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The BMP2 nuclear variant, nBMP2, 
is expressed in mouse hippocampus 
and impacts memory
Ryan D. Cordner1,*, Lindsey N. Friend2,*, Jaime L. Mayo1, Corinne Badgley2, 
Andrew Wallmann2, Conrad N. Stallings1, Peter L. Young1, Darla R. Miles1, Jeffrey G. Edwards2 
& Laura C. Bridgewater1

The novel nuclear protein nBMP2 is synthesized from the BMP2 gene by translational initiation at an 
alternative start codon. We generated a targeted mutant mouse, nBmp2NLStm, in which the nuclear 
localization signal (NLS) was inactivated to prevent nuclear translocation of nBMP2 while still allowing 
the normal synthesis and secretion of the BMP2 growth factor. These mice exhibit abnormal muscle 
function due to defective Ca2+ transport in skeletal muscle. We hypothesized that neurological function, 
which also depends on intracellular Ca2+ transport, could be affected by the loss of nBMP2. Age-
matched nBmp2NLStm and wild type mice were analyzed by immunohistochemistry, behavioral tests, 
and electrophysiology to assess nBMP2 expression and neurological function. Immunohistochemical 
staining of the hippocampus detected nBMP2 in the nuclei of CA1 neurons in wild type but not mutant 
mice, consistent with nBMP2 playing a role in the hippocampus. Mutant mice showed deficits in the 
novel object recognition task, suggesting hippocampal dysfunction. Electrophysiology experiments 
showed that long-term potentiation (LTP) in the hippocampus, which is dependent on intracellular Ca2+ 
transport and is thought to be the cellular equivalent of learning and memory, was impaired. Together, 
these results suggest that nBMP2 in the hippocampus impacts memory formation.

Our group reported the existence of a novel alternative nuclear form of bone morphogenetic protein 2, called 
nBMP21. The conventional form of the protein, BMP2, is a secreted growth factor that affects a wide variety of 
developmental processes including axis formation, central nervous system development, neural crest formation, 
limb patterning, heart and vascular development, skeletal development, and muscle development2–8. The vari-
ant form, nBMP2, is synthesized from an alternative downstream start codon, which eliminates the N-terminal 
endoplasmic reticulum signal peptide and thus prevents the protein from entering the secretory pathway. Instead, 
nBMP2 is translated in the cytoplasm and then translocated to the nucleus by means of an embedded bipartite 
nuclear localization signal (NLS) (Fig. 1)1.

To investigate the function of nBMP2 in the nucleus without disrupting secreted BMP2, we knocked in a 
three-amino acid substitution mutation in the NLS to generate the nBmp2NLStm mouse9. The targeted mutation 
disrupts nuclear localization of nBMP2 while retaining normal secreted BMP2 growth factor synthesis and func-
tion9,10. Homozygous nBmp2NLStm mice are normal in size and morphology. But whereas wild type mice show 
expression of nBMP2 in the nuclei of skeletal muscle myotubes, mutant mice do not. The absence of nBMP2 in 
skeletal muscle nuclei results in slowed relaxation of skeletal muscle after stimulated contractions, consistent with 
impaired re-uptake of Ca2+ from the cytoplasm into the sarcoplasmic reticulum at the end of each contraction 
cycle9. Homozygous nBmp2NLStm mice also show an impaired secondary immune response to systemic bacterial 
infection, which might similarly arise from defective intracellular Ca2+ signaling during the process of immune 
cell activation or differentiation11.

Hippocampal synaptic plasticity, the neurochemical foundation of learning and memory, is also mediated 
by intracellular Ca2+ transport12–15. We hypothesized, therefore, that if nBMP2 was found to be expressed in 
hippocampus of wild type mice, learning and memory could be impaired in nBmp2NLStm mutant mice. 
Immunohistochemistry demonstrated that nBMP2 is indeed expressed in the hippocampus of wild type mice. 
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The novel object recognition task suggested memory impairment in the mutant mice, and electrophysiology 
experiments demonstrated decreased long-term potentiation (LTP). Collectively, these experiments demon-
strated that exclusion of nBMP2 from the nucleus leads to impaired memory in nBmp2NLStm mice.

