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Abstract

Extracellular vesicles (EVs) are increasingly recognized as important mediators of intercel-

lular communication that carry protein, lipids, and nucleic acids via the circulation to target

cells whereupon they mediate physiological changes. In pregnancy, EVs are released in

high quantities from the placenta and have been postulated to target multiple cell types,

including those of the vascular and immune systems. However, most studies of pregnancy-

associated EVs have used clinical samples and in vitro models; to date, few studies have

taken advantage of murine models in which pregnancy can be precisely timed and manipu-

lated. In this study, we used a murine model to determine whether the quantity of EVs is

altered during healthy pregnancy and during inflammation-associated preterm birth. To facil-

itate data analysis, we developed a novel software package, tidyNano, an R package that

provides functions to import, clean, and quickly summarize raw data generated by the nano-

particle tracking device, NanoSight (Malvern Panalytical). We also developed shinySIGHT,

a Shiny web application that allows for interactive exploration and visualization of EV data.

In mice, EV concentration in blood increased linearly across pregnancy, with significant

rises at GD14.5 and 17.5 relative to EV concentrations in nonpregnant females. Additionally,

lipopolysaccharide treatment resulted in a significant reduction in circulating EV concentra-

tions relative to vehicle-treated controls at GD16.5 within 4 hours. Use of tidyNano facilitated

rapid analysis of EV data; importantly, this package provides a straightforward framework

by which diverse types of large datasets can be simply and efficiently analyzed, is freely

available under the MIT license, and is hosted on GitHub (https://nguyens7.github.io/
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tidyNano/). Our data highlight the utility of the mouse as a model of EV biology in pregnancy,

and suggest that placental dysfunction is associated with reduced circulating EVs.

Introduction

Extracellular vesicles (EVs) encompass a broad class of membrane-enclosed structures secreted

by cells, and are classified based on their size and subcellular origin. Exosomes, which range

from 40-150nm, arise from the inward budding of late endosomes, and microvesicles, which

range from 100-1000nm, develop as a result of outward budding of the plasma membrane.

Because EVs have the capacity to induce physiological responses in recipient/target cells, they

are of immense interest for many life science disciplines including immunology, cancer biol-

ogy, and medicine [1–4]. Molecular contents of EVs, which include lipids, proteins, and

nucleic acids, serve as the basis for intercellular communication [5]. Indeed, EVs have been

shown to be effective and important in mediating processes including antigen cross-presenta-

tion [6], establishing local ‘niches’ for metastasis of cancer cells [7], delivery of microRNAs for

suppression of gene expression in target tissues [8], and even transfer and subsequent transla-

tion of mRNAs into target cells [9].

Within the context of pregnancy, the conceptus-derived placenta secretes copious amounts

of EVs that are detectable in maternal blood as early as the first trimester in women [10–12].

Humans and mice share in common the hemochorial anatomic arrangement of the placenta,

in which maternal and fetal circulations are separated by only 2 to 4 cellular layers. Impor-

tantly, in both species, the embryo-derived trophoblast is suffused with maternal blood during

much of pregnancy, serving as a surrogate ‘endothelium’ across which maternal nutrients and

fetal waste products are exchanged. This intimacy also allows for the trophoblast to shed large

amounts of EV directly into the maternal circulation. Studies in women have suggested that

placental EVs contribute to critical processes in pregnancy, including vascular development of

the maternal-fetal interface and establishment of maternal immune tolerance to the antigeni-

cally foreign fetus [1,13]. Further, because placental EVs circulate in maternal peripheral

blood, they can serve to provide a noninvasive ‘liquid biopsy’ indicating fetal health in utero;

similar concepts are applied to overall health as a potential diagnostic for cancer [3,7]. The

similarities in placentation between humans and mice highlight the utility of the murine

model to understand the function of pregnancy-associated EVs; surprisingly, however, only a

few recent studies [14,15] have explored the pregnant mouse as a model for placental EV func-

tion, and no studies have yet explored the response of pregnancy-associated EV to inflamma-

tion-induced preterm birth.

