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ABSTRACT

Overactivation of the renin–angiotensin–aldos-
terone system (RAAS) has been shown to be
pathologic in heart failure and albuminuric
chronic kidney disease (CKD), triggering pro-
inflammatory and pro-fibrotic cellular path-
ways. The standard of care in these disease states
includes treatment with angiotensin-converting
enzyme (ACE) inhibitors or angiotensin recep-
tor blockers. Mineralocorticoid receptor antag-
onists (MRAs) are also a mainstay in the
treatment of heart failure with reduced ejection
fraction; however, therapy is often limited by
treatment-related hyperkalemia. In albuminuric
CKD, the risk of hyperkalemia, acute kidney
injury (AKI), and hypotension also remains

significant. Finerenone is a novel non-steroidal
MRA that may obviate some of these concerns
and have therapeutic potential in additional
patient populations. Finerenone was developed
using the chemical structure of a dihydropy-
ridine channel blocker but optimized to create a
bulky MRA without any activity at the L-type
calcium channel. It has several novel cellular
mechanisms that may account for its ability to
reduce cardiac hypertrophy and proteinuria
more efficiently than an equinatriuretic dose of
a steroidal MRA, while retaining anti-inflam-
matory and anti-fibrotic properties. Finerenone
also has a lower rate of treatment-related
hyperkalemia and AKI than steroidal MRAs with
a smaller effect on systolic blood pressure,
greatly expanding its therapeutic utility. The
recently published FIGARO-DKD and FIDELIO-
DKD trials demonstrate that treatment with
finerenone in patients with type II diabetes and
albuminuric CKD results in improved cardio-
vascular outcomes and a lower risk of CKD
progression. Patients enrolled in these studies
were already on maximally tolerated ACE inhi-
bitor or angiotensin receptor blocker therapy.
Trials investigating finerenone’s therapeutic
effect in patients with heart failure with pre-
served ejection fraction (HFpEF) and non-dia-
betic CKD, as well sodium–glucose
cotransporter 2 (SGLT2) and finerenone combi-
nation therapy in patients with diabetic
nephropathy, are ongoing.
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Key Summary Points

Aldosterone is a pathologic agent in heart
failure and albuminuric chronic kidney
disease (CKD); blockade of the
renin–angiotensin–aldosterone system is
known to reduce morbidity and mortality
in these disease states.

Finerenone is a novel non-steroidal
mineralocorticoid receptor antagonist
(MRA) that has a unique chemical
structure as compared to steroidal MRAs
(i.e., spironolactone and eplerenone) with
a lower incidence of treatment-related
hyperkalemia and acute kidney injury and
a smaller effect on systolic blood pressure.

The FIGARO-DKD and FIDELIO-DKD trials
demonstrated that treatment with
finerenone in participants with type II
diabetes and albuminuric CKD, already on
angiotensin-converting enzyme (ACE)
inhibitor or angiotensin receptor blocker
therapy, resulted in improved
cardiovascular outcomes and a lower risk
of CKD progression.

Randomized controlled trials are ongoing
to assess use in patients with heart failure
with preserved ejection fraction (HFpEF)
and non-diabetic CKD, as well as the
effects of sodium–glucose cotransporter 2
(SGLT2) and finerenone combination
therapy in diabetic nephropathy.

INTRODUCTION

Aldosterone plays critical physiological roles in
maintaining normotension, eunatremia, and
normokalemia. However, overactivation of
aldosterone and the renin–angiotensin–aldos-
terone system (RAAS) has also been implicated

in the pathology of various cardiorenal disease
states, including heart failure and hypertension.
Mineralocorticoid receptor antagonists (MRAs)
have become key components of treatment
strategies in these disorders. Currently, the most
used MRAs include spironolactone and epler-
enone, both steroidal MRAs that bind to the
mineralocorticoid receptor (MR) similarly to its
natural ligand, aldosterone [1]. Their salutary
benefits are multiplex, including management
of hypervolemia through diuresis, neurohor-
monal blockade, and abrogation of cardiac
remodeling.