Results
nBMP2 is expressed in the CA1 region of the hippocampus.  Because intracellular Ca2+ signaling 
in the hippocampus is central to object recognition memory, short- and long-term memory, spatial memory, 
and navigation16–19, we performed immunofluorescence staining on 2-month-old mice to determine whether 
nBMP2 is expressed in the hippocampus. We observed anti-BMP2 antibody staining of nuclei in the hippocam-
pal CA1 pyramidal cell layer in wild type mice (Fig. 2A, top panel) but not mutant mice (Fig. 2A, bottom panel). 
Immunohistochemical staining was quantified by analysis of mean grayscale intensity of the nuclei in each image. 
CA1 cell nuclei from wild type mice showed significantly (p <​ 0.05) greater labeling intensity than nBmp2NLStm 
nuclei (1,814 ±​ 131.9 versus 294.9 ±​ 75 mean grayscale intensity; n =​ 5 and 4 mice, respectively), with nBmp2NL-
Stm nuclei labeling only slightly more intensely than background. In addition, using a cut-off of three times the 
average background pixel intensity to denote positive labeling, we determined that 92.2% of pyramidal cell nuclei 
in wild type mice were positive for nBMP2 compared to 1.5% in nBmp2NLStm mice.

Neuronal projections showed BMP2 staining throughout the CA1 in both wild type and mutant mice, provid-
ing additional evidence that the nBmp2NLStm mutation selectively eliminates only the nuclear variant of BMP2, 
nBMP2.

As a second control, we also performed immunofluorescence staining on GAD67-GFP knock-in mice, which 
express GFP in a large percentage of inhibitory GABAergic hippocampal interneurons20. These results confirmed 
nBMP2 expression in the CA1 pyramidal cell nuclei from a different mouse strain and at a younger age (19 days) 
(Fig. 2B). In addition, these results revealed that 87.2% of GAD67-containing GABA neurons express nBMP2 in 
the nucleus, although their staining intensity was only two-thirds that of pyramidal cell nuclei (1,204 ±​ 68.8 mean 
grayscale intensity; n =​ 4 mice). Preabsorption of the antibody with BMP2 peptide eliminated staining of CA1 
nuclei and neuronal projections in wild type, nBmp2NLStm, and GAD67-GFP mice (not shown).

Novel object recognition is reduced in nBmp2NLStm mice.  The novel object recognition task was 
used to test the ability of nBmp2NLStm mice to identify familiar objects and distinguish them from novel objects21. 
In this task, mice are placed in an arena with two or three familiar objects, allowed time to explore the objects, 
then removed from the arena. They are subsequently placed again into the arena but with one of the now-familiar 
objects having been replaced by a novel object. Mice demonstrate object recognition by spending less time inter-
acting with familiar objects and more time exploring the novel object. These tests revealed that nBmp2NLStm 
mutant mice spent a significantly smaller percentage of their total exploration time on the novel object (p <​ 0.05), 
suggesting decreased recognition of familiar objects (Fig. 3A).

We assessed the spatial memory capabilities of nBmp2NLStm mice compared to wild type mice using the 
Morris water maze22. In this test, mice were placed in a tank filled with opaque water containing an escape plat-
form that was submerged approximately 1 cm below the surface. Four distinct visual cues were place on its sides 
to guide navigation. Mice swam three trials a day for four days, demonstrating decreased latency to the platform 
as they learned its location (the acquisition phase). Escape latency times improved from day 1 to day 4 and were 
not significantly different between wild type and mutant mice (Fig. 3B). On the fifth day, a reversal phase was 
performed in which the escape platform was moved to the opposite side of the tank while visual cues remained 
unmoved, and mice swam three trials. Mutant mice showed a trend toward slower finding of the submerged plat-
form, but differences did not reach significance (Fig. 3C).