Interest in EVs has burgeoned for the above reasons; however, their isolation and analysis

has posed a number of technical challenges. Because of their small size, direct observation and

quantification of isolated EVs require specialized equipment that generates large amounts of

data. One method of measuring the size and concentration of nanoparticles is nanoparticle

tracking analysis (NTA; NanoSight, Malvern Instruments, USA), which makes use of a micro-

fluidic system and laser together with a camera and software to track individual particles, mea-

suring their size and concentration on the basis of Brownian motion [16,17]. However, while

NanoSight provides an effective means of measuring EVs, experiments with more than one

condition require the use of independent spreadsheet software for extraction of raw counts,

treatment information, statistical analysis, and graphical representation. Further, because this

approach necessitates direct manipulation of raw data by the user, it is susceptible to user- or
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software-introduced error [18]. Analysis of large number of samples would benefit from a

computational approach but requires experiment-specific scripts, which are not easily adapt-

able to complex experimental designs or conducive for reproducible research [19, 20].

In this study, we aimed to establish baseline quantities of murine EVs across pregnancy,

and further to determine the effects of inflammation on pregnancy-associated EVs in a model

of preterm birth. In addition, we sought to develop a computational framework to standardize

the process of NTA analysis including data import, organization, visualization, and statistical

analysis.

Materials and methods

Mice and treatments

All experiments were approved by Michigan State University Institutional Animal Care and Use

Committee protocol: 04/18-050-01. Mice (C57Bl/6; Jackson Laboratory, Bar Harbor, ME, USA)

were anesthetized by 3% isoflurane and euthanized by cervical dislocation and subsequent bilat-

eral pneumothorax. Mice were housed in temperature-controlled environments in a 12-hour

light/dark cycle with standard diet and water available ad libitum. Timed matings were per-

formed in 6–8 week old mating pairs, and the presence of a vaginal plug was designated as gesta-

tional day (GD) 0.5. For preterm birth experiments, mated GD16.5 females were injected with

10mg LPS (Salmonella enterica, Sigma-Aldrich, St. Louis, MO, USA) in 100μl PBS or 100μl PBS

(vehicle control) i.p. and sacrificed 4 h later. Following anesthesia with isofluane and oxygen

(2L/min), whole blood was harvested via cardiac puncture using 1.2ml S-Monovette EDTA-con-

taining tubes fitted with a 22-gauge needle (Sarstedt, Newton, NC, USA). Plasma was isolated by

two rounds of centrifugation at 2000 x g for 15 minutes at 4˚C and frozen at -80˚C.

Exosome isolation and validation

Frozen plasma samples were thawed on ice and exosomes were harvested using Total Exosome

Isolation reagent (Thermo Fisher, Burlingame, CA, USA) for plasma following the manufac-

turer’s instructions. Samples were resuspended in 25–50 μl of phosphate buffered saline (PBS)

[Corning, Manassas, VA, USA]. Plasma exosomes were examined by transmission electron

microscopy as previously described [2] (S1 Fig). Briefly, pelleted exosomes were resuspended

with 4% paraformaldehyde in PBS, loaded on formvar-carbon coated grids and counterstained

with 2.5% glutaraldehyde and 0.1% uranyl acetate in PBS, and imaged on a JEOL100 CXII

(JEOL, Peabody, MA, USA).

NanoSight analysis

Nanoparticle tracking analysis was performed on a NanoSight NS300 (Malvern Panalytical,

Westborough, MA, USA) equipped with a 488nm excitation laser and an automated syringe

sampler. Plasma EV samples were diluted 1:125–1:500 in PBS and loaded into 1ml syringes

with the flow rate set to 50 and the operator blinded to sample identity. Diluted samples were

measured by two separate injections, each by three 30-second videos. Measurements were

recorded at camera level 11 and detection threshold of 4. Experiment summary CSV files gen-

erated by NTA software v3.2 and used for computational analysis and development of

software.

tidyNano software development

Fig 1 summarizes the core functions of tidyNano, which serve to simplify importation of raw

NanoSight data into a data frame suitable for rapid computational analysis in the R

tidyNano: A computational framework for analyzing and visualizing nanoparticle data in R
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environment. To this end, tidyNano rearranges data into a ‘tidy’ format in which observations

are represented in rows and variables in a single column, rearranging the data from the canon-

ical ‘wide’ format (provided by NTA software), to the ‘long’ format that is characteristic of

‘tidy’ data (Figs 2, 3A and 3B) [21], and conducive for manipulation with the dplyr package

[22], visualization with the ggpplot2 package [23], and computation with base R statistics [24]

(Fig 1). tidyNano also parses out sample information and performs back calculations to

account for sample dilution during NTA measurement. Once in this ‘tidy’ format, tidyNano

provides functions to summarize data and calculate statistics that are immediately suitable for

further analysis visualization with ggplot2 and/or shinySIGHT, as described below (Fig 1).

