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Temporal control of neuronal differ-
entiation is critical to produce a

complete and fully functional nervous
system. Loss of the precise temporal con-
trol of neuronal cell fate can lead to
defects in cognitive development and to
disorders such as epilepsy and autism.
Mechanistic target of rapamycin
(mTOR) is a large serine/threonine
kinase that acts as a crucial sensor of cel-
lular homeostasis. mTOR signaling has
recently emerged as a key regulator of
neurogenesis. However, the mechanism
by which mTOR regulates neurogenesis
is poorly understood. In constrast to
other functions of the pathway,
‘neurogenic mTOR pathway factors’
have not previously been identified. We
have very recently used Drosophila as a
model system to identify the gene
unkempt as the first component of the
mTOR pathway regulating neuronal dif-
ferentiation. Our study demonstrates
that specific adaptor proteins exist that
channel mTOR signaling toward the reg-
ulation of neuronal cell fate. In this Com-
mentary we discuss the role of mTOR
signaling in neurogenesis and the signifi-
cance of these findings in advancing our
understanding of the mechanism by
which mTOR signaling controls neuro-
nal differentiation.

The mature human brain contains
around 100 billion neurons that are gener-
ated, migrate and differentiate during pre-
natal development. Defects in
neurogenesis lead to epilepsy, autism and
other common neurological disorders. To
elucidate the complexity of neurogenesis
we need to identify key genes and mole-
cules that regulate the generation and

differentiation of neurons. This knowl-
edge will also lead to breakthroughs in the
understanding and treatment of neurolog-
ical disease.

Mechanistic target of rapamycin
(mTOR) is a large serine/threonine kinase
that forms 2 complexes (mTORC1 and
mTORC2) that are highly conserved and
regulated by upstream signals including
insulin receptor (InR)/insulin like growth
factor signaling, cytosolic ATP, oxygen
and amino acids.1 mTOR was originally
identified in budding yeast in a genetic
screen for mutations conferring resistance
to the immunosuppressive macrolide
rapamycin.2 mTOR was subsequently
shown to be a key regulator of growth
control in yeast, Drosophila and mam-
mals.29 The potency of the mTOR path-
way as a regulator of growth comes from
the direct control of translation and hence
protein synthesis. In recent years mTOR
signaling has been shown to control a
number of additional fundamental cellular
processes including energy metabolism,
autophagy, transcription, cytoskeletal
dynamics and lipid synthesis.4

Using the developing Drosophila eye as
a model system, we were the first to show
that the InR/mTOR pathway is a key reg-
ulator of neuronal differentiation.5-7 In
this context the mTOR pathway tempo-
rally regulates the differentiation of 3 of
the 8 photoreceptors and the cone cells
that constitute each ommatidium (facet)
of the fly eye (Fig. 1). mTOR signaling
has subsequently been shown to play key
roles in the genesis, migration and differ-
entiation of neural progenitor cells in the
mammalian nervous system.8-13 Inhibi-
tion of mTOR signaling in Disc1 mutant
mice, a mutation associated with psychiat-
ric illness in humans, ameliorated the
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behavioral phenotypes in this model.14

Furthermore, activation of mTOR signal-
ing partially rescued the neuronal cell
death phenotype caused by loss of the api-
cal complex protein Pals1.15 The domi-
nant genetic disorder Tuberous Sclerosis
Complex (TSC), whose features include
epilepsy and autism, is caused by hyperac-
tivation of the mTOR pathway.16 mTOR
signaling has also been shown to be acti-
vated in animal models of epilepsy and in
human cortical dysplasia.17-19

mTOR signaling clearly plays a key
role in neural development and neurologi-
cal disease but, in contrast to other func-
tions of this pathway, the mechanism by
which mTOR regulates neurogenesis is

unclear. Moreover, since none of the pre-
viously identified downstream effectors of
mTOR have direct neurogenic roles, it
cannot be assumed a priori that there is a
specific mTOR pathway neurogenic
mechanism. It is conceivable that the abil-
ity of mTOR signaling to regulate neuro-
genesis may be an indirect consequence of
its ability to modulate protein synthesis,
for example.

With these questions in mind we
employed a genetic screen in Drosophila to
identify putative downstream components
of the mTOR pathway that regulate pho-
toreceptor differentiation.

Through this screen we recently identi-
fied the gene unkempt (unk) as a novel

negative regulator of photoreceptor differ-
entiation acting downstream of mTORC1
(Fig. 2).20 Unk is a conserved zinc finger/
RING domain protein (Fig. 3), originally
identified in Drosophila,21 whose function
in mammals is unknown (but see below).
Unk acts together with its binding partner
headcase (Hdc) to negatively regulate the
differentiation of 3 of the 8 photorecep-
tors in the developing ommatidium, as
well as non-neuronal cone cells (Fig. 1).
Interestingly, neither Unk nor Hdc regu-
late growth and so the Unk/Hdc complex
represents the point of divergence in the
mTOR pathway where neuronal differen-
tiation is uncoupled from growth control
(Fig. 2).