In heart failure, excessive aldosterone secre-
tion drives sodium and water retention, sym-
pathetic nervous system activation, myocardial
hypertrophy and fibrosis, and depression of
baroreflex sensitivity [2]. The use of an MRA is
now routinely recommended in patients with
New York Heart Association (NYHA) class II–IV
heart failure and who have left ventricular
ejection fraction (LVEF) of 35% or less, given
that estimated glomerular filtration rate (eGFR)
is greater than 30 ml/min/1.73 m2 and serum
potassium is less than 5.0 mEq/L [3]. The use of
MRAs is also recommended selectively in
patients with heart failure with preserved ejec-
tion fraction (HFpEF) to reduce the incidence of
hospitalizations [4]. In patients with chronic
kidney disease (CKD), MRAs reduce albumin-
uria when combined with angiotensin-con-
verting enzyme inhibitor (ACEi) or angiotensin
receptor blocker (ARB) therapy; however, the
risks include acute kidney injury (AKI), hyper-
kalemia, and hypotension [5, 6]. KDIGO
guidelines recommend a more conservative
approach with this combination, noting a
marked risk of hyperkalemia and declining
kidney function in patients with eGFR less than
45 ml/min/1.73 m2 [7].

Finerenone is a novel, non-steroidal MRA
that may have unique utility in both albumin-
uric kidney disease and heart failure. In pre-
clinical models, finerenone reduced cardiac
hypertrophy and proteinuria more efficiently
when compared to an equinatriuretic dose of a
steroidal MRA [8]. These effects have been
shown to be mediated through potent anti-in-
flammatory and anti-fibrotic pathways. These
benefits have been achieved with a lower risk of
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hyperkalemia when compared to steroidal
MRAs like eplerenone and spironolactone [9].
Furthermore, finerenone appears to have a
smaller effect on blood pressure, making it a
useful agent for patients prone to hypotension
or for patients with heart failure who are often
already taking multiple heart failure therapies
that each independently lower blood pressure
[9].

This review will summarize the molecular
mechanisms of finerenone activity, its role in
cardiorenal disease, review clinical trial data,
and discuss future directions for investigation.
This article is based on previously conducted
studies and does not contain any new studies
with human participants or animals performed
by any of the authors.

DRUG CHARACTERISTICS
AND MECHANISMS

Drug Characteristics

Spironolactone was developed using the chem-
ical structure of progesterone and was the first
MRA approved by the US Food and Drug
Administration (FDA) in 1960 for edema related
to cirrhosis, nephrotic syndrome, heart failure,
idiopathic edema, essential hypertension, and
cirrhotic ascites [10]. Spironolactone was noted
to have high affinity for the MR, binding at the
same site as its natural ligand, aldosterone;
however, its partial affinity for the progesterone
and androgen receptors was evidenced in its
adverse effects, including gynecomastia, dys-
menorrhea, and erectile dysfunction [10].
Spironolactone is also known to cause hyper-
kalemia with a renal concentration sixfold
higher than its cardiac concentration [8].

A more selective steroidal MRA, eplerenone,
was approved by the FDA in 2002. This mole-
cule was developed using the chemical structure
of spironolactone with the 17a-thioacetyl group
replaced with a carbomethoxy group and a
9,11-epoxide added to the lactone ring [10].
These changes increased eplerenone’s speci-
ficity for the MR and had a more favorable side
effect profile with regards to gynecomastia,
dysmenorrhea, and erectile dysfunction than

spironolactone [10]. However, despite epler-
enone having a renal concentration only
threefold higher than its cardiac concentration,
the risk of hyperkalemia remains present [8].

Finerenone is one of several non-steroidal
MRAs that was developed using the chemical
structure of a dihydropyridine channel blocker
but optimized to create a bulky MR antagonist
without any activity at the L-type calcium
channel [10]. Finerenone is both highly potent
and has strong selectivity for the MR, overcom-
ing significant barriers posed by previous gener-
ations of MRAs [11]. Preclinical models showed
reduction in markers of cardiorenal damage and
a lower risk of hyperkalemia [8, 9], postulated to
be a result of the roughly 1:1 distribution to the
renal and cardiac tissues, as compared to 6:1 for
spironolactone and 3:1 for eplerenone [8].

