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Background: Surfactant protein D (SP-D) and pulmonary club cell protein 16 (CC-16)

are called “pneumoproteins” and are involved in host defense against oxidative stress,

inflammation, and viral outbreak. This study aimed to determine the predictive value of

these pneumoproteins on the incidence of acute respiratory distress syndrome (ARDS)

or death in patients with coronavirus disease-2019 (COVID-19).

Methods: This retrospective study included 87 patients admitted to an emergency

department. Blood samples were collected on three time points (days 1, 5, and 14

from hospital admission). SP-D and CC-16 serum levels were determined, and univariate

and multivariate analyses considering confounding variables (age, body mass index,

tobacco use, dyspnea, hypertension, diabetes mellitus, neutrophil-to-lymphocyte ratio)

were performed.

Results: Based on the multivariate analysis, SP-D level on D1 was positively and

slightly correlated with subsequent development of ARDS, independent of body mass

index, dyspnea, and diabetes mellitus. CC-16 level on D1 was modestly and positively

correlated with fatal outcome. A rise in SP-D between D1 and D5 and D1 and D14

had a strong negative association with incidence of ARDS. These associations were

independent of tobacco use and neutrophil-to-lymphocyte ratio.

Conclusions: Overall, our data reveal that increase in SP-D levels is a good prognostic

factor for patients with COVID-19, and that initial CC-16 levels correlated with slightly

higher risk of death. SP-D and CC-16 may prove useful to predict outcomes in patients

with COVID-19.

Keywords: COVID-19, club cell 16 protein, surfactant protein D, acute respiratory distress syndrome, biomarker,
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INTRODUCTION

A mature pulmonary epithelium is composed of several types of
cells, such as specialized epithelial cells, goblet cells, basal cells,
neuroendocrine cells, and club cells (also named Clara cells),
to cite a few. These cells are differently distributed along the
respiratory system and play a crucial role in fulfilling respiratory
functions and maintaining the homeostasis of the respiratory
system (1).

Club cells and non-ciliated bronchiolar cells synthetize the
club cell 16 protein (CC-16), also known as uteroglobin,
which is a 15.8-kDa homomeric lung protein encoded by the
secretoglobin family 1A member 1 (SCGB1A1) gene (2–4). This
protein is easily detectable in blood because of its transfer
from the epithelial barrier to the blood stream, and it seems to
be one of the most common proteins in the bronchoalveolar
liquid (2, 4). Through its anti-inflammatory properties, CC-
16 acts as part of the host’s defense against several external
stimuli, such as environmental agents, infections, oxidative
stress, and inflammation (2, 4). CC-16 is, thus, considered
as a useful biomarker for club cell dysfunction (5). Indeed,
naive CC-16 knockout mice present altered lung function,
enhanced remodeling characters, and increased risk of viral
respiratory tract infection, witnessing its anti-inflammatory and
anti-oxidative function (2, 4).

Serum CC-16 levels decrease in different chronic lung
diseases, such as chronic pulmonary obstructive lung disease
(COPD) (6, 7), asthma (8), and chronic exposure to different
toxic agents (9–12), whereas higher CC-16 levels were noticed
in patients with sarcoidosis (5, 13), pulmonary fibrosis (14),
and acute exposure to smoke and toxic agents (15, 16). In
smokers and COPD patients, CC-16 levels are linked to disease
severity, showing a positive correlation with the levels of Forced
Expiratory Volume (FEV1) in both COPD and asthma, and
decreasing especially in patients with asthma COPD overlap
syndrome. Moreover, serum CC-16 levels have been shown
to correlate with lung infiltration in sarcoidosis (5, 13), and
higher CC-16 levels have been found in acute lung injury (17),
suggesting that it could be a marker of lung involvement and
disease severity. Despite existing evidence in several acute and
chronic lung injuries that globally suggests a protective role of
CC-16 in lung parenchyma and lung function (4, 18), there
is still lack of knowledge about the spectrum of its biological
functions, and it is not yet clear whether CC-16 may represent
a useful pathological marker for a lung injury with significant
clinical implications.

Abbreviations: ACE-2, angiotensin converting enzyme – 2; ACEi, angiotensin

converting enzyme inhibitors; ARDS, acute respiratory distress syndrome; BMI,

body mass index; CC-16, club cell secretory protein 16; COPD, chronic pulmonary

obstructive lung disease; COVID-19, coronavirus disease-2019; CRP, C-reactive

protein; CT, computed tomography; ELISA, enzyme-linked immunosorbent assay;

ER, emergency room; FEV1, forced expiratory volume in the first second;

GFR, glomerular filtration rate; PaO2/FIO2, arterial partial pressure of oxygen

to fraction of inspired oxygen; NLR, neutrophil-to-lymphocyte ratio; PCR,

polymerase chain reaction; PEEP, positive end expiratory pressure; PLT, platelet;

PMN, polymorphonuclear leukocytes; SaO2, arterial saturation level of oxygen;

SP-D, surfactant protein D; WBC, white blood count.

Type II pneumocytes are specialized epithelial cells covering
5% of the alveolar surface; they are cuboidal in appearance
and can differentiate into type I pneumocytes following a
lung injury (1, 19). Besides their key role in cellular renewal,
they secrete a surfactant into the surface of alveoli (20)
containing lipids and proteins like surfactant protein D (SP-
D). SP-D is a collagen-containing C-type lectin and member
of the collectin family of proteins; it is involved in pulmonary
innate immunity, displaying anti-inflammatory, and antioxidant
properties. In particular, SP-D facilitates pathogen and apoptotic
cell elimination, acts as amodulator of immune response through
decrease of T cell proliferation and activation, reduces antigen
presentation by macrophages (21–24), and globally assures anti-
viral defenses through stimulation of virus agglutination and
phagocytosis while limiting inflammatory cytokines and ROS
production (22, 25). Structural alterations of SP-D can promote
a proinflammatory state in mouse models of a lung injury
(21): SP-D knockout mice present enhanced lung inflammation,
macrophage activation, and ROS production, together with
declined macrophage phagocytic ability (21, 22, 24).

Serum SP-D levels increase in chronic lung diseases such
as COPD, asthma, idiopathic pulmonary fibrosis, sarcoidosis,
and cystic fibrosis (26). Interestingly, the level of SP-D increase
has recently been shown to correlate to ARDS etiology
(bacterial, viral, and atypical), thus giving a rationale for
molecular phenotyping and individualized treatments in this
syndrome (27).

Acute respiratory distress syndrome (ARDS) is an acute
respiratory system failure generated by non-cardiogenic lung
edema (28, 29).

From a clinical point of view and according to Berlin Criteria,
ARDS is defined as an acute onset of dyspnea associated with
hypoxemia (arterial partial pressure of oxygen to fraction of
inspired oxygen [PaO2/FIO2] < 300 mmHg) and bilateral
infiltrates on chest radiograph, with no evidence of left atrial
hypertension or cardiac failure (28–30). In particular, these
radiological alterations represent ARDS anatomical features
(28, 29), while ARDS immune-related lesions are represented
by increased vascular and epithelial permeability secondary to
overactive host inflammatory response to microbial aggression
(28, 29). Viral and bacterial pneumonia are the most likely
etiologies for ARDS (28, 29). Several studies propose CC-
16 and SP-D as valuable diagnostic and prognostic markers
of acute respiratory distress syndrome (ARDS) (26, 31, 32).
ARDS is a frequent complication of coronavirus disease-
2019 (COVID-19), occurring in up to 33% of hospitalized
patients with SARS-CoV-2 infection (33). This infection,
responsible for the actual COVID-19 pandemic, represents
an ongoing and still evolving health problem without any
approved treatment and controlled mainly by mass vaccination.
The comprehension of this disease is still not complete,
and new biomarkers might be needed to anticipate disease
progression and predict outcomes in infected patients. Thanks
to recent scientific evidence, it is already consolidated that
there is high tropism of SARS-CoV-2 for the respiratory
epithelium, where the virus binds the angiotensin converting
enzyme-2 (ACE-2) receptor on lung cells representing the
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FIGURE 1 | Flow chart of blood samples collected in this study. N, number of

patients; D1, D5, and D14, days 1, 5, and 14 of hospitalization, respectively;

O, outpatient; I, inpatient; ICU, intensive care unit; C, convalescent.

gateway into the respiratory epithelium (34). Recent studies
already suggested a physiopathological mechanism for the
fluctuation of pneumoprotein concentrations in COVID-19
(32) and partially discovered a correlation between circulating
levels of pneumoprotein at baseline and ARDS onset (35).
Investigations with strong statistical evidence for the influence
of pneumoprotein kinetics on outcomes were lacking, so this
research attempted to provide perspectives about the use of
pneumoproteins as potential predictive biomarkers.

Acknowledging that CC-16 and SP-D are suggested as
valuable biomarkers for ARDS, the first objective of this
investigation is to investigate the behavior of these proteins
according to the clinical evolution and severity of COVID-19.

Study Design
This retrospective study included analysis of blood samples
collected from patients who were consecutively admitted to a
tertiary care center of Erasme Hospital (Brussels, Belgium) from
April to December 2020 for confirmed/suspected SARS-CoV-2
infection. The study was approved by the local Ethical Committee
ULB–Hôpital Erasme (aggregation number OMO21, study
protocol P2020/238), and all procedures involving participants
were performed in accordance to the Declaration of Helsinki.

The blood samples were collected at three different timepoints
and analyzed retrospectively: on D1, D5, and D14 (Figure 1). Of
note, the blood samples were immediately treated (<2 h), and
the sera were stored at −20◦C in the Biobank (BB190012) at the
Laboratory of Vaccinology and Immunology at the Université
libre de Bruxelles prior to analysis.

We retrospectively selected patients with evidence of SARS-
CoV-2 infection based on positive polymerase chain reaction
(PCR) test and/or a suspected SARS-CoV-2 infection on lung CT
scan. The selected participants were categorized retrospectively
into four groups: the ambulatory group (outpatients, O), subjects

who presented to the emergency room (ER) withmild symptoms,
and discharged immediately after admission to the ER (n = 10);
the hospitalized group (inpatients, I): patients hospitalized for
moderate/severe COVID-19 who did not require intensive care
unit stay during their hospitalization (n = 32); the intensive
care unit group (ICU): patients hospitalized and admitted in the
ICU on D1 for severe COVID-19 (n = 32); the convalescent
group (C): subjects who presented to the ER with COVID-19-
like symptoms lasting for at least more than 10 days and a
negative PCR test (according to the hypothesis that the PCR
test becomes usually negative within > 10 days) (n = 13) (36).
Development of ARDS at any time during the course of the
disease was evaluated retrospectively and in accordance to Berlin
criteria, based on clinical, biological (arterial blood gas analysis),
and radiological data.

Clinical Features
Clinical characteristics were gathered from the local electronic
medical record, and the following baseline characteristics were
evaluated: age, gender, tobacco use, body mass index (BMI),
past medical history, cardiovascular treatment, and symptoms
on admission. Regarding past medical history, hypertension
was defined as patients requiring anti-hypertensive therapy
to maintain blood pressure under 140/90 mmHg; diabetes
mellitus (DM) was defined as patients requiring oral antidiabetic
drugs/insulin therapy and diagnosed prior to admission; asthma
was defined as a reversible obstructive airway disease based
on lung function tests prior to admission; heart failure (HF)
was defined as patients suffering from cardiomyopathy and
presenting with dyspnea and lower limb edema. Retained
symptoms on admission were dyspnea (defined as a subjective
complaint of respiratory system impairment), fever (defined as
axillar temperature above 38◦C), and cough.

Routine Biological Analysis
A routine biological analysis was performed, and the following
data were collected from the local electronic medical
record: C-reactive protein (CRP), white blood cell count
(WBC), polymorphonuclear leukocytes (PMN), lymphocytes,
neutrophil-to-lymphocyte ratio (NLR), platelet (PLT), D-
dimers, ferritin, creatinine, and glomerular filtration rate (GFR)
calculated with the CKD-EPI formula.

CC-16 and SP-D Analysis
The CC-16 protein was measured in serum using an ELISA

kit (Cat No: RD191022200R; Biovendor©, Karasek, Czech
Republic). Serum samples were diluted 1×, and the ELISA test
was performed according to the instruction of the manufacturer.
Each ELISA sample was run in duplicate. The SP-D protein was
measured in serum using an ELISA kit (Cat No: RD194059101;

Biovendor©, Karasek, Czech Republic). Serum samples were
diluted 11×, and the ELISA test was performed according
to instruction of the manufacturer. Each sample was run in
duplicate. Of note, protein serum concentration below the lower
detection limit was encoded as the value correspondent to the
lower detection limit accordingly.
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Statistical Analysis
Descriptive statistics were generated for each patient group.
Normality of distribution was tested using the Kolmogorov-
Smirnov and Shapiro-Wilk tests. Parametric or non-parametric
tests were performed according to data distribution. Differences
among the four unpaired groups were tested by one-way
analysis of variance or Kruskal-Wallis, and post-hoc pairwise
comparisons of the groups were performed using the asymptotic
significance (2-sided tests) with Bonferroni correction for
multiple comparisons. Descriptive data and continuous variables
are presented as mean± standard deviation (SD) or median with
a confidence interval of 95%. Categorical variables are presented
as numbers with percentages.

To evaluate the temporal profiles of biological variables, a
mixed linear model was used with groups and time points as fixed
effects and variables measured on D1 as random effect (random-
intercept model) variables. Prediction of ARDS and death was
evaluated using a logistic regression model. Univariate analysis
was first performed to assess significant explicative variables.
Then, a multivariate analysis was performed using a backward
stepwise procedure, the starting model including all significant
variables (age, BMI, smoking, dyspnea, hypertension, DM, NLR
at day 1 and day 5). All the statistical analyses were performed
with IBM SPSS Statistics 27 and the R-software (version 4.0.3) for
Windows. Significance was set at 0.05.

RESULTS

Baseline Characteristics
Eighty-seven patients were enrolled in this research, and the
baseline characteristics of the studied population are described
in Table 1. Fifty-nine subjects were men (67.8%), 28 were women
(32.2%), and their mean age was 54.5 ± 13.9 years. Current and
former smokers represented 20.7% of the sample. The average
BMI was 30.1± 6.7 kg/m2. Patients in the ICU group were older
than patients in the other groups (ICU: 60.3± 11.4, inpatients: 57
± 13.2; outpatients: 40.8 ± 12.8; convalescent: 44.5 ± 9.7). BMI
was comparable among the groups. Routine biological analysis
on day 1 as well as their kinetics over the observational period
(D1, D5, and D14) are reported in Table 1.

Clinical Characteristics on Admission
Dyspnea and cough occurred both in 65.5% of the subjects,
while fever manifested in 43.7% of the subjects. Median arterial
oxygen saturation (SatO2) was 94% [89.8; 98.4]: ICU and
hospitalized patients disclosed lower values than the outpatients
and convalescent patients (pall <0.001) (Table 1). The patients
presented first signs of infection in an average of 7 days [4, 12]
before seeking medical attention, so D1, D5, and D14 correspond
to the 7th, 12th, and 21st day from symptom onset, respectively.

Medical History, Cardiovascular Therapy,
and Outcomes of the Studied Population
Concerning their past medical history, the most prevalent
comorbidities found in the study population are hypertension
(44.8%), DM (32.2%), asthma (13.8%), and HF (12.6%) (Table 1).
According to group allocation, hypertension was found in 53.1

and 59.4%; DM was found in 28.1 and 53.1%; asthma in 18.8
and 12.5%, and HF in 15.6 and 18.8% of hospitalized and ICU
patients, respectively.

Regarding cardiovascular therapy, 18.4% of the patients
were under angiotensin converting enzyme inhibitors (ACEi)
treatment, of which 12 and 4 patients belonged to the hospitalized
and ICU groups, respectively;19.5% of the patients were under
Ca2+channel blockers, of which 1 was in the outpatient group,
9 were in the hospitalized, and 7 were in the ICU groups;19.5%
of the patients were under beta blockers, of which 1 was in the
outpatient, 11 were in the hospitalized, and 5 were in the ICU
groups (Table 1).

In the whole studied sample, ARDS occurred in 36,8% of the
patients, of whom 2 and 30 subjects belonged to the hospitalized
and ICU groups, respectively; 12.6% of the patients had a fatal
outcome; all of them belonged to the ICU group (Table 1).

CC-16 Analysis
No significant differences in serum CC-16 levels on D1 are
found among the groups (Table 1). Regarding the CC-16 kinetics
over the observational period, in the hospitalized group, the
serum levels of CC-16 increased on D14 (9.7 [6.2–15.2] ng/ml)
compared to those on D1 (6.7 [3.9–11.5] ng/ml; p= 0.001), while
in the ICU group, these increased on D5 (11.4 [4.8–26.9] ng/ml;
p < 0.001) and D14 (17.1 [6.8–43.5] ng/ml; p < 0.001) compared
to those on D1 (8.1 [3–17.4] ng/ml) (Table 2). Regarding ARDS
prediction, the univariate analysis revealed that an upward trend
of CC-16 levels between D1 and D5 was associated with a 4-fold
increased risk of developing ARDS (OR: 3.83 [1.38–11.61]; p =

0.013). Changes in CC-16 levels between D1 and D14 were not
associated to risk of ARDS (Table 3). However, the association
between CC-16 circulating levels and ARDS onset was lost at the
multivariate analysis (Table 5). Regarding death prediction, in
the univariate analysis, CC-16 levels on D1 were associated with
higher risk of death: for every unit increase in CC-16, the risk of
death was multiplied by 1.13 (OR: 1.13 [1.04–1.25]; p = 0.006;
Table 4). This association was also confirmed in the multivariate
analysis after correction of the confounding factors, with an OR
of 1.17 [1.04–1.35] (p= 0.011) (Table 6).

SP-D Analysis
On day 1 of hospital admission, SP-D levels were higher in the
ICU patients (304.3 [134.4–688.8] ng/ml) compared to those
of the other groups: outpatient group (73.2 [50.2–106.8] ng/ml;
p < 0.001); hospitalized group (144.9 [55–381.5] ng/ml; p =

0.002); convalescent group (86.7 [46–163.4] ng/ml; p < 0.001)
(Table 1). Regarding the SP-D kinetics over the observational
period, in the hospitalized group, SP-D increased on D5 (296.3
[162–541.8] ng/ml; p < 0.001) and D14 (242.8 [105.1–560.8]
ng/ml; p = 0.007) compared to that on D1 (144.9 [55–381.5]
ng/ml) (Table 2).

Regarding ARDS prediction, the univariate analysis showed
that on D1, SP-D serum levels were positively associated to
ARDS onset (OR: 1.006 [1.003–1.009]; p < 0.001) (Table 3).
Conversely, the rise in circulating SP-D levels between D1 and
D5 and between D1 and D14 was, respectively, associated with
reduced risk of ARDS onset by one-tenth and one-fifth (D1 to
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TABLE 1 | Baseline and clinical characteristics, anamnestic information, routine biomarkers and pneumoproteins on admission and outcome in our population.

Variable No (%) All

(n = 87)

O (n = 10) C (n = 13) I (n = 32) ICU (n =

32)

Pall P-value O vs. I P-value O vs. ICU P-value O vs. C P-value I vs. ICU P-value ICU vs. C P-value I vs. C

Baseline characteristics

Age (years) 54.5 ± 13.9 40.8 ± 12.8 44.5 ± 9.7 57 ± 13.2 60.3 ± 11.4 <0.001 0.002 <0.001 1 1 <0.001 0.013

Men, n (%) 59 (67.8) 7 (70) 8 (61.5) 21 (65.6) 23 (71.9) / / / / / / /

Women, n (%) 28 (32.2) 3 (30) 5 (38.5) 11 (34.4) 9 (28.1) / / / / / / /

BMI (kg/m2) 30.1 ± 6.7 27.9 ± 5.9 29.6± 9.4 29.3 ± 6 32.4± 7.1 0.28 / / / / / /

Tobacco use, n (%) 18 (20.7) 1 (10) 1 (7.7) 7 (21.9) 9 (28.1) / / / / / / /

Medical history

Hypertension 39 (44.8) 2 (20) 1 (7.7) 17 (53.1) 19 (59.4) / / / / / / /

HF 11 (12.6) 0 (0) 0 (0) 5 (15.6) 6 (18.8) / / / / / / /

DM 28 (32.2) 1 (10) 1 (7.7) 9 (28.1) 17 (53.1) / / / / / / /

Asthma 12 (13.8) 1 (10) 1 (7.7) 6 (18.8) 4 (12.5) / / / / / / /

Medication on admission

ACEi 16 (18.4) 0 (0) 0 (0) 12 (37.5) 4 (12.5) / / / / / / /

ARA II 2 (2.3) 0 (0) 0 (0) 1 (3.1) 1 (3.1) / / / / / / /

BB 17 (19.5) 1 (10) 0 (0) 11 (34.4) 5 (15.6) / / / / / / /

Ca blocker 17 (19.5) 1 (10) 0 (0) 9 (28.1) 7 (21.9) / / / / / / /

Clinical characteristics on admission

Dyspnea, n (%) 57 (65.5) 3 (30) 6 (46.2) 25 (78.1) 23 (71.9) / / / / / / /

Fever, n (%) 38 (43.7) 7 (70) 1 (7.7) 19 (59.4) 13 (40.6) / / / / / / /

Cough, n (%) 57 (65.5) 5 (50) 7 (53.8) 27 (84.4) 18 (56.3) / / / / / / /

SatO2 (%) 94 [89.8;

98.4]

99.3 ± 0.71 98.9 [97.7;

99.6]

93 [90;

94.3]

82.4 ± 12.4 <0.001 <0.001 <0.001 1 0.084 <0.001 0.002

Sympton onset prior

to admission (days)

7 [4; 12] 5.7 ± 3.8 25.1 ± 10.1 6.3 ± 4.1 7.5 ± 3.3 <0.001 1 1 <0.001 1 <0.001 <0.001

Biological markers on admission

CRP (mg/L) / 10.6

[2.3–49.1]

(9)

1 [0.4–2.6]

(13)

54.8 [15.6–

192.4]

(30)

126.1

[69.2–

229.9]

(32)

<0.001 <0.001 <0.001 <0.001 0.013 <0.001 <0.001

WBC (10∧3/mm3 ) / 4.6

[3.7–5.8]

(10)

7.1

[5.3–9.5]

(12)

6.5

[4.2–10.1]

(31)

9.2

[5.5–15.4]

(32)

0.005 / <0.001 / 0.008 / /

PMN (absolute)

(10∧3/mm3 )

/ 2.5

[1.7–3.8] (8)

4.2

[2.9–6.3]

(10)

4.7

[2.7–8.4]

(30)

8.2

[5.5–12.2]

(31)

<0.001 0.006 <0.001 / <0.001 <0.001 /

(Continued)
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TABLE 1 | Continued

Variable No (%) All

(n = 87)

O (n = 10) C (n = 13) I (n = 32) ICU (n =

32)

Pall P-value O vs. H P-value O vs. ICU P-value O vs. C P-value H vs. ICU P-value ICU vs. C P-value H vs. C

Lymphocytes

(10∧3/mm3 )

/ 1.5 [1.1–2]

(8)

2.3

[1.9–2.8]

(11)

1.0

[0.6–1.6]

(31)

0.9

[0.5–1.6]

(31)

<0.001 / / / / <0.001 <0.001

Platelets (10∧3/mm3 ) / 171.6

[103.8–

283.9]

(10)

232.3

[163.7–

329.8]

(12)

179.5

[125.4–257]

(30)

254.2

[165.1–

391.3]

(32)

0.165 / / / / / /

Ddimères (ng/ml) / / / 879.1

[294.6–

2623.8]

(25)

1525.4

[423.7–

5491.9]

(29)

0.098 / / / / / /

Ferritine (µg/L) / / / 508.1

[234.2–

1102.1]

(27)

1021.7

[403.2–

2589.2]

(28)

0.004 / / / 0.004 / /

Creatinine (mg/dl) / 0.9

[0.7–1.2]

(10)

0.8 [0.7–1]

(13)

1 [0.6–1.5]

(31)

1 [0.6–1.6]

(32)

0.343 / / / / / /

GFR*

(ml/min/1.73m2 )

/ 90.4 [71.3–

114.5]

(10)

94.9 [80.9–

111.4]

(13)

71.8 [41.7–

123.6]

(30)

70.4 [43.7–

113.5]

(32)

0.24 / / / / / /

Pneumoproteins

CC-16 (ng/ml) / 6.3

[3.7–10.6]

(10)

7.9

[5.3–11.8]

(13)

6.7 [3.9–

11.5](30)

8.1

[3.8–17.4]

(32)

0.653 / / / / / /

SP-D (ng/ml) / 73.2 [50.2–

106.8]

(10)

86.7

[46–163.4]

(13)

144.9

[55–381.5]

(32)

304.3

[134.4–

688.8]

(32)

<0,001 / <0,001 / 0.002 <0,001 /

Outcomes

Hospitalization lenght

(days)

8 [2; 17.75] 1 [1; 1] 1[1; 1] 7 [6; 11] 20 [12; 33] <0.001 0.003 <0.001 1 0.001 <0.001 0.001

ARDS 32 (36.8) 0 0 2 (6.3) 30 (93.8) / / / / / / /

Death, n (%) 11 (12.6) 0 (0) 0 (0) 0 (0) 11 (34.4) / / / / / / /

N, number of patients; O, outpatient; C, convalescent; ICU, intensive care unit; I, inpatients; BMI, body mass index; HF, heart failure; ACEi, angiotensin converting enzyme inhibitor; ARA II, angiotensin receptor antagonist; BB, beta

blocker; CRP, C reactive protein; WBC, white blood cell count; PMN, polymorphonuclear; GFR, glomerular filtration rate (following CKD-EPI formula); CC-16, club cell secretory protein 16; SP-D, surfactant protein-D; ARDS, acute

respiratory distress syndrome.

F
ro
n
tie
rs

in
M
e
d
ic
in
e
|
w
w
w
.fro

n
tie
rsin

.o
rg

6
F
e
b
ru
a
ry

2
0
2
2
|
V
o
lu
m
e
8
|A

rtic
le
7
6
1
2
9
9

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Tiezzi et al. SP-D and CC-16 Kinetics in COVID-19 Disease

TABLE 2 | Temporal profiles of CC-16 and SP-D according to the group.

D1 D5 D14

CC-16

O 6.3 [3.7–10.6] 6 [4–9] 7.8 [5.4–11.3]

I 6.7 [3.9–11.5] 7.5 [4.6–12.5] 9.7 [6.2–15.2]†

ICU 8.1 [3.8–17.4] 11.4 [4.8–26.9]‡ 17.1 [6.8–43.5]

C 7.9 [5.3–11.8] 8.7 [6.5–11.6] 9.7 [6.9–13.7]

P-value 0.653

SP-D

O 73.2 [50.2–106.8] 76 [55.7–103.7] 66.8 [48.8–91.4]

I 144.9 [55–381.5] 296.3 [162–541.8]‡ 242.8 [105.1–560.8]†

ICU 304.3 [134.4–688.8] 271.7 [94.4–781.9] 219.8 [109.2–442.4]

C 86.7 [46–163.4] 101.5 [49.4–208.6]

P-value <0.001

A mixed linear model was used, with groups and time points as fixed effects and variables measured at D1 as random effects (random-intercept model). D1, D5 and D14, day 1, day 5

and day 14 of hospitalization respectively; O, outpatient; C, convalescent; ICU, intensive care unit; I, inpatients. *indicates p-value < 0.05, **indicates p-value < 0.01.

TABLE 3 | Risk for ARDS: Univariate analysis.

OR 95% CI P-value

CC-16 (D1) 1.063 0.993–1.15 0.092

SP-D (D1) 1.006 1.003–1.009 <0.001

SP-D/CC-16 (D1) 1.031 1.015–1.052 <0.001

CC-16 kinetics (D1–D5) 3.83 1.38–11.61 0.013

CC-16 kinetics (D1–D14) 1.53 0.28–12.3 0.617

SP-D kinetics (D1–D5) 0.106 0.03–0.326 <0.001

SP-D kinetics (D1–D14) 0.181 0.051–0.59 0.006

SP-D/CC-16 kinetics (D1–D5) 0.240 0.083–0.654 0.006

PMN/lymphocytes D1 1.20 1.10–1.35 <0.001

Age 1.05 1.01–1.09 0.010

Sex 1.35 0.53–3.60 0.537

BMI 1.10 1.02–1.21 0.018

Smoking 6.11 1.93–20.62 0.003

Dyspnea 14.21 2.67–263.46 0.012

Fever 1.63 0.59–4.70 0.355

Cough 1.15 0.395–3.68 0.799

HTA 2.91 1.15–7.72 0.027

DM 4.09 1.59–10.99 0.004

OR, odds ratio; CI, confidence interval; D1, D5 and D14, day 1, day 5 and day 14 of

hospitalization respectively; CC-16, club cell secretory protein 16; SP-D, surfactant protein

D; PMN/lymphocytes, polymorphonuclear to lymphocytes ratio; BMI, body mass index;

HTA, arterial hypertension; DM, diabetes mellitus.

D5 OR was 0.106 [0.03–0.326]; p < 0.001; D1 to D14 OR was
0.181 [0.051–0.59]; p =0.006) (Table 3). These associations were
confirmed in the multivariate analysis after correction for the
confounding factors. Indeed, onD1, for every increase of one unit
of SP-D, the risk of developing ARDS was multiplied by 1.007
(OR: 1.007 [1.003–1.014]; p = 0.006) (Table 5). Regarding the
SP-D kinetic in the multivariate analysis, each unit rise in SP-D
level between D1 and D5 was associated with a 40-fold lower
risk of developing ARDS (OR:0.023 [0.003–0.12]; p < 0.001).

TABLE 4 | Risk for death: Univariate analysis.

OR 95% CI P-value

CC-16 (D1) 1.13 1.04–1.25 0.006

SP-D (D1) 1,000 0.999–1.001 0.163

SP-D/CC-16 (D1) 0.999 0.998–1.001 0.756

CC-16 kinetics (D1–D5) 3.15 0.71–22.08 0.168

CC-16 kinetics (D1–D14) / / > 0.999*

SP-D kinetics (D1–D5) 1.06 0.26–5.3 0.942

SP-D kinetics (D1–D14) 0.92 0.18–5.16 0.992

SP-D/CC-16 kinetics (D1–D5) 1.14 0.29–4.85 0.854

PMN/lymphocytes D1 1.12 1.05–1.22 0.001

Age 1.04 0.99–1.1 0.129

Sex 2.25 0.53–15.49 0.322

BMI 1.15 1.07–1.34 0.044

Smoking / / 0.014*

Dyspnea 1.58 0.21–31.97 0.688

Fever 1.79 0.16–35.53 0.641

Cough / / 0.315

HTA 0.89 0.21–3.62 0.871

DM 2.26 0.58–8.88 0.230

OR, odds ratio; CI, confidence interval; D1, D5 and D14, day 1, day 5 and day 14 of

hospitalization respectively; CC-16, club cell secretory protein 16; SP-D, surfactant protein

D; PMN/lymphocytes, polymorphonuclear to lymphocytes ratio; BMI, body mass index;

HTA, arterial hypertension; DM, diabetes mellitus. * = Fisher test.

The same trend was observed for the SP-D kinetic between D1
and D14: each extra unit of SP-D was associated with a 20-
fold lower risk of developing ARDS (OR:0.041 [0.002–0.29]; p =
0.007) (Table 5). A further multivariate analysis evaluating the
independence of SP-D kinetic for predicting ARDS onset was
performed thereafter. Considering increasing SP-D levels and the
neutrophil-to-lymphocyte ratio on D5 as confounding variables,
increasing SP-D levels between D1 and D5 was associated with a
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TABLE 5 | Risk for ARDS: Multivariate analysis.

OR 95% CI P-value

CC-16 (D1) / / /

SP-D (D1) 1.007 1.003–1.014 0.006

SP-D/CC-16 (D1)

CC-16 kinetics (D1–D5) / / /

CC-16 kinetics (D1–D14)

SP-D kinetics (D1–D5) 0.023 0.003–0.12 <0.001

SP-D kinetics (D1–D14) 0.041 0.002–0.29 0.007

SP-D/CC-16 kinetics

(D1–D5)

0.17 0.037–0.66 0.012

Confounding factors taken into account in the model are listed hereafter. SP-D, D1,

SP-D, BMI, dyspnea, DM; SP-D D1 to D5 and D1 to D14, smoking; OR, odds ratio;

CI, confidence interval; D1, D5 and D14, day 1, day 5 and day 14 of hospitalization

respectively; CC-16, club cell secretory protein 16; SP-D, surfactant protein D; BMI, body

mass index; DM, diabetes mellitus.

TABLE 6 | Risk for death: Multivariate analysis.

OR 95% CI P-value

CC-16 (D1) 1.17 1.04–1.35 0.011

Confounding variable taken into account for CC-16 at D1 was BMI. OR, odds ratio;

CI, confidence interval; D1, D5 and D14, day 1, day 5 and day 14 of hospitalization

respectively; BMI, body mass index.

75-fold decreased risk of developing ARDS (OR:0.013 [0.0006–
0.1]; p < 0.001). In a consistent manner, increasing circulating
levels in the kinetic of SP-D between D1 and D14 was associated
with a 12-fold lower risk of ARDS onset (0.077 [0.004–0.24]; p
= 0.077), with the neutrophil-to-lymphocyte ratio on D1 and
increase in SP-D circulating levels as confounding variables.
Regarding death prediction, SP-D levels showed no association
to this outcome, both in the univariate and multivariate analyses.

SP-D/CC-16 Ratio
As SP-D and CC-16 levels seem to reflect different mechanisms of
lung damage, we decided to analyze the ratio between these two
pneumoproteins (37, 38).

In the univariate analysis, on D1, the high SP-D/CC-16 ratio
was mildly and positively associated to the development of ARDS
(OR: 1.031 [1.015–1.052]; p < 0.001). Conversely, the rise in
SP-D/CC-16 ratio between D1 and D5 was associated with a 25-
fold lower risk of developing ARDS (OR:0.24 [0.083–0.654]; p =
0.006) (Table 3). The multivariate analysis confirmed this result,
showing that an increase in SP-D/CC-16 ratio between D1 and
D5 was associated with a 20-fold lower risk of developing ARDS
(OR:0.17 [0.037–0.66]; p = 0.012) (Table 6). Regarding death
prediction, SP-D/CC-16 ratio was not associated to risk of death,
neither in the univariate nor the multivariate analysis.

Confounding Factor Variables
Regarding the possible effect of confounding factors on ARDS
onset, the univariate analysis showed that age, BMI, smoking,
dyspnea, hypertension, and DM were differently associated with
higher risk of developing ARDS (Table 3). Regarding the possible

effect of confounding factors on the risk of death, the univariate
analysis revealed that a patient with a BMI 5-kg/m2 higher than
that of another patient without any differences in the other
confounding variables had an increased risk of death (OR: 1.15
[1.07–1.34]; p = 0.044) (Table 4). Additionally, according to the
univariate analysis (p = 0.014) (Table 4) former and current
smokers had a higher risk of death compared to patients who
never smoked.

Based on univariate analysis, higher neutrophil-to-
lymphocyte ratio on D1 witnessed a greater risk of ARDS
onset and death. More precisely, each extra unit of neutrophil-
to-lymphocyte ratio multiplied by 1.2 the risk of ARDS onset
(OR: 1.2 [1.1–1.35]; p < 0.001) and by 1.12 the risk of death
(OR: 1.12 [1.05–1.22]; p = 0.001). Similarly, the increased
neutrophil-to-lymphocyte ratio on D5 was associated with a
1.2-fold increased risk of ARDS onset (1.2 [1.08–1.38]; p =

0.005), but the neutrophil-to-lymphocyte ratio on day 5 was not
associated with death occurrence.

DISCUSSION

To our knowledge, this is one of the first investigations to
demonstrate that SP-D and CC-16 kinetics during the time
course of COVID-19 may have a predictive value for disease
outcome. Our main results are summarized as follows: (1)
higher baseline levels of SP-D in serum on the day of hospital
admission is an independent but weak risk factor for developing
ARDS; (2) on the other hand, the kinetics of circulating SP-
D during SARS-CoV-2 infection is an independent protective
element from developing ARDS, reducing the risk of ARDS by
a factor of 50 when it increases from D1 to D5 of analysis
(7–12 days after first symptoms). Further multivariate analyses
showed the independence of SP-D kinetic for the prediction
of ARDS onset, considering neutrophil-to-lymphocyte ratio as
another confounding variable; (3) a rise in SP-D/CC-16 ratio
from days 7 to 12 since symptom onset (D1 to D5 in the
analysis) lessens the risk of ARDS by about one-fifth; (4) elevated
levels of CC-16 on the day of admission are associated with a
greater risk of fatal outcome. Thus, in patients with COVID-
19 who did not experience ARDS, CC-16 increased modestly
(45%) and late (21 days after symptoms onset, D14 in the
analysis), while in patients with ARDS, CC-16 increased by
110% at this timepoint. In the case of mild COVID-19 or
post infection, serum CC-16 levels are stable throughout the
observed period.

As mentioned above we observed that higher baseline levels
of SP-D result in a slightly enhanced risk of ARDS onset, while
an increase in SP-D levels in the course of the disease lessens the
risk of ARDS in patients with COVD-19. In agreement with our
results, two recently published studies also correlated increased
levels of SP-D with the severity of COVID-19 (39, 40). The
first study observed significantly increased levels of SP-D on
admission in infected patients, especially the ones developing
ARDS and macrophages activation syndrome (MAS), followed
by a slight decrease on day 5 after hospitalization. The second one
observed in severe cases a significant increase in SP-D levels on
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admission, with positive correlation with inflammation markers
(C-reactive protein, IL-6), but could not prove the protective
role of this protein in COVID-19 (39, 40). The reasons for the
differences between these studies and the present one could be
related to multiple factors: a younger study population (mean
age 49 years for Kerget and Tong’s studies; mean age 59 years
for our population); ethnical differences (Turkish and Chinese
population, respectively); different treatments received during
in-hospital stay: some patients from Kerget et al. were treated
for suspected MAS with tocilizumab (an anti-IL-6 treatment),
with a concomitant decrease in SP-D levels, which was not
the case in our cohort. These trials also display differences in
endpoints, with SP-D being dosed essentially on admission and
recovery for Tong’s study and at 2 in-hospital endpoints for
Kerget, while more specific kinetics during the active phase of
infection was realized in our project. Moreover, in our study,
SP-D kinetics was analyzed in light of CC-16 alterations as well,
which could contribute to improve the understanding of the role
of pneumoproteins as well as lung injury by considering both
permeability and cellular alterations.

Our observation indicating that increase levels of SP-D in the
course of the disease is a favorable prognostic factor for patients
with COVD-19 is in agreement with a protective “damage-
limiting” role of SP-D (2, 35, 41–43). Previous investigations
on SARS-CoV infection demonstrated that SP-D has binding
sites for the spike glycoprotein of SARS-CoV with a positive
correlation between anti-SARS-CoV specific antibodies and SP-
D levels (44). Thus, it is possible that one of the beneficial effects
observed for SP-D is due to its binding to the spike glycoprotein
of SARS-CoV-2, facilitating viral clearance (22). SP-D serum
levels were also shown to be increased in influenza A virus,
respiratory syncytial virus (RSV), and human immunodeficiency
virus (HIV) infections, enhancing their clearance from mucosal
points of entry and modulating inflammatory response (22).
Moreover, a recombinant fragment of human (rfh) SP-D has
been proved to downregulate inflammation during influenza
A infection in vitro (45, 46) and has recently been shown to
neutralize SARS-CoV-2 in vitro (47). We could, thus, speculate
that SP-D increases in the acute phase in parallel with the extent
of lung injury, and then acts mostly as an immunomodulator
limiting excessive parenchymal and airway damage later in the
time course of the disease.

In response to ARDS, increasing levels of SP-D may also
represent proliferation of type II pneumocytes and reflect the
regeneration capacity of the lung parenchyma (48). Type II
pneumocytes also ensure the maintenance of alveolar barrier
integrity and host defense against aggression. Thus, we propose
that rising SP-D levels early over the time course of SARS-
CoV-2 infection may reflect the residual capacity of type II
pneumocytes to secrete SP-D, thus ensuring regeneration of the
lung parenchyma. More precisely, early increase in circulating
levels of SP-D may reflect an adequate response of the lungs
to viral aggression, reflecting the regeneration of surfactant-
secreting cells. Nevertheless, higher levels of SP-D on admission
may be explained by the translocation of SP-D from the alveolar
epithelium to blood circulation because of loss of the alveolo-
capillary barrier integrity and, thus, explain the very mild

predictive value for ARDS onset. Recent research on COVID-
19 pathogenesis proposed that loss of alveolar cell integrity, loss
of gas exchange capacity, and development of ARDS may be
also consequences of the downregulation of transcription factors
implicated in SP-D synthesis (43).

As explained above, CC-16 also displays a protective role
toward lung parenchyma, mirroring the extent of cell loss during
lung damage and being tightly linked to lung function (2, 35, 41–
43). This investigation recognizes the circulating levels of CC-16
on day ± 7 after symptom onset as a mild independent factor of
death, and provides a new perspective regarding the predictive
value of CC-16 for survival outcome in patients with COVID-19.
However, conversely to SP-D, CC-16 kinetics was not found to
have any predictive impact on ARDS onset or death. A previous
study including several etiologies of ARDS has demonstrated that
CC-16 at baseline was correlated with ARDS onset based on
univariate analysis but lost its predictive value on multivariate
analysis (48). This is in line with our results, where we found
that early rise of circulating levels of CC-16 is associated to a 4-
fold risk of developing ARDS in univariate analysis, but not in
multivariate analysis. Lin et al. also reported a predictive value
of CC-16 level at baseline on ARDS severity: the higher the
circulating levels of CC-16, the more severe the ARDS (32).

Autoptic studies demonstrated that COVID-19 progression
is associated with excessive mucin production predominantly
in distal airways (43). Mucin genes seem to be upregulated
in club cells and the excessive mucus increases the viscosity
of lung secretions and impairs mucociliary clearance. This
enhancement of mucus secretion observed in COVID-19 is
probably due to innate immunity and may favor ARDS
onset (43). We suggest that while increased circulating levels
of SP-D may reflect renewal of the lung parenchyma, high
circulating levels of CC-16 may reflect the expansion of
lung injury from alveolar tissue to airways. The damage
on club cells in this stage of the disease is probably so
important that the regenerative properties of these cells may
be overcome.

Interestingly, in our study, the levels of SP-D and CC-16
displayed different temporal patterns according to the subjects
studied. Thus, in patients requiring intensive care, SP-D serum
level did not change over the observed period, while the CC-
16 serum level progressively increased (Table 2). Conversely,
in hospitalized patients without ARDS, SP-D levels rose early
during SARS-CoV-2 infection on day 5 (± 12 days after
symptoms onset) and lessened afterward, while the CC-16 rose
lately on day 14 (± 21 days after symptoms onset). CC-16
serum levels could be affected both by club cells damage/loss
and increased/decreased epithelial barrier permeability, being
decreased in the case of cellular loss and increased in the case
of epithelial cell stress or in the case of higher permeability of
the air-blood barrier. Serum levels of SP-D, on the other hand,
increased secondary to higher epithelial barrier permeability and
were less affected by epithelial cell loss (10). For this reason,
the serum SP-D/CC-16 ratio has been introduced to integrate
both club cell damage (reflected by CC-16 levels) and changes
in epithelial barrier permeability (witnessed mainly by SP-D
levels). Thus, SP-D/CC-16 ratio is a useful tool to understand
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the mechanisms of lung damage: it is expected to decrease when
the stressor causes acute cellular stress (higher CC-16 levels) (37)
with less effects on epithelial permeability (low SP-D levels), and
to increase when the damage provokes club cell loss (low CC-16
levels) and/or when it mostly affects permeability (higher SP-D
levels) (38).

In our study, we found a double-sided behavior of this
ratio: high SP-D/CC-16 ratio being positively correlated to the
development of ARDS in the acute phase (D1), while rise
of this ratio between D1 and D5 appeared to be protective.
Our interpretation of these results is that in the acute
phase, SP-D/CC-16 ratio increases as a result of lung injury
with increased permeability and cell loss, thus representing
a risk factor for developing ARDS (the more extended the
damage, the more likely to develop severe lung injury). On
the other hand, later in the time course of the disease, SP-
D/CC-16 increase appears to be protective, possibly showing
that in this case a rise in serum SP-D is not just a reflex
of hyperpermeability but also of hyperproduction of SP-D
secondary to lung damage (the lungs respond to the injury
via SP-D upregulation to modulate inflammatory mechanisms).
This interpretation is supported by evidence of high SP-D levels
in ARDS acute phase (as a result of a rupture of air-blood
barrier) (49) and hyperproliferation of type II pneumocytes
found in the proliferative phase of ARDS (occurring around
7 days after injury), which could lead to subsequent SP-D
hyperproduction (50).

However, to this date, there has been lack of scientific
evidence about the use of SP-D/CC-16 ratio to predict outcomes
or characterize respiratory disease; therefore, further studies
especially focusing on ARDS prediction and ARDS phenotyping
are necessary.

Limitations
This study encounters several limitations. This is a retrospective
study that includes a small number of patients who presented
to the ER of a tertiary care center for suspicion of SARS-
CoV-2 infection, secondary confirmed based on PCR test
and/or suspected SARS-CoV-2 infection on lung CT scan.
Thus, the population included in this investigation may not be
representative, and the results may not be reproductible in other
research centers. However, baseline, clinical characteristics, and
medical history were comparable to other large-scale studies
(51–53). No bronchoalveolar liquid samples were collected
from the patients during this research; thus, there is lack
of comparison between circulating levels of SP-D and CC-
16 and bronchoalveolar liquid concentration. Confounding
variables were not distributed randomly in the different
subgroups. However, independent predictive factors were tested
by multivariate analysis, which lessen the impact of confounding
variables. The recruitment period was short, from April to
December 2020. Regarding CC-16, the circulating levels may be
affected by renal clearance, with low renal clearance associated
with higher circulating levels of CC-16 (54). However, in our

cohort, only 6% of the patients suffered from renal function
impairment, thus lowering the impact of this confounding
variable. Despite the existence of stratification for ARDS severity
according to the Berlin criteria (30), the authors were not able to
classify the patients as “mild,” “moderate,” or “severe,” ARDS, as
the subjects were enrolled retrospectively, and their respiratory
conditions were already stabilized under mechanical assistance
prior to the enrollment, and biological data of arterial blood gas
exchanges were often missing. However, we believe that these
limitations do not preclude our conclusions.

CONCLUSIONS

To conclude, circulating levels of SP-D and CC-16 and their
temporal profiles over the course of COVID-19 may be useful as
biomarkers for ARDS and death prediction. While increased SP-
D levels appear to be predictive of positive outcome, the opposite
was observed regarding CC-16 levels. Further longitudinal
multicentric studies that include a higher number of subjects with
different ethnicities are needed to confirm the role of SP-D and
CC-16 in the time course of COVD-19.
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