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Cereblon (CRBN) is a substrate recognition subunit of the CRL4 E3
ubiquitin ligase complex, directly binding to specific substrates for
poly-ubiquitination followed by proteasome-dependent degrada-
tion of proteins. Cellular CRBN is responsible for energy meta-
bolism, ion-channel activation, and cellular stress response
through binding to proteins related to the respective pathways. As
CRBN binds to various proteins, the selective pressure at the
interacting surface is expected to result in functional divergence.
Here, we present two mammalian CRBN datasets of molecular
evolutionary analyses. (1) The multiple sequence alignment data
shows that positive selection occurred, determined with a dN/dS
calculation. (2) Data on co-evolutionary analysis between verte-
brate CRBN and related proteins are represented by calculating the
correlation coefficient based on the comparison of phylogenetic
trees. Co-evolutionary analysis shows the similarity of evolu-
tionary traits of two proteins. Further molecular, functional inter-
pretation of these analyses is explained in ‘Positive selection of
Cereblon modified function including its E3 Ubiquitin Ligase ac-
tivity and binding efficiency with AMPK’ (W. Onodera, T. Asahi, N.
Sawamura, Positive selection of cereblon modified function
including its E3 ubiquitin ligase activity and binding efficiency
with AMPK. Mol Phylogenet Evol. (2019) 135:78-85. [1]).
© 2019 The Author(s). Published by Elsevier Inc. This is an open
access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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Specifications Table

Subject area Biology
More specific subject area Molecular evolution
Type of data Table, Figure
How data was acquired Phylogenetic tree acquired using maximum likelihood & neighbor-joining method at

MEGA7 software. dN/dS acquired usingmaximum likelihood& countingmethod at Selecton
server and Datamonkey server. Degree of coevolution between 2 proteins acquired by
mirror tree method at MirrorTree server.

Data format Analyzed
Experimental factors Nucleotide coding sequences were downloaded from NCBI GenBank.
Experimental features Sequences were aligned using ClustalW at MEGA7. 1-to-1 orthologous relationship of

sequences was checked using OMA database and Ensembl.
Data source location Institution: NCBI GenBank (Data download source)

City: Rockville Pike, Bethesda
Country: USA

Data accessibility Analyzed data only available with this article. Sequences used in this article available at NCBI
GenBank (https://www.ncbi.nlm.nih.gov/) via accession number (see Supplementary
Table 1).

Related research article W. Onodera, T. Asahi, N. Sawamura, Positive selection of cereblon modified function
including its E3 ubiquitin ligase activity and binding efficiency with AMPK. Mol Phylogenet
Evol. (2019) 135:78-85 [1].

Value of the Data
� The positively selected (C366) of CRBN was detected as novel functional, experimentally confirmed site, which may be

targeted as potential chemotherapeutic site as CRBN has potential to be the target molecule for therapy includingmultiple
myeloma.

� The selective pressure on mammalian CRBN was quantified by dN/dS; this provides evolutionary insights when a further
residue-level study is conducted.

� The co-evolutionary analysis of CRBN demonstrated the usefulness of the analysis of other CRBN-binding proteins of
interest to understand the evolutionary relationships.
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1. Data

The data contains phylogenetically analyzed CRBN sequences. The sequences were collected from
NCBI GenBank (sequence accession numbers available in Supplementary Table 1). Fig. 1 shows
phylogenetic tree of the mammalian CRBN sequence reconstructed using maximum likelihood and
neighbor-joining method. On the same dataset, site-model test for detection of positively selected site
(position 366) was applied, represented in Fig. 2. Ancestral state of position 366 are illustrated in Fig. 3
estimated using maximum likelihood method. The result for coevolutionary analysis of vertebrate
CRBN based on mirror tree method are listed in Table 1 and Fig. 3.

2. Experimental design, materials, and methods

2.1. Data collection of sequences

Protein coding sequences of mammalian crbn genes were obtained from GenBank [2] in September
2017 (Supplementary Table 1). Partial sequences were excluded from the dataset. The sequences were
aligned with ClustalW implemented in MEGA7 [3]. The default parameters were used for ClustalW.
Redundant sequences were removed manually after multiple sequence alignment, 64 sequences were
further analyzed (Supplementary Table 1).