Our work also suggests that the ability
of Unk to negatively regulate cell fate
comes, in part, from its interaction with
the transcription factor D-Pax2. D-Pax2
is required for cone cell differentiation
during Drosophila eye development.22

Unk physically interacts with D-Pax2 and
negatively regulates D-Pax2 protein levels
in vivo. Unk therefore directly connects
mTOR signaling to a known transcrip-
tional regulator of cell fate (Fig. 2).
D-Pax2 regulates the differentiation of
cone cells, but Unk and mTOR signaling
also control the timing of differentiation
of photoreceptors 1,6 and 7 (Fig. 1), so
there must be additional factors that are
regulated by Unk in these cells (Fig. 2).

Although the identity and phenotype
of Unk as a critical regulator of neuronal
differentiation acting downstream of
mTORC1 is now established, several key
mechanistic questions about the regula-
tion and function of Unk remain: 1.
What is the mechanism by which mTOR
regulates Unk activity? 2. How does Unk
control the levels of interacting proteins
such as D-Pax2? Recently published stud-
ies have provided tantilising clues to these
questions. A quantitative affinity purifica-
tion/mass spectrometry study of the
InR/mTOR interaction proteome in Dro-
sophila Kc167 cells found that Unk physi-
cally interacts with the mTORC1
components mTOR, regulatory-associated
protein of mTOR (raptor), Sin1 and Lst8,
as well as the mTOR substrate Thor (4E-
BP).23 Moreover, the interaction between
mTOR, raptor, Lst8, Thor and Unk was
increased upon activation of the InR

Figure 1. InR/mTOR signaling controls the timing of differentiation of photoreceptors 1,6,7 and
cone cells. Differentiation of the 8 photoreceptor neurons and 4 non-neuronal cone cells (C) in the
developing Drosophila eye begins with the differentiation of photoreceptor 8 posterior to the mor-
phogenetic furrow (MF), followed by photoreceptors 2,5 and photoreceptors 3,4, then subsequently
photoreceptors 1,6,7 and cone cells. InR/mTOR signaling, unk and hdc specifically regulates the tim-
ing of differentiation of photoreceptors 1,6,7 and cone cells (red). Anterior is to the left, dorsal is up.

Figure 2. A model for the regulation of neuronal differentiation by mTOR signaling and Unk.
Upstream signals regulate the TSC complex which acts to negatively regulate the small GTPase
Rheb. When mTOR signaling is active the mTORC1 complex is recruited to the lysosome by the Rag
proteins. We hypothesize that mTORC1 physically interacts with the Unk/Hdc complex and nega-
tively regulates its activity by phosphorylating Unk. Unk/Hdc then negatively regulate D-Pax2 in
cone cells and putative neurogenic factors in photoreceptors 1,6,7 to control their differentiation.
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pathway. This study strongly suggests that
Unk, at least in this context, is a compo-
nent of the mTORC1 complex. Unk has
also been shown to be phosphorylated. A
study that used pooled extracts from insu-
lin stimulated and rapamycin treated Dro-
sophila Kc167 cells identified at least 7
phosphorylated serine residues in the
C-terminal region between the zinc finger
and RING domains of Unk (Fig. 3).24 It
is tempting to speculate that these serines
may be substrates for mTOR. In support
of this idea several of the phospho-serine
residues identified in Unk have proline or
leucine at the C1 position, consistent with
the unique preference for mTOR to phos-
phorylate residues with proline, hydro-
phobic and aromatic residues at the C1
position.25 Moreover, mammalian Unk is
also potentially phosphorylated by
mTORC1 signaling (Fig. 3).25,26

Loss of unk causes an increase in the
levels of Hdc and D-Pax-2 proteins in the
Drosophila developing eye.20 Unk contains
a conserved RING finger domain, charac-
teristic of proteins involved in ubiquitin-
dependent protein degradation. In accor-
dance with this Unk has been shown to be
part of a complex in human cells contain-
ing several ubiquitin conjugating
enzymes.27 Moreover, studies in mamma-
lian cells have demonstrated that Unk
binds to and promotes the ubiquitination
of the chromatin remodelling factor
BAF60b.28 By analogy, we hypothesize
that Drosophila Unk, through direct pro-
tein-protein interaction, promotes the
ubiquitination and degradation of D-Pax2
and potentially other neurogenic factors
(Fig. 2).

Mammalian Unk has very recently
been shown to be a sequence-specific
RNA binding protein.29 Unk binds sev-
eral hundred different mRNA species,
through the recognition of a specific motif

by the zinc finger domain, and negatively
regulates their translation. Unk is strongly
expressed in the developing mammalian
CNS and knock-down of Unk causes
defects in neuronal morphology and
migration. Moreover, the RNA binding
function of Unk is required for the regula-
tion of cell morphology. This study dem-
onstrates that Unk plays a key role in
regulating cell morphology and matura-
tion during mammalian neuronal devel-
opment. Whether this novel function of
Unk is regulated by mTOR signaling in
mammals is not known.

In conclusion, our study demonstrates
that mTOR signaling is coupled to spe-
cific adaptor proteins that channel its
activity toward regulating neuronal differ-
entiation, at least in Drosophila. Future
studies combining protein biochemistry
with structure-function analyses will be
required to fully address crucial mechanis-
tic questions. These studies will further
advance our understanding of the key role
of mTOR signaling in neurogenesis and
potentially provide novel insight into neu-
rological disease.
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