Mechanisms of Action

Despite spironolactone and finerenone binding
the same ligand domain on the MR, these
molecules have significant differences in their
downstream signaling. First, finerenone appears
to delay the nuclear accumulation of the
MR–aldosterone complex more effectively than
spironolactone [11]. Second, finerenone may be
more effective than spironolactone at blocking
the recruitment of critical transcription cofac-
tors. Normally, after aldosterone binds the MR,
the MR–aldosterone complex recruits the tran-
scription cofactors steroidal coactivator 1 (SRC-
1) and RNA polymerase II onto a key regulatory
region of the gene that encodes the a-subunit of
the epithelial sodium channel (ENAC).
Spironolactone promotes a lesser but still sig-
nificant recruitment of these transcription
cofactors, while finerenone binding appears to
impair recruitment of these cofactors and
reduce the binding of existing MR–aldosterone
complexes [11]. Finally, finerenone has bulky
substituent groups that, when bound to the MR,
leads to the formation of an unstable MR–ligand
complex that cannot recruit cofactors [11, 12].
In contrast, spironolactone destabilizes critical
contacts between aldosterone and the MR but
does not physically prevent agonist conforma-
tion and subsequent cofactor binding [13].
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Aldosterone has been implicated in the
pathogenesis of cardiovascular disease through
inflammatory and fibrotic pathways (Fig. 1).
Patients with primary hyperaldosteronism
experience more cardiovascular events, and
aldosterone is an independent risk factor for
cardiovascular disease and all-cause mortality,
even at levels below the threshold for hyperal-
dosteronism [14, 15]. The aldosterone-mediated
damage appears dependent on an environment
of high salt intake that deranges the home-
ostasis between aldosterone and serum sodium;
populations experiencing chronic sodium defi-
ciency have extremely high levels of plasma
aldosterone with minimal cardiorenal damage
[16]. In mouse models, aldosterone administra-
tion triggers the formation of reactive oxygen
species (ROS) in a multitude of tissues, includ-
ing macrophages, cardiomyocytes, and vascular
smooth muscle cells [17, 18]. These ROS trigger
the activation of transcription factors that
mediate inflammation, including activator
protein (AP)-1 and nuclear factor (NF)-jB
[19, 20]. Aldosterone also reduces the

bioavailability and production of nitric oxide to
further promote inflammation [21–23]. This
inflammation leads to fibrosis in animal mod-
els, with improvement in fibrosis and cardiac
remodeling after treatment with spironolactone
and eplerenone [24–28].

Finerenone has also demonstrated potent
anti-fibrotic effect in the heart with improve-
ments in cardiac hypertrophy and fibrosis [29]
and was more effective than eplerenone at an
equinatriuretic dose [30, 31]. Distinct gene
expressions patterns were also observed, with
finerenone-treated mice showing reduced
expression of BNP (brain natriuretic peptide) as
compared to eplerenone-treated mice in a
model of pressure overload [30]. Finerenone-
treated mice also showed significantly reduced
expression of Tnnt2 (cardiac troponin T), but
eplerenone-treated mice showed no reduction
when compared to vehicle control; however,
cardiac troponin T’s role in maladaptive cardiac
remodeling still remains unclear [30]. Finally,
finerenone but not eplerenone potently blocks
the expression of TNX, a known pro-fibrotic

Fig. 1 Pathologic mechanisms of aldosterone on the cardiac, vascular, and renal systems. ROS reactive oxygen species, AP-
1 activator protein 1, NF-KB nuclear factor kappa B. Created with BioRender.com
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gene; this expression appeared to be mediated
by differential cofactor modulation by the MR
[31].