Overall locomotor activity.  We previously demonstrated that nBMP2 is expressed in the myonuclei of 
skeletal muscle and that its absence in nBmp2NLStm mice leads to slowed relaxation following stimulated twitch 
contraction, which may predispose mutant mice to muscle cramping during intense muscle activity9. Because 

Figure 1.  nBMP2 is synthesized by translation from a downstream alternative start codon. The BMP2 
preproprotein as it is initially translated into the ER is shown schematically with the ER signal peptide (light 
grey), the propeptide (dark grey), and the mature peptide (black). The downward arrow indicates the site at 
which the BMP2 proprotein undergoes proteolytic cleavage by proprotein convertases in the Golgi to release 
the mature secreted peptide. Initiation at codon 53 (marked) results in cytoplasmic rather than ER translation 
because the ER signal peptide is absent. The protein therefore avoids proteolytic cleave and is directed to the 
nucleus by the bipartite nuclear localization signal (NLS) (key amino acids are in bold). The three amino acids 
(RKR) that were changed to alanines (AAA) to prevent nuclear localization of nBMP2 in the nBmp2NLStm 
mouse are shown.



www.nature.com/scientificreports/

3Scientific Reports | 7:46464 | DOI: 10.1038/srep46464

a muscle-related reduction in overall locomotor activity could potentially skew the results of the novel object 
recognition task and/or the Morris water maze, we assessed overall locomotor activity in wild type and mutant 
mice as follows: In the Morris water maze, swimming velocity was measured during all three trials of the reversal 
phase. No significant differences were observed (Table 1). In the novel object recognition task, the average veloc-
ity of movement and the total distance traveled as mice moved about the arena during the acquisition phase were 
quantified. Again, no significant differences were detected (Table 1). Finally, the marble burying test was used 
to quantify digging activity23. No differences in digging activity were detected (Table 1). Together, these results 
indicate that the differences detected in the novel object recognition task cannot be attributed to differences in 
overall locomotor activity.

Long-term potentiation is reduced in mature nBmp2NLStm mice.  Long-term potentiation (LTP), a 
long-lasting enhancement in glutamatergic neurotransmission between two neurons that can also be induced by 

Figure 2.  nBMP2 is expressed in the nuclei of wild type but not mutant CA1 region hippocampal neurons. 
(A) Brain sections from wild type and nBmp2NLStm mice were stained with fluorescently tagged anti-BMP2 
antibody (red) and nuclei were stained with DAPI (blue). The CA1 region of the hippocampus is shown. High 
magnification insets of the highlighted region illustrate red BMP2 labeling in the nuclei of pyramidal cell 
soma of the stratum pyramidale in wild type mice, which is absent in the nBmp2NLStm mice. BMP2 labeling 
of neuronal projections is present in both wild type and mutant mice, confirming that the targeted mutation 
selectively eliminated only the nuclear variant of the protein. (B) Brain sections from GAD67-GFP fusion 
knock-in mice were stained with fluorescently tagged anti-BMP2 antibody (red). All sections were imaged using 
laser confocal microscopy. Scale bars indicate 100 μ​m. SP: stratum pyramidale; SR: stratum radiatum.
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electrical stimulation ex vivo, is a form of synaptic plasticity thought to be the cellular equivalent of learning and 
memory24. LTP is dependent on Ca2+ signaling15,25,26. In order to measure the capacity for LTP in nBmp2NLStm 
mice compared to wild type mice, hippocampal brain slices were used to record LTP in CA1, the hippocampal 
region where nBMP2 was detected. The CA1 region is involved in spatial memory, object recognition, and other 
types of cognitive function27–29.