Functions within tidyNano make use of dplyr and tidyr packages to transform and aggregate

data, allowing each tidyNano output to be compatible with a wide variety of R packages and

suitable for recent changes in visualization paradigms [22,23,25,26].

Data import and cleaning. TidyNano provides nanoimport() and nanocombine() func-

tions to import individual NTA experiment files or combine multiple experiment files into a

single data frame within the R environment. Both functions determine NTA software versions

and import raw tabular data, and can accommodate user-specified NTA parameters including

bin widths and particle ranges. The functions automatically determine the number of samples

in an NTA experiment, extract sample names and particle counts for each sample, and return

a single data frame. To do this, the nanotidy() function uses the gather() function from the

tidyr package to convert the data from ‘wide’ to ‘long’ format, i.e., the condensing of individual

sample columns into key-value pairs [21]. The function then splits the sample column into

multiple columns based on user-specified names, and performs back calculations to determine

the true count of particles in the original sample. Finally, the column headers are converted to

the correct class (e.g., categorical factor or numeric) (Fig 2).

Data summarization. The nanolyze() function calculates summary statistics by group

and generates a data frame that includes the number of samples within groups, mean, standard

deviation, and standard error. Further, it calculates a wide variety of statistics such as technical

and biological replicate means or differences between other experimental conditions. Nano-

lyze() contains arguments for specifying prefixes to summary statistic columns which allows

for the function to be used sequentially to average replicates such as technical, biological, and

group/treatment replicates. Each iteration of Nanolyze returns a visualizable tidy data frame

(Fig 2). The nanocount() function allows for rapid calculation of the total sum of particles

within groups of samples and can be combined with existing functions such as filter() to subset

data.

Data visualization and statistical analysis. We also developed shinySIGHT, a web appli-

cation built within the R shiny framework that allows the user to upload, interact with, and

visualize the NanoSight data without needing to program. shinySIGHT facilitates dynamic

exploration of NTA data and can provide an understanding of particle size distribution and

Fig 1. Schema of tidyNano framework. tidyNano (purple) is designed to facilitate the process of importing and

formatting data into a tidy format, such that the data are compatible with existing visualization and statistical packages

(cyan).

https://doi.org/10.1371/journal.pone.0218270.g001
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concentration with user-adjustable sliders to specify particle size ranges (Fig 2). shinySIGHT is

available within the tidyNano package and can be run locally by using the shinySIGHT()

command.

Results

To demonstrate the utility of the package, we used tidyNano to analyze three NanoSight data-

sets. The first set consisted NanoSight data from polystyrene fluorescent and non-fluorescent

bead standards (S2 Fig) and a second set consisted of peripheral exosomes from C57Bl/6

female mice across six time points of pregnancy. The third dataset consisted of peripheral exo-

some data from a lipopolysaccharide (LPS) model of preterm birth in GD16.5 C57 Bl/6 mice.

Fig 2. Example workflow of tidyNano for analysis of NTA data. Core functions of tidyNano (violet) are to facilitate extraction, formatting and aggregation of NTA

data. Following data import, tidyNano functions can be easily visualized using existing packages such as ggplot2 or with the interactive web application shinySIGHT.

https://doi.org/10.1371/journal.pone.0218270.g002
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Data import and cleaning

To demonstrate the nanotidy() function, we imported raw NTA data from a dataset of murine

plasma exosomes from a preterm birth model of pregnancy. We used nanoimport() to import

NTA data into R which worked by extracting column headers and individual particle counts

and combined them into a large data frame (S3 Fig). If desired, NTA data can also be cleaned

manually by the user in spreadsheet software such as Excel, as was done with the murine preg-

nancy time course exosome dataset (Fig 3A). Next, nanotidy() was used to reshape the data

into a key-value pairs such that the individual samples and values were condensed into single

columns resulting in the conversion from ‘wide’ to ‘long’ format in an intermediate step (Fig

3B). Nanotidy() then parsed the ‘Sample’ column into individual (user-specified) columns and

performed back-calculations to obtain a ‘True_count’ column containing the corrected count

values (Fig 3C). The output of nanotidy() resulted in a tidy data frame that could be summa-

rized, visualized or manipulated for further analysis (Figs 1 and 2).