Aldosterone also triggers a variety of patho-
genic changes in the kidney, leading to pro-
teinuria and impairment in kidney function.
Patients with primary aldosteronism have
higher rates of albuminuria than patients with
essential hypertension, implicating aldosterone
in proteinuric kidney disease [32, 33]. In the
glomerulus, aldosterone appears to have direct
deleterious effect on the mesangium and on
podocytes. Rats chronically infused with aldos-
terone demonstrated increased ROS via NADPH
oxidase and podocyte foot process effacement.
Treatment with eplerenone showed suppression
of oxidative stress markers and prevented
podocyte effacement [34]. Aldosterone infusion
also triggers mesangial injury, cell proliferation,
and matrix expansion via ERK/MAPK signaling
pathway; these changes were again prevented
through treatment with eplerenone [35, 36].
Finally, aldosterone infusion combined with
salt intake triggers direct injury to the proximal
tubule cells mediated by ROS [37]. This injury
leads to increased expression of pro-inflamma-
tory molecules and tubulointerstitial fibrosis,
damage that was partially attenuated by epler-
enone [38].

Finerenone shows a similar kidney protective
effect to steroidal MRAs. In a rat model of
aldosterone-induced cardiorenal disease, treat-
ment with finerenone provided protection from
glomerular, tubular, and vascular damage,
resulting in decreased proteinuria [8]. Finer-
enone also prevented endothelial cell apoptosis
and smooth muscle cell proliferation in a mur-
ine model of vascular injury [39]. In a rat model,
finerenone increased nitric oxide bioavailability
and reduced ROS levels, resulting in reduced
endothelial dysfunction, improved systolic
blood pressure, and reduced albuminuria [40].

CLINICAL TRIAL DATA IN HUMANS

Steroidal Antagonist Clinical Trials

A series of clinical trials in both kidney and
cardiovascular disease have been conducted

with MRAs (Table 1). The landmark RALES trial
showed that treatment with spironolactone in
participants with NYHA class III or IV heart
failure with reduced ejection fraction (HFrEF)
resulted in a 35% relative risk reduction in the
primary endpoint of all-cause mortality com-
pared with standard of care. A reduction in the
frequency of hospitalization for worsening
heart failure was also observed [41]. In the
subsequent EPHESUS trial, eplerenone com-
pared with standard of care in participants post-
myocardial infarction (MI) with reduced LVEF
resulted in a significant reduction in the co-
primary endpoints of all-cause death as well as
cardiovascular death or hospitalization [42].
Finally, the EMPHASIS-HF trial showed a
reduced risk of cardiovascular death or hospi-
talization in patients with NYHA class II HFrEF
and LVEF of 35% or less with eplerenone com-
pared with standard of care [43]. These large
randomized controlled trials became the foun-
dation behind the recommended use of MRAs
in patients with NYHA class II–IV HFrEF [3].

The role for spironolactone in heart failure
with preserved ejection fraction (HFpEF) is less
clear. In the TOPCAT trial, spironolactone did
not reduce cardiovascular mortality and only
modestly reduced heart failure hospitalizations
in participants with HFpEF; this modest benefit
came with an increased the risk of hyperkalemia
and renal failure [44]. However, the low 3-year
mortality rate of the study population and
normal diastolic function on echocardiography
found in a subset of participants raised ques-
tions about generalizability of the results [45]. A
subgroup analysis showed that participants
enrolled on the basis of elevated NT-proBNP
rather than prior heart failure hospitalization
did show improvement in the composite out-
come of death from cardiovascular causes,
aborted cardiac arrest, or hospitalization for the
management of heart failure [44]. This trial led
to a class IIb/level B-R recommendation that
spironolactone ‘‘might be considered’’ in
patients with HFpEF and appropriate kidney
function to decrease hospitalizations [4].

With regards to kidney outcomes, studies
have shown that inhibition of the renin–an-
giotensin system, independent of changes in
blood pressure, reduces the risk of major kidney
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events [46, 47]. Further studies demonstrated a
continued risk of kidney disease progression,
partly explained by the incomplete blockade of
the RAAS system [48, 49]. Studies also showed a
reduction of proteinuria when steroidal MRAs
were added to maximal tolerated doses of ACEi
or ARB in participants with diabetic nephropa-
thy [50–53]. Unfortunately, samples sizes were
small, follow-up was short, hard kidney out-
comes were not evaluated, and the risk of
hyperkalemia remained high.