Using 3 to 4-week-old wild type and mutant mice, we recorded field excitatory postsynaptic potentials (fEPSP) 
from CA1 pyramidal cells in the stratum radiatum and induced LTP with a theta-burst conditioning stimulus, 
which is a more natural stimulus than tetanus high frequency stimulation. Contrary to our expectation that 

Figure 3.  nBmp2NLStm mice exhibit object memory deficits in the novel object recognition task. (A) 
Six-month-old wild type and mutant mice were tested in the novel object recognition task. Each mouse was 
allowed to explore the open-field arena and its objects for 10 minutes. 90 minutes later, one of the objects was 
replaced with a novel object and each mouse was placed in the arena for 10 more minutes. Results are expressed 
as (time spent interacting with the novel object/total time spent interacting with the novel and familiar 
objects) ×​ 100 ±​ SEM and include the results of 7 different trials. (B,C) Six-month-old wild type and mutant 
mice were tested in the Morris water maze. (B) Acquisition phase: mice were placed in the water maze and were 
allowed a maximum of 60 seconds to find the submerged escape platform. Each acquisition phase day represents 
the mean ±​ SEM of three trials for each mouse in each group (n =​ 14 for wild type, n =​ 16 for mutant). (C) 
Platform reversal phase: on day 5, the position of the escape platform was moved to the opposite quadrant of the 
tank. Mice were placed in each of the other three quadrants and allowed a maximum of 60 seconds to find the 
escape platform. Results are reported as mean ±​ SEM.
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mutant mice would have reduced LTP compared to wild type, there was no significant difference in these young 
mice in any of the post-conditioning 10-minute intervals (p >​ 0.05) (Fig. 4A).

Considering that the behavioral tests were performed on older mice, we repeated the LTP experiments in 3 
to 4-month-old mice. In this population, CA1 LTP was significantly greater in wild type than in mutant mice 
(p <​ 0.05) in all of the post-conditioning 10-minute intervals (Fig. 4B). Therefore, the reduced object recognition 
in nBmp2NLStm mice correlates with reduced LTP, and this LTP deficit develops after the first month of life.

Wild type (n) Mutant (n) P valuee

MWM-1a 12.80 (8) 12.05 (10) 0.751

MWM-2a 13.91 (8) 18.75 (10) 0.203

MWM-3a 13.89 (8) 15.22 (10) 0.614

NOR-velb 4.41 (10) 4.96 (15) 0.442

NOR-distc 1757.58 (10) 1898.64 (10) 0.675

MBT-10d 11.75 (12) 11.25 (12) 0.815

MBT-20d 14.58 (12) 15.33 (12) 0.696

Table 1.   Mutant mice show no differences in overall locomotor activity. a – average swimming velocity 
(cm/sec) in Morris water maze reversal phase trials 1, 2, or 3. b – average velocity of movement (cm/sec) in 
acquisition phase of novel object recognition test. c – total distance traveled (cm) in acquisition phase of novel 
object recognition test. d – number of marbles buried (out of 20) in 10 or 20 minute marble burying test. e – 
T-test analyses of wild type vs. mutant.