Data summarization

To study the concentration of peripheral exosomes in murine pregnancy, we sampled blood

from 6 experimental groups (nonpregnant, four time points of gestation corresponding to dif-

ferent embryonic developmental stages, and one postpartum) (n = 5-7/group). From each

experimental group, three technical replicates, and two injection replicates were measured,

resulting in 222 distinct measurements (S4 Fig). Nanolyze() was used to average the technical

and injection replicates within each biological replicate, resulting in a data frame that was suit-

able for plotting (S5 and S6 Fig). To demonstrate sequential use of nanolyze(), we calculated

Fig 3. Data import and reformatting with nanoimport() and nanotidy(). (A) Output from nanoimport() or

manually-cleaned NTA data. (B) Intermediate step of nanotidy() function which converts data from ‘wide’ to ‘long’

format, generating tidy data that can be easily filtered to isolate individual sample values. (C) Finalized output from

nanotidy() function which separates the ‘Sample’ column into user-specified columns. (D) Representative visualization

of technical replicates of nanoimport() output which includes multiple sample injections from one sample with

ggplot2, lines represent technical replicate measurements.

https://doi.org/10.1371/journal.pone.0218270.g003
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averages of technical replicates from two separate injections of the same dilution (S5 Fig, Fig

4A). Nanolyze() was then repeated sequentially to determine the mean exosome concentration

between biological replicates using data in Fig 4A as input (Fig 4B). This was possible due to

the name argument, which allows custom naming of the column headers by users, and para-

m_var argument, which specifies the column on which to perform the calculation. We then

used nanocount() (data in Fig 4A) to determine the total concentration of particles within

each biological replicate, resulting in a data frame that could be plotted.

Visualization

Each tidyNano function described above returns a data frame conducive for flexible down-

stream graphical representation. In the examples above, we created all plots from nanolyzed

data using ggplot2. Further, we developed an R Shiny web application, shinySIGHT, that facili-

tates NTA data visualization, interactive exploration, and interpretation, and may be particu-

larly practical for users who are less experienced in computer programming. To this end, after

importing and tidying the murine exosome time course data with nanoimport() and nanotidy

(), respectively, we used the nanosave() function to create a .Rds file. We then used the shiny-

SIGHT() function to launch shinySIGHT, and imported the .Rds file. This allowed interactive

visualization of NTA data from the preterm birth data without needing to be explicitly coded

(Fig 5). A detailed vignette outlining how to use shinySIGHT is available at https://nguyens7.

github.io/tidyNano/articles/tidyNano.html#tidynano-vignette.

If desired, technical and injection replicates (S5 Fig) and/or individual samples (Fig 3D)

may be visualized using shinySIGHT (not shown). Summarization steps from each time point

across gestation was examined by line graph using ggplot2, and demonstrated mean exosome

concentration of each animal split by gestational time point (Fig 4A) as well as mean concen-

tration of biological replicates (Fig 4B). After plotting mean concentration of individual repli-

cates with nanocount(), total exosome concentration was plotted to determine the variations

in exosome concentrations across gestation (Fig 6B).

Statistical analysis

We used nanoShapiro() to determine the normality of the murine exosome dataset, which

returns a data frame with suggestions for the appropriate statistical test (Fig 6C). Next, we used

existing base R statistical packages [24] to run an ANOVA on our samples to compare total

exosome count across gestational days using data in Fig 6A. The result of the ANOVA sug-

gested that there were significant differences in exosome concentrations across gestational age

(p< 0.001) (Fig 6D). We then utilized the nanoTukey() function to run a Tukey post-hoc test,

which returned a tidy data frame of pair-wise comparisons of exosome concentrations (Fig

6E).

Effects of gestation day and inflammation on circulating EV

concentrations

Development of the nanoTidy package enabled rapid analysis of the changes in circulating

EVs across gestation (Fig 6B) and following LPS treatment (Fig 7). Maternal plasma EV rose

linearly with advancing gestational age, peaking at GD14.5 and corresponding with placental

mass (S7 Fig). EV concentrations were significantly higher (p< 0.05) between non-pregnant

and GD14.5, non-pregnant and GD17.5, and trends (p < 0.1) towards an increase between

GD5.5 and GD14.5. Likewise, there was a trend towards reduction in circulating EVs between

GD14.5 and 1 day postpartum. Further, EV concentrations at GD5.5 and 10.5 were intermedi-

ate between those of nonpregnancy and GD14.5 and 17.5.
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Administration of 10μg LPS i.p. in GD16.5 mice resulted in wholesale fetal death as indi-

cated by hemorrhagic implantation sites, as early as 4 hours post-treatment and indicative of

impending preterm delivery. This was associated with a rapid and significant decrease circulat-

ing EV concentration (p< 0.0017) (Fig 7).