Phase II Finerenone Clinical Trials

After the safety and tolerability of different oral
doses of finerenone were assessed and con-
firmed in healthy volunteers, a series of ran-
domized clinical trials (RCTs) with finerenone
began with the ARTS trial. This phase 2a study
enrolled participants with HFrEF and mild or
moderate CKD (60 to less than 90 ml/min/
1.73 m2 and 30 to 60 ml/min/1.73 m2, respec-
tively) and showed that finerenone at a dose of
5 mg or 10 mg daily had larger reductions in
NT-proBNP as compared to spironolactone
25 mg or 50 mg daily [9]. In participants with
mild CKD, the incidence of hyperkalemia was
negligible in both finerenone treatment arms;
however, finerenone did show larger rises in
serum potassium than placebo among partici-
pants with moderate CKD. Despite this, all
finerenone groups showed significantly smaller
rises in serum potassium compared to the
spironolactone group and also showed a smaller
drop in systolic blood pressure and eGFR [9].

With success of the ARTS trial, the ARTS-DN
trial was launched—a multicenter phase 2b RCT
that evaluated the safety and efficacy of finer-
enone compared to placebo in reducing albu-
minuria in participants with diabetic
albuminuria (urine albumin–creatinine ratio or
UACR of 30 mg/g or higher) and mild-to-mod-
erate CKD (eGFR of 30 ml/min/1.73 m2 or
higher) [54]. The study showed a significant
reduction in UACR in participants treated with
7.5, 10, 15, and 20 mg/day of finerenone com-
pared to placebo [54]. The incidence of signifi-
cant eGFR decline (defined as at least 30% at
any time post-baseline) was not statistically

different between all finerenone treatment
groups and placebo. The overall incidence of
hyperkalemia leading to discontinuation of
finerenone was low at 1.8% (specifically, 0% in
the 10 mg group, 3.2% in the 15 mg group, and
1.7% in the 20 mg group) [54]. Blood pressure
reduction was modest with statistically signifi-
cant reduction only seen in the 15 mg and
20 mg groups (decrease of 5.1 mmHg systolic
and 4.7 mmHg systolic).

A second phase 2b trial soon followed: the
ARTS-HF trial enrolled participants with HFrEF,
type 2 diabetes mellitus (T2DM) and/or CKD
(eGFR greater than 30 ml/min/1.73 m2 if T2DM
or 30–60 ml/min/1.73 m2 without T2DM) to
establish the safety and efficacy of five different
finerenone dosing regimens compared to
eplerenone [55]. All finerenone treatment
groups had a similar percentage of participants
with reduction in NT-proBNP levels compared
to the eplerenone group, as well as a similar risk
of hyperkalemia. From 35.6% to 45.2% of par-
ticipants treated with finerenone showed a
greater than 30% reduction in NT-proBNP levels
with no statistically significant difference
between groups. Rates of hyperkalemia at any
point from introduction to any time post-base-
line ranged from 3.6% to 6.3%. All but one
(2.5 mg daily, uptitrated to 5 mg daily) finer-
enone treatment group showed a lower inci-
dence of the composite endpoint of death from
any cause, cardiovascular hospitalization, or
emergency presentation for worsening HF at
day 90 [55].

Phase III Finerenone Clinical Trials

Building on the aforementioned safety and
efficacy data, the phase 3 FIGARO-DKD trial
enrolled participants already on ACEi/ARB
therapy with either stage 2–4 CKD (eGFR
25–90 ml/min/1.73 m2) with moderately ele-
vated albuminuria (UACR 30 to at most
300 mg/g) or stage 1–2 CKD (eGFR 60 ml/min/
1.73 m2 or higher) with severely increased
albuminuria (UACR 300–5000 mg/g) [56]. The
presence of symptomatic (NYHA class II–IV)
HFrEF was an exclusion criterion. Participants
treated with finerenone showed a reduced
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incidence of the primary composite outcome
(death from cardiovascular causes, nonfatal
myocardial infarction, nonfatal stroke, or hos-
pitalization for heart failure) with a relative risk
reduction of 13%. However, this signal was
primarily driven by a lower incidence of hospi-
talization for heart failure in the finerenone
group, even as symptomatic HFrEF was used an
exclusion criterion [56].

No significant difference in the incidence of
the first composite kidney outcome (kidney
failure, a sustained decrease from baseline of at
least 40% in the eGFR, or death from renal
causes) between treatment or placebo was
observed [56]. Though an exploratory endpoint
in nature, end-stage kidney disease occurred less
often in the finerenone group compared to
placebo. Additionally, a second kidney com-
posite outcome (kidney failure, sustained
decrease eGFR of at least 57% from baseline, or
death from renal causes) occurred in 108 par-
ticipants (2.9%) in the finerenone group com-
pared to 139 participants (3.8%) in the placebo
group (HR 0.77; 95% CI 0.60–0.99). Hyper-
kalemia occurred more often in the finerenone
group compared to placebo (10.8% vs. 5.3%),
but events leading to discontinuation of the
study drug only occurred in 1.2% of partici-
pants in the finerenone group compared to
0.4% in the placebo [56].

The phase 3 FIDELIO-DKD trial was also ini-
tiated in parallel: this multicenter, double-blind
trial assigned 5734 participants already on
ACEi/ARB therapy in a 1:1 ratio to receive
finerenone or placebo. This study enrolled par-
ticipants with T2DM and CKD, defined as
moderately elevated albuminuria (UACR
30–300 mg/g) and eGFR 25–60 ml/min/1.73 m2

and presence of diabetic retinopathy or severely
elevated albuminuria (UACR 300–5000 mg/g)
and eGFR 25–75 ml/min/1.73 m2 [57]. At base-
line, almost all participants were on maximum
tolerated dose of ACEi or ARB, and most par-
ticipants had moderately increased albuminuria
(300 mg/g or higher) with an average eGFR of
44 ml/min/1.73 m2; approximately half of par-
ticipants had eGFR between 25 and 45 ml/min/
1.73 m2. Patients with NYHA class II–IV HFrEF
were again excluded from this trial. After a
median follow-up of 2.6 years, FIDELIO-DKD

showed that finerenone reduced the incidence
of the secondary cardiovascular outcome (death
from cardiovascular causes, nonfatal myocardial
infarction, nonfatal stroke, or hospitalization
for heart failure) with a relative risk reduction of
12.2%. These benefits appeared as early as
1 month into the trial and persisted through-
out. The rate of investigator-reported hyper-
kalemia was greater with finerenone as
compared to placebo but rarely (2.3%) resulted
in medication discontinuation [57]. Acute kid-
ney injury-related adverse events were similar
between the two groups.

The finerenone treatment group showed a
decreased incidence of the kidney composite
outcome (kidney failure, a sustained decrease of
at least 40% in the eGFR from baseline, or death
from renal causes) with a relative risk reduction
of 15.6% [57]. Finerenone treatment was also
associated with a 31% relative reduction in the
UACR at month 4 of treatment. After 4 months,
the decline in eGFR was also slower in the
finerenone group [57]. The benefits appear
independent of blood pressure changes as
finerenone had only a slight impact on blood
pressure at 12 months, with a reduction of
2.1 mmHg in the finerenone group versus
0.9 mmHg in the placebo group. With regard to
safety, serious hyperkalemia and hyperkalemia
leading to discontinuation were higher in the
finerenone group compared to placebo (1.6%
vs. 0.4% and 2.3% vs. 0.9%, respectively) [57].

Given that these trials enrolled complemen-
tary population groups, the investigators also
conducted a pooled analysis of the two studies.
The FIDELITY pooled analysis analyzed a pop-
ulation of 13,026 participants with a mean
eGFR of 57.6 ml/min/1.73 m2, median UACR
515 mg/g, and 48.3% of whom had very high
KDIGO risk scores (eGFR less than 30; eGFR
30–44 and UACR 30 or greater; or eGFR 45–59
and UACR of 300 or greater). At a median fol-
low-up of 3 years, the finerenone treatment
group showed a significant reduction in a
composite outcome of time to cardiovascular
death, nonfatal MI, nonfatal stroke, or hospi-