Figure 4.  Long-term potentiation (LTP) is reduced in 3 to 4-month-old but not 1-month-old nBmp2NLStm 
mutant compared to wild-type mice. (A) In 1-month-old animals, LTP induced by theta burst (arrow) was not 
significantly different (p >​ 0.05) between nBmp2NLStm (152.1 ±​ 10.2%; n =​ 7 slices from 6 mice) and wild-type 
controls (158.2 ±​ 9.3%; n =​ 12 slices from 9 mice). (B) In 3 to 4-month-old animals, in contrast, LTP induced 
by theta burst (arrow) was significantly different (p <​ 0.05, at all 10 minute intervals post-theta burst) between 
nBmp2NLStm (140.1 ±​ 6.9%; n =​ 12 slices from 7 mice) and wild-type littermate control mice (172 ±​ 8.8%; 
n =​ 14 slices from 7 mice). Values given are for the 10-minute interval from 30–40 minutes post-conditioning. 
Insets in (A,B). Representative averaged excitatory postsynaptic potentials (EPSPs) that are an average of 15 
individual, consecutive traces just before (black) and between 25–30 minutes after theta burst induction (gray) 
for both wild-type littermate and nBmp2NLStm mice. Scale bars: 10 ms, 0.25 mV.
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Discussion
We show in this study that nBMP2 is expressed in the hippocampal CA1 pyramidal cells and that the nBmp2NL-
Stm mouse has reduced hippocampal CA1 pyramidal cell LTP and poorer performance in the novel object recog-
nition task, suggesting impaired object recognition memory, a function that is based in the hippocampus17,19,30–32. 
This data complements and expands our previous report that nBMP2 is expressed in skeletal muscle and that the 
nBmp2NLStm mouse shows anomalies in skeletal muscle contractions that suggest dysregulation of intracellular 
Ca2+ transport9. The importance of Ca2+ transport in hippocampal-based learning and memory formation is 
well documented33–37. For example, treatment of olfactory bulbectomized mice with compounds that increase 
the activity of Ca2+-responsive kinases in the hippocampus improved memory deficits and rescued impaired 
LTP29,38,39. Because an increase in postsynaptic Ca2+ is both necessary and sufficient to induce LTP, our finding 
of impaired hippocampal LTP in the nBmp2NLStm mouse again suggests that Ca2+ handling is disrupted in the 
nBmp2NLStm mouse hippocampus15,40.

The skeletal muscle and hippocampal phenotypes of the nBmp2NLStm mouse are similar to those caused by 
mutations in ryanodine (RyR) receptors, channel proteins that release Ca2+ from intracellular stores in the sarco/
endoplasmic reticulum41,42. For example, ryanodine receptor 3 (RyR3) is expressed in skeletal muscle and in the 
hippocampal CA1 pyramidal cell layer, and RyR3 knockout mice show impairment of skeletal muscle contrac-
tions, spatial learning, and synaptic plasticity (LTP), due to the dysregulation of intracellular Ca2+ transport in 
skeletal muscle and hippocampus43,44. These phenotypic similarities reinforce the implication that nBMP2, like 
RyR, may play a role in intracellular Ca2+ transport in those cells where it is expressed.

Immunohistochemical staining revealed that nBMP2 is expressed not only in the nuclei of hippocampal CA1 
pyramidal cells, but also, to a lesser extent, in the nuclei of hippocampal GABAergic interneurons that are scat-
tered throughout the CA1 layer. The reduced LTP we observed could be caused by impaired glutamatergic signa-
ling at synapses between CA3 Schaffer collaterals and CA1 pyramidal neurons, or alternatively it could be caused 
by enhanced GABAergic signaling from inhibitory neurons. Future studies are needed to settle this question. But 
we predict that because nBMP2 labeling was significantly less intense in GABA cells than in pyramidal cells, the 
effect of nBMP2 on LTP is more likely contributed by pyramidal cells.

One striking finding from this study was that the nBMP2 mutation resulted in reduced hippocampal LTP in 
adult but not in juvenile mice, even though immunohistochemical staining showed nBMP2 expressed in both 
juvenile and adult mouse hippocampus. Therefore, nBMP2 clearly plays a role in the adult hippocampus that 
is independent of development. The hippocampus is known to undergo significant changes during maturation 
from juvenile to adult, including increased expression and altered subcellular localization of plasma membrane 
Ca2+ ATPases (PMCA) and increased acetylcholine levels in the CA1 region45,46. It may be that although nBMP2 
is expressed in juvenile mice, it becomes more critical for intracellular Ca2+ homeostasis as the hippocampus 
matures, accounting for the observation that nBMP2 is required for normal LTP in adult but not juvenile mice. 
Future studies designed to elucidate the molecular pathways linking nBMP2 with intracellular Ca2+ handling 
should shed light on this possibility.

We have demonstrated that LTP is aberrant in adult nBmp2NLStm mice. The mildly impaired object recogni-
tion memory we observed is consistent with the calcium hypothesis of brain aging, which holds that “sustained 
disruption of mechanisms that normally regulate intracellular Ca2+ signaling is pivotal for triggering adverse 
changes in the functioning of neurons”47. Sustained Ca2+ dysregulation in neurons has also been implicated in 
the cognitive decline associated with obesity, diabetes, insulin resistance/metabolic syndrome, and Alzheimer 
disease48–50. Additional studies are needed to fully characterize the mechanistic relationships that link nBMP2 
with hippocampal LTP, but the evidence so far is consistent with our hypothesis that absence of nBMP2 from 
the nucleus leads to dysregulation of intracellular Ca2+ signaling. Once the relevant molecular pathways are fully 
characterized, this mouse may become a useful model for examining some aspects of the calcium hypothesis of 
brain aging and cognitive decline.

Methods
Research animals.  This study was carried out in strict accordance with the recommendations in the Guide 
for the Care and Use of Laboratory Animals by the National Institutes of Health. The protocol was approved by 
the Institutional Animal Care and Use Committee (IACUC) of Brigham Young University (protocols #09-0904 
and #12-0102).

Mice were housed with 5 or fewer animals per cage in a temperature-controlled (21–22 °C) room with a 12:12 
hr light-dark cycle and were fed standard rodent chow and water ad libitum. The nBmp2NLStm mice were con-
structed on a Bl6/129 background, as described9. The homozygous wild type and mutant mice used in this study 
were obtained by breeding heterozygous males and females.

Mice were genotyped by PCR using the following 4 primers simultaneously: forward (GGACACCAG 
GTTAGTGAATCAGAACACAAG) and reverse (CTCTGACCATTATACTTCATGTGCTGGAGTTG), which 
bracket the site of the targeted mutation, and wtforward (CCAAACACAAACAGCGGAAGCG) and mutreverse 
(GGACTTGAGGGCCGCCGC), which bind to the wild type or mutant sequences respectively, at the targeted 
site. The forward and reverse primers produce a 909-bp product from both wild type and mutant template DNA, 
the forward and mutreverse primers produce a 307-bp product from mutant template DNA, and the wtforward 
and reverse primers produce a 634-bp product from wild type template DNA. Cycling conditions were as follows: 
94 °C for 5 min; 94 °C for 20 sec, 68 °C for 30 sec, 70 °C for 40 sec, repeated 30X; 70 °C for 5 min.

Immunohistochemistry.  Immunohistochemistry was performed on brain sections from 2-month-old 
nBmp2NLStm and wild type mice, and on 19-day-old GAD67-GFP knock-in mice20. Mice were anesthetized 
with isoflurane and perfused transcardially with 0.9% NaCl then 4% paraformaldehyde. Brains were removed 
and placed in paraformaldehyde overnight, then cryoprotected in 30% sucrose before being sectioned coronally 
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through the hippocampus at 30 μ​m using a cryostat. Free-floating sections were stored in 1 M PBS pH 7.4 before 
washing in 0.2% triton X in PBS for 30 minutes, a blocking solution of 1% bovine serum albumin and 5% nor-
mal goat serum in PBS for 2 hours, then overnight in anti-BMP2 antibody with a DyLight 650 nm fluorescent 
tag (Novus Biologicals, NBP1-19751C) diluted 1:100 in blocking solution. The following day the sections were 
washed 3 times in 1 M tris buffered saline, pH 7.4. Sections were mounted on non-frosted glass slides (Fisher 
Scientific), rehydrated in an ascending ethanol series, and coverslipped using DAPI Fluormount G (Southern 
Biotech). Images of the CA1 pyramidal cell layer were obtained using an Olympus FluoView FV1000 confocal 
microscope at 20x and 60x. Pictures were taken at the same laser intensity and scanning speed between groups. 
As a control, the antibody was preabsorbed with 10 μ​g/mL BMP2 peptide (Novus Biologicals, NBP1-19751PEP) 
for 24 hours before proceeding through the same protocol.

Quantification of immunohistochemical staining was performed using cellSens software (Olympus). To 
obtain grayscale intensity values for pyramidal cell nuclei, we made areas of interest of cells in the pyramidal 
cell layer using DAPI staining as a guide. While a few GABAergic cells may be included in this complement of 
cells, the vast majority are pyramidal cells. In immunohistochemistry images of GAD67-GPF mice, GABA cells 
were identified by green fluorescence in GFP images. In all images, areas of interest were selected that contained 
nuclear BMP2 without neuropil BMP2 labeling. To compare nBMP2 mean grayscale intensity between slides, 
background intensity levels were determined in locations where labeling was absent and used for normalization 
purposes. Background intensities were also subtracted to obtain the final intensity averages reported. For statis-
tics, average nBMP2 pixel intensity from all cells of a given type in each slide were averaged in order to compare 
to averages for these cells in other slides using an unequal variance t test. Results are reported as the mean ±​ SEM.

Novel object recognition task.  The novel object recognition task21,51,52 was performed in a square 
open-field apparatus (48 cm ×​ 48 cm ×​ 34 cm). A total of 12 wild type and 18 mutant six-month-old male mice 
were used for these experiments. During the acquisition phase, mice were placed in the arena with two or three 
different objects and allowed to explore the objects for 10 minutes, then replaced in home cage. The arena and all 
objects were cleaned thoroughly to remove scent trails. After a period of 90 minutes, mice were returned to the 
same arena except that one of the objects had been replaced with a novel object. Mice were allowed to explore 
for 10 minutes. Noldus EthoVision video tracking and analysis software was used to record trials and measure 
the amount of time each mouse spent interacting with each object (defined as having its nose within 2 cm of 
the object53). Object recognition was calculated as time the mouse spent interacting with the novel object as a 
percentage of time the mouse spent interacting with all novel and familiar objects. This task was repeated seven 
different times on groups of mice ranging from n =​ 3 to n =​ 10, using different objects for each repeat and system-
atically rotating which object was used as the novel object and which was replaced with the novel object within 
each repeat. Results were analyzed using GraphPad Prism software to perform a paired, two-tailed t test of the 
seven trials. P <​ 0.05 was defined as statistical significance. Results were expressed as mean ±​ standard error of 
the mean (SEM).

Morris water maze.  A circular tank (114 cm diameter ×​ 60 cm deep) was filled with water (24 °C) to a depth 
of ~24 cm. The water was made opaque with white non-toxic tempera paint. A circular platform (15 cm diam-
eter ×​ 23 cm tall) was used for the submerged escape platform. Four distinct visual cues were placed around 
the tank. Six-month-old male mice were used for this test, n =​ 14 for wild type and n =​ 16 for mutants. The 
acquisition period consisted of 3 trials per mouse per day, for 4 days. The submerged platform was placed in the 
northwest quadrant of the tank, and mice were released from each of the other three quadrants for their three 
daily trials. The order of release quadrants was rotated each day. Mice were allowed a maximum of 60 seconds to 
find the platform. If a mouse was unable to find the escape platform after 60 seconds, it was led to the platform 
and allowed to remain there for 30 seconds, and escape latency time was recorded as 60 seconds. On the 5th day, 
reversal phase trials were performed in which the escape platform was moved to the southeast quadrant and mice 
were given three trials (with release from each of the other three quadrants) to find the new position of the escape 
platform. Noldus Ethovision video and tracking software was used the record and analyze each trial. Statistical 
analyses were performed using GraphPad Prism software to perform 2-way ANOVA. For acquisition phase days, 
all three trials were averaged. For the reversal day, separate comparisons of genotypes within each trial were per-
formed. Statistical significance was defined as p <​ 0.05. Results were expressed as mean ±​ SEM.

Overall locomotor activity.  Average swimming velocity was measured in the three Morris water maze 
reversal phase trials using Noldus Ethovision software. Average locomotion velocity and total distance traveled 
were measured in the acquisition phase of the novel object recognition task using Noldus Ethovison software. 
Digging and burying activity was measured using the marble burying test as described by Deacon using 20 mar-
bles, with 10 and 20 minute time points23.

Electrophysiological recordings and analysis.  Wild type and nBmp2NLStm age-matched mice that 
were either 3–4 weeks old or 12–17 weeks old were anesthetized using isoflurane and decapitated. The brain 
was rapidly removed, and 400 μ​m thick coronal slices obtained using a Vibratome were stored at room tem-
perature for at least 1 hr on a netting submerged in artificial cerebral spinal fluid (ACSF) containing 119 mM 
NaCl, 26 mM NaHCO3, 2.5 mM KCl, 1.0 mM NaH2PO4, 2.5 mM CaCl2, 1.3 mM MgSO4, and 11 mM glucose, 
saturated with 95% O2/5% CO2 (pH 7.4). Salts for the artificial cerebrospinal fluid were purchased from Sigma, 
Mallinkrodt-Baker or Fisher Scientific.

Slices were transferred to a submerged recording chamber and perfused with oxygenated ACSF (29–31 °C, pH 
7.4) at a flow rate of ~2–3 ml/min for the duration of electrophysiological recordings. Average temperature for 
slice experiments in wild type and mutant mice were both 30 °C and not significantly different from one another. 



www.nature.com/scientificreports/

8Scientific Reports | 7:46464 | DOI: 10.1038/srep46464

The excitatory postsynaptic potentials (EPSPs) generated at the synapse between CA3 and CA1 pyramidal cells in 
response to electrical stimulus were measured. Field EPSPs (fEPSPs) in CA1 were evoked at 0.1 Hz using a bipolar 
stainless steel electrode stimulating CA3 Schaffer collaterals, which was located 500–700 μ​m from a glass capil-
lary recording electrode (~2 Mohms) filled with 1–2 M NaCl, both placed in CA1 stratum radiatum. Electrical 
stimulation intensity of the incoming Schaffer collaterals was adjusted to elicit a fEPSP of approximately 0.5 to 
0.7 mV at the start of each experiment. Stimulus intensity ranged from between 100–200 μ​A for both wild type 
and mutant, suggesting similar AMPA receptor-mediated responses in both. Because maximal responses were 
approximately 1.5 to 2 mV, this means fEPSPs were adjusted to about 30–40% of maximum response. EPSPs were 
amplified using an Axopatch 200B (Molecular Devices), low-pass filtered at 5 kHz and sampled at 10 kHz. Signals 
were digitized using an Axon Digidata 1440 A (Molecular Devices) and input onto a Dell personal computer with 
pClamp 10.2 clampex software (Molecular Devices). LTP was elicited by a theta-burst conditioning stimulus to 
simulate the natural firing patterns in the brain. Two bursts were given 20 seconds apart with each burst consist-
ing of 10 sets of 5 pulses, each pulse lasting 100 μ​sec and applied at 100 Hz, with 200 ms between sets. At the end 
of some experiments the AMPA receptor antagonist CNQX and NMDA receptor antagonist APV were applied 
to ensure evoked EPSPs were glutamatergic. Additional details of the electrophysiological methods have been 
published previously54.

The slope of fEPSPs was calculated using the data analysis program Clampfit 10.2 (Molecular Devices). For 
each individual experiment slopes from 6 stimuli per minute were averaged to create data sets in 1-minute aver-
ages. Next, all fEPSP averaged slopes for each minute were normalized to pre-conditioning fEPSP slope values (a 
baseline period of at least 10 min prior to electrical conditioning). Averages of fEPSP slope values in 10-minute 
intervals throughout post-conditioning were compared between LTP induced in wild type versus nBmp2NLStm 
mice using an unpaired two-tailed t-test and non-parametric Mann-Whitney test, with significance defined as 
p <​ 0.05. All combined data are expressed as the mean ±​ SEM.
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