Discussion

In this study, we quantified the murine plasma EVs across normal gestation, as well as in a

model of inflammation-induced preterm birth. The principle findings were that plasma EVs

concentrations increased with advancing gestational age in mice in comparison to nonpreg-

nant females, and that LPS-induced fetal loss was associated with a striking reduction in circu-

lating EV. Additionally, we report a novel pipeline in the R platform for rapid exploration and

visualization of data generated from NanoSight analysis of EVs.

In pregnant females, plasma EV concentrations rose progressively and were highest during

the latter stages of gestation, reaching a maximum at GD14-17. This finding is consistent with

both a recent report of EV across gestation in mice and with reports that EVs are highest dur-

ing the third trimester of human pregnancy [14,27]. Additionally, mean plasma EV concentra-

tions at GD5.5 and 10.5 rose to intermediate concentrations levels between those of

nonpregnancy and GD14.5, reminiscent of increases in circulating EV observed during the

first trimester of human pregnancy [27]. This may reflect heightened release of maternal,

rather than placental, EVs, as neither the first trimester of human pregnancy nor the first half

Fig 4. Multiparameter summary statistics and visualization. (A) Output from nanolyze() which calculates mean,

standard deviation, and standard error within specified groups. Corresponding line graph of exosome concentration as

a function of size, split by gestational age, different colored lines within each group represent a single biological

replicate. (B) Summarization of biological replicate data from nanolyze() of 3(A) data. Corresponding line graph

depicting mean exosome concentration of biological replicates as a function of size, grey area surrounding lines

represent standard error of the mean.

https://doi.org/10.1371/journal.pone.0218270.g004
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of murine pregnancy is characterized by established maternal blood flow to the placenta. Fac-

tors regulating an early pregnancy-associated increase in EV are unknown; hormones from

the conceptus and embryo are already very high at these stages, and may induce systemic–

Fig 5. Interactive data manipulation and visualization with shinySIGHT web application. shinySIGHT allows

users to upload tidyNano data to visualize and manipulate data using a graphical user interface. shinySIGHT

automatically generates plots from user uploaded data as well as displays the underlying data frames that make up the

visualizations.

https://doi.org/10.1371/journal.pone.0218270.g005

Fig 6. Calculation of extracellular vesicle counts and statistics with nanocount(), nanoShapiro() and nanoTukey().

(A) nanocount() function determines the total concentration of particles. (B) Boxplot of murine peripheral exosomes

across pregnancy, each point represents an individual biological replicate. (C) nanoShapiro() function determines

Gaussian distribution of data. (D) ANOVA output generated from nanocount of data frame in (A). (E) nanoTukey()

output of pair-wise Tukey post hoc analysis comparing extracellular vesicle concentration across gestation.

https://doi.org/10.1371/journal.pone.0218270.g006
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possibly vascular–release of maternal EVs. Early rises in circulating EV during pregnancy may

reflect a mechanism that controls systemic changes in the mother in preparation for her own

dramatic physiological adaptations to pregnancy and/or her accommodation of rapid fetal

growth.

EV concentrations tended (p = 0.076) to drop rapidly at one day postpartum from the high-

est values at GD14. These data are also in line with rapid clearance of placental EVs from the

circulation of women following birth [10]. Changes in exosome content during late gestation

have been suggested to contribute to parturition in mice, due in particular to a progressive

increase in EVs carrying proinflammatory mediators [14]. Alterations in the EV microRNA

profile towards late gestation were also observed in women, and further changes occurred in

preterm birth [28]. Interestingly, we observed a striking reduction in circulating EV concen-

trations following LPS administration into pregnant dams, modeling infection-induced pre-

term birth. This reduction in peripheral exosomes may reflect acute placental dysfunction and

thus placental EV secretion. In humans, peripheral EVs increase in pre-eclampsia, however no

quantitative differences were observed between normal term and spontaneous preterm birth

[28–30]. Time of sample collection relative to onset of preterm birth symptoms as well as vari-

able etiology of preterm birth in human clinical samples may explain differences observed in

our study. It also remains possible, and even likely, that inflammation-induced preterm birth

in mice alters EV cargo as in women. Ongoing studies are addressing this possibility.

In addition to our experimental findings, we developed a computational framework, tidy-

Nano, in the R platform that facilitates analysis of data generated by NanoSight. Following

sample measurement, the NanoSight software generates a PDF report that includes a line

graph depicting size distribution and particle concentration, as well as summary statistics

Fig 7. Peripheral exosome concentration of GD16.5 mice treated with 10ug LPS. Plasma samples were collected 4 h

following i.p. injection of phosphate buffered saline (PBS) or 10μg LPS. Each point represents a biological replicate.

Welch’s t-test.

https://doi.org/10.1371/journal.pone.0218270.g007
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including mean, median, and mode size of the EVs (S8 Fig). For downstream analysis, includ-

ing combinatorial analysis of multiple datasets within a single experiment, users can access the

raw NanoSight data, which includes particle counts and size, as well as user-defined acquisi-

tion parameters. However, experiments typically consist of multiple conditions, and require

the use of independent spreadsheet software (e.g., Microsoft Excel). Although spreadsheets

can facilitate this by providing intuitive processing through a point-and-click interface, the

requirement for users to directly interact with raw data is a major disadvantage as it is tedious

and increases the chances for user-introduced error [18]. Further, Excel itself has been known

to inadvertently change underlying raw data (e.g., the gene name OCT4 can be converted to

the date 10–04), which can also become problematic for downstream analysis [18,31,32].

Spreadsheet software is also limited to user-specific pipelines, cannot be easily expanded to

accommodate multiparameter experiments, and the work and time required to analyze data

typically increases linearly with added data.

To develop software that avoids these pitfalls, we took advantage of a recent paradigm in

computational data analysis known as data ‘tidying’, which has become increasingly popular

due to its consistent format that is amenable to rapid data exploration and analysis [21]. Tidy

data is organized into a format such that observations are represented in rows and variables in

a single column, which allows for subsetting, statistical calculation, and visualization of the

data. Several popular packages that accept tidy data have been developed, and allow for effi-

cient rearrangement, manipulation, programming, and visualization of data [22,23,25,26].

TidyNano employs a similar strategy, allowing users to quickly import and transform nano-

particle data into a ‘tidy’ format. We showed here that this software was able to efficiently pro-

cess and analyze large sets of biological data. We also created an R Shiny web application,

shinySIGHT, for further exploration of the data using a graphical user interface that can facili-

tate the process of inspecting and visualizing data without requiring the user to know how to

code.

In summary, the present study reveals changes in EV concentrations across gestation and

in a model of inflammation-induced preterm birth, and describes a novel software package

that provides a framework for analyzing NTA data by performing functions that address the

key components of data analysis: import and cleaning, summarization, visualization, and sta-

tistical calculation. TidyNano, which will be updated to accommodate future NanoSight mod-

els and NTA software, is an open source package developed in R, hosted on GitHub (https://

github.com/nguyens7/tidyNano), and is freely available under the MIT license. Data, support-

ing documentation, and vignettes can be accessed at the package website (https://nguyens7.

github.io/tidyNano/). TidyNano summarization functions are general purpose and can be

adapted to analyze other tidy data, including non-nanoparticle data.

Supporting information

S1 Fig. Transmission electron microscopy of isolated exosomes. Representative electron

micrographs of plasma exosomes isolated by Total Exosome Isolation reagent of (A) non-preg-

nant and (B, C) GD14.5 exosomes. Scale bar represents 100nm.

(TIF)

S2 Fig. Polystyrene bead data analysis. Sample workflow of importing data into R using tidy-

Nano functions.

(TIF)
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S3 Fig. NTA data import with nanotidy(). Raw count data from NTA .csv files can be

extracted and imported into the R environment with the nanotidy() function.

(TIF)

S4 Fig. Schema of experimental design. Each plasma exosome sample was diluted, separated

into two separate syringes, and was measured by NanoSight through recording of three 30-sec-

ond videos.

(TIF)

S5 Fig. Visualization of samples with technical replicate data. Faceted plot of plasma exo-

some size and particle concentration of all samples (n = 76) in experimental study where each

sample was tested twice with three technical replicates.

(TIF)

S6 Fig. Visualization of samples with nanolyze(). Each summary output of the nanolyze()

aggregation function can be visualized. (A) Plot of sample mean particle concentration from

three technical replicate measurements (n = 76). (B) Plot of mean injection data from two

syringe injection measurements (n = 76).

(TIF)

S7 Fig. Placental mass across gestation. Placental mass across gestation in WT mated C57B/6

mice. Points represent individual placentas.

(TIF)

S8 Fig. Sample NTA summary PDF file.

(PDF)
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