Gene copy numbers were determined to validate the orthologous relationships of crbn genes. They
were confirmed with the orthologous matrix (OMA) database and the orthologues view of Ensembl

https://www.ncbi.nlm.nih.gov/


Fig. 1. Phylogenetic tree of full length CRBN tree. The tree was constructed using the Neighbor-Joining method with bootstrapping
(1000 replicates). The scale bar indicates the branch length scaled by substitution per site.
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Fig. 2. Variation of amino acids and codon specific selection among mammalian CULT domain. Sequences are based on Human
CRBN and representative species are displayed from each clade. Columns with human only sequence letters indicate conserved sites,
whereas the others show variations. Dark grey columns are inferred as negatively selected codons with a p-value<0.10 calculated by
FEL. The dark red column shows a sign of positive selection with a p-value<0.10, also indicated in table 1bof [1]. Lighter grey and red
columns indicate negative and positive selection with no statistical significance.
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[4,5]. A total of 42 sequences out of 64 were registered in those databases. Among the registered se-
quences, 41 species had a single copy of crbn (Supplementary Table 1).

2.2. Phylogenetic tree reconstruction

Phylogenetic trees of the CULT (cereblon domain of unknown activity, binding cellular ligands and
thalidomide) domain (position of protein: 317-442), Lon domain (position of protein: 80-316) and full
length crbn were constructed. Trees were built using maximum likelihood (ML) estimation imple-
mentedwithMEGA7. The Kimura two parameter substitutionmodel with discrete Gamma distribution
of five categories were selected based on Akaike information criterion (AIC) scores [6]. The dataset was
also analyzed using the neighbor-joining method in the Tamura three parameter substitution model
[7,8]. Bootstrap resampling was conducted 1000 times for each method (Fig. 1, fig1 in Ref. [1] for the
CULT domain).

2.3. Positive selection test and ancestral sequence reconstruction

The Selecton server was used to identify positive selection using the site-model [9,10]. Briefly, the
server conducts likelihood ratio test (LRT) between the null hypothesis (M7 orM8a) that does not allow
positive selection and the alternative hypothesis (M8) that allows positive selection (dN/dS > 1) to
determine if there is positive selection in the dataset. The MEC (Mechanistic codon model), which
assumes positive selection, uses AICc (AIC corrected) to compare the fitness in the dataset as it is not a
nested model. If there is positive selection in the dataset, the Selecton server calculates dN/dS for each
site and presents sites with a dN/dS statistically significant above one as positively selected site. A
Bayesian approach was used for the dN/dS calculation. To assess the reliability of dN/dS values, a
confidence interval defined by the 5th and 95th percentile of the posterior distribution is used. When



Fig. 3. Inferring ancestral sequence of codon 366 using CULT domain CRBN tree. Ancestral sequence of mammalian CRBN was
inferred using MEGA7. Codon shown in the tree indicates the ancestral codon of 366.
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the lower bound of the confidence interval is larger than one, the site is defined as positively selected
site [10]. The dataset did not show statistical significance between M8 and M8a but showed statistical
significance between M8 andM7. MEC fitted the dataset best as it had the lowest AICc (Supplementary
Table 3 and Table 1 in Ref. [1] for LRT).
Table 1
Co-evolution analysis between domains of CRBN. Co-evolutionary signals between CRBN and its related proteins were calculated
for Lon and CULT domain. As trend, LON domain exhibited larger co-evolutionary signals compared to CULT domain. AMPKɑ and
Meis2 had statistically significant increase for Lon domain. (p-value with * < 0.10, ** < 0.05, *** < 0.01).

Protein Symbol Correlation coefficient P-value (Lon vs CULT)

Full length Lon domain CULT domain

Complex factor DDB1 0.892 0.856 0.792 0.363
RBX1 0.847 0.773 0.748 0.734

Binding protein AMPKa 0.935 0.935*** 0.718 0.0001
IKZF1 0.923 0.852 0.756 0.1442
Meis2 0.922 0.911*** 0.765 0.008
SQSTM1 0.902 0.87* 0.757 0.075
BK channel 0.841 0.816 0.669 0.101

Conserved protein GAPDH 0.836 0.803 0.755 0.515
GPI 0.857 0.798 0.833 0.555
EF-1a 0.641 0.636 0.446 0.171
b-Actin 0.673 0.606 0.681 0.516
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FEL (fixed-effects likelihood), REL (random-effects likelihood), and SLAC (single-likelihood ancestor
counting) methods were simultaneously applied to. This server is also based on a site-model calculated
with the ML approach [11e14]. dN/dS > 1 is defined as positively selected site here with statistical
confidence (p-value < 0.10 in FEL and SLAC; Bayes Factor > 50 in REL) by testing whether dN is
significantly different from dS [11]. The Codon positions detected in dataset 1 are presented in
Supplementary Tables 4e6. MSA colored with dN/dS value are presented in Fig. 2 for 13 representative
species and for all 64 MSA species in Supplementary Table 7. Next, the ancestral sequence recon-
struction was conducted in MEGA7 [3]estimating the maximum likelihood with the MSA and CULT
domain phylogenetic tree of dataset 1. Fig. 3 represents the ancestral state of codon 366, detected as
positively selected site.

2.4. Co-evolution analysis of dataset 2

The protein coding sequences of 11 vertebrate genes were collected from GenBank [2] in May 2018
(Supplementary Table 1). Proteins that are known to be the E3 complex factor or binding partners of
CRBN were selected. Here, binding domain of CRBN is not restricted to CULT domain but also Lon
domain. Those are DDB1: DNA damage-binding protein1, Rbx1: RING-box protein 1, AMPKa: AMP-
activated protein kinase a, IKZF1: IKAROS family zinc finger 1, Meis2: Meis Homeobox 2, SQSTM1:
Sequestosome 1, BK channel: Big potassium channel. Four conserved proteins were selected as
negative control, GAPDH: Glyceraldehyde-3-phosphate dehydrogenase, GPI: Glucose-6-phosphate
isomerase, EF-1a: Elongation factor 1a, and b-Actin. CULT domain, Lon domain, and full length CRBN
were separately prepared for comparison between the domains. Partial sequences were cut from the
dataset. The sequences were aligned with ClustalW implemented in MEGA7 [3]. Default parameters
were used for ClustalW. Redundant sequences were removed manually after multiple sequence
alignment, which consisted of a total number of 47-55 sequences for further analysis (Supplementary
Table 1). The composition of the sequence species are briefly described in supplementary table 2.A
phylogenetic tree was reconstructed with the neighbor-joining method using the maximum com-
posite likelihood model with 500 bootstrap replicates. The trees were uploaded for a co-evolution
analysis to the MirrorTree Server [15]. Briefly, the server generates scatter plots from a pair of corre-
sponding species branch lengths of two phylogenetic trees. Then, correlation coefficients, which
represent the similarity of evolutionary pressure from two phylogenetic trees, were derived from the
Fig. 4. Correlation coefficient between CRBN and related proteins. The correlation coefficient was calculated using the MirrorTree
Server. The plots show the difference between the corresponding branches of two reconstructed phylogenetic trees.
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plots. For test of significant difference between Lon and CULT domain, p-value was calculated after z-
transformation of correlation coefficient. Fig. 4 shows 11 scatter plots derived fromCRBN and its related
proteins with the respective correlation coefficients. Within the 11 proteins, CRBN-related proteins (E3
complex factors and binding partners) tends to have higher correlation coefficient compared to
conserved proteins with statistically significant value for AMPKa (GPI used in statistical comparison)
[1]. Furthermore, domain-specific co-evolution analysis is shown in Table 1, exhibiting larger Lon
domain's correlation coefficient compared to that of CULT domain for CRBN-related proteins, while no
inter-domain difference was observed for conserved proteins.
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