis volume accounts 
for only 30% of the quadriceps femoris muscles (Akima 
et al. 2001b). Therefore, it is that the EMS intensity pro-
tocol was high-intensity for the vastus lateralis in our pre-
vious study. Based on the above conclusion in the present 
study, care was taken to avoid an EMS intensity that was 
too high because the aim was to enhance lipid metabolism. 
Hence two electrodes were placed on each vastus lateralis 
and vastus medialis and EMS-induced knee extension force 
before and after EMS training corresponded to a mean ± SD 
of 5.2% ± 4.1% (range 1.0–16.7%) and 6.9% ± 4.0% (range 
0.7–14.1%) of MVC, respectively. Contradicting our previ-
ous result, plasma glucose increased after a single-EMS ses-
sion in the present study. According to Suh et al. (Suh et al. 
2007), during exercise, the blood glucose concentration can 
be maintained or increased by release of glucose from the 
liver and kidneys into the blood, as well as by mobilization 
of other fuels that may serve as alternatives.

Chronic effects of EMS training on muscle thickness 
and muscle strength

The EMS training for 12 weeks did not significantly change 
muscle thickness and muscle strength. It is well known that 
EMS is effective, with increases in the muscle fiber type 
II proportion in adults (age range 17–30 years) (Theriault 
et al. 1996) and with increases in fiber type I and II sizes in 
sedentary adults (mean age 26 years) and in active adults 
(mean age 25 years) (Gondin et al. 2011) determined using 
muscle biopsies. Increases in the muscle fiber type II pro-
portion and decreases in the fiber type I proportion in sed-
entary male young adults (mean age 22 years) have also 
been reported (Perez et al. 2002). Moreover, a previous study 
(Caggiano et al. 1994) demonstrated a 9% average increase 
in MVC (torque) levels in older male adults. EMS train-
ing also changes the myosin heavy chain, with decreases in 
myosin heavy chain IId/x (22–28%) and increases in myo-
sin heavy chain I (30–34%), and such changes in muscle 
morphology are accompanied by increased muscle strength 
(Gondin et al. 2011). According to Bickel et al. (Bickel et al. 
2005), a single-EMS session activates mRNA related to 
development or growth in skeletal muscle (i.e., insulin-like 
growth factor binding protein-4, MyoD, myogenin, cyclin 
D1, and p21-Waf1) in young men and women. Activation of 
these mechanisms precedes skeletal muscle growth, result-
ing in the accretion of the proteins necessary to support an 
increase in myofiber size, which is sufficient to stimulate 
molecular-level responses. However, to increase muscle size, 
i.e., muscle hypertrophy, higher EMS intensity (maximum 
tolerance level) is needed (Gondin et al. 2011). Therefore, 
such changes in muscle thickness and strength might not be 
observed in older adults in the present study.

Chronic effects of EMS training on intramuscular fat

In the current study, EMS training did not significantly 
change echo intensity as an index of intramuscular fat. So 
far, many studies have reported that EMS training changed 
oxidative enzymes, i.e., 3-hydroxylacyl-CoA dehydroge-
nase (Gauthier et al. 1992; Theriault et al. 1994) and enoyl 
CoA hydrates (Gondin et al. 2011), which are key enzymes 
of β-oxidation of fatty acids. It is clear that EMS affects 
lipid metabolism in muscle cells. However, in those previ-
ous studies, EMS intensity was comparable at about 50% 
 VO2max when ergocycle exercise was performed for 30 min 
(Gauthier et al. 1992), and muscle force evoked was > 50% 
MVC during EMS. The EMS intensities of previous stud-
ies were likely higher than the EMS intensity in the present 
study. Muscle hypertrophy was accompanied with a decrease 
in intramuscular fat in patients with spinal cord injury, sug-
gesting that muscle hypertrophy could potentially negate the 
deleterious metabolic effects of intramuscular fat (Gorgey 
and Shepherd 2010; Gorgey et al. 2012). In contrast, a recent 
finding showed that increases in intramuscular fat with aging 
are independent of muscle. The effectiveness of EMS may 
differ between muscle in older adults and muscle in patients 
with spinal cord injury. The aim of the present study was 
to clarify whether EMS as home exercise as part of daily 
living in older adults can be used to decrease intramuscu-
lar fat content. The level of EMS intensity was set so that 
participants would not feel distress and could continue safe 
EMS training. Though it is reasonable to expect that EMS 
training of long duration and more sessions would enhance 
lipid metabolism, the present results suggest that EMS train-
ing for 12 weeks did not improve intramuscular fat content 
of the quadriceps femoris or muscle size.

Chronic effects of EMS training on biochemical 
parameters

We speculated that EMS approach on muscle (EMS-induced 
mechanical muscle contraction) enhances lipid metabolism 
in muscle with whole-body lipid metabolism in the older 
adults. Energy in the body is primarily stored as triglyc-
eride in adipose tissue. Free fatty acids are induced rapid 
mobilization into circulation, through triglyceride lipolysis 
and free fatty acid export from adipose tissue (Abdollahi 
et al. 2022). Adams et al. (Adams et al. 1993) reported map 
the pattern of muscle contractile activity evoked by EMS 
and revealed that EMS evoked higher muscle contractile 
activity than voluntary muscle contractile activity. These 
results indicate that EMS-induced muscle contraction uses 
more energy substrate such as free fatty acid than volun-
tary muscle contraction. Earlier, we hypothesized that EMS 
training may decrease fasting/rested free fatty acid concen-
trations. In the present study, lipid metabolism is enhanced 
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by a single-EMS session. The present study results showed 
increases in free fatty acid concentrations after a single-EMS 
session. Such enhancement of lipid metabolism was repeated 
for 12 weeks. However, the present results showed no sig-
nificant fasting/rested free fatty acid (before 523.3 ± 187.0 
µEq/L; after 503.5 ± 223.0 µEq/L) or triglyceride (before 
111.6 ± 47.6 mg/dL; after 112.7 ± 55.2 mg/dL) concentra-
tion changes. Physical activity, exercise, and free fatty acid 
influence on intramyocellular lipid content or intramyocel-
lular metabolism (Boesch et al. 2006). Previously, we have 
researched correlation between fasting/rested serum free 
fatty acid concentration and intramyocellular lipid content 
(Hioki et al. 2016) and correlation between physical activity 
levels and intramyocellular lipid content (Hioki et al. 2019). 
In the results, fasting/rested serum free fatty acid concen-
tration significantly correlated with intramyocellular lipid 
content in the young adults, or daily physical activity level 
significantly and inversely correlated with intramyocellu-
lar lipid content in the young adult. However, in the older 
adults, such correlation did not observe both researches. 
These results suggest that fasting/rested serum free fatty 
acid concentration, and physical activity levels relate to lipid 
metabolism in muscle, and age-related changes in morphol-
ogy, function, or metabolic factors influence intramyocel-
lular metabolism. Namely, lipid metabolism differs between 
older and young adults. Inflexibility lipid metabolism in 
muscle may directly relate to intramuscular fat accumula-
tion. Our results suggest that mechanical muscle contraction 
of EMS not induce decrease in fasting/rested free fatty acid 
concentration in the older adults.

Our results are congruent with the results for obese young 
adults (mean age 30 years; mean body mass index 32 kg/m2; 
n = 5) that showed that EMS intervention did not change 
triglyceride concentrations (Galvan et al. 2022). EMS train-
ing also did not decrease glucose concentrations in the cur-
rent study. The present result does not concur with that of 
Galvan et al. (2022) who reported improvement of glucose 
tolerance after EMS in obese young adults. EMS induces 
muscle contraction; it effectively increases glucose uptake 
via an insulin-independent mechanism in young male adults 
(Hamada et al. 2003). In contrast, glucose concentrations did 
not change after whole-body EMS (single session 20 min; 
6 months) in women ≥ 70 years of age with sarcopenic obe-
sity (Wittmann et al. 2016). Despite whole-body EMS, it 
seems that no significant effect was observed. From a review 
of previous studies, we can suggest that not only EMS, but 
also exercise effects differ between older and young adults. 
It is a fact that aging induces changes in skeletal muscle 
morphology, function, and metabolism (Lexell 1995; Car-
tee et al. 2016; Hioki et al. 2016, 2020). Such age-related 
changes in quality and quantity of muscle might affect 
changes in free fatty acid, triglyceride, and glucose concen-
trations with EMS training. In contrast, point to notice, our 

participants were no-obesity (before EMS training, mean 
body mass index 22.9 kg/m2) in the study. Mean fasting free 
fatty acid, triglyceride, and glucose concentrations were also 
normal at rest. Therefore, our results might be different from 
obese young and older adults (Galvan et al. 2022; Wittmann 
et al. 2016).

Limitations

According to previous studies, EMS training needs to be 
performed for 2–8 h/day, 1–2 sessions/day, for 6–7 days/
week to improve oxidative enzyme function (Gauthier 
et al. 1992; Perez et al. 2002; Theriault et al. 1994, 1996; 
Nuhr et al. 2003). Thigh composition may affect the ampli-
tude of the current needed to evoke dynamic leg extension 
via neuromuscular electrical stimulation (Gorgey et al. 
2015). This indicates that higher amplitude intensity might 
be needed to improve atrophied muscle and intramuscular 
fat accumulation in patients with spinal cord injury. Real-
istically, the level of EMS intensity could not be further 
increased, and having more session time per day was also 
difficult. Therefore, the disagreements in results could 
have been related to differences in protocols, principally 
the duration of the EMS session, the duration of training, 
and stimulation intensity.

Conclusion

The results showed that: (1) the acute effects of a single-
EMS session increased free fatty acid and glucose concen-
tration at fast; (2) EMS training did not significantly change 
echo intensity-estimated intramuscular fat, muscle thick-
ness, muscle strength, or any biochemical parameters at fast 
and rest. These results suggest that a single-EMS session 
enhances serum/plasma lipid and glycolytic metabolism, 
but EMS training for 12 weeks did not improve intramus-
cular fat content of the quadriceps femoris or biochemical 
parameters in older adult men and women. Excessive intra-
muscular fat accumulation may interfere with insulin signal-
ing and increases in serum free fatty acid and triglyceride 
concentrations are also risk factors for metabolic syndrome. 
A strategy to enhance lipid metabolism in muscle contain-
ing an abundance of ectopic adipose tissue in older adults 
is needed. Though exercise would be better, e.g., physical 
activity in daily living, running, walking, or resistance train-
ing, such exercises are difficult for some older adults. EMS 
training may contribute as an alternative for these exercises 
in older adults.

Supplementary Information The online version contains supplemen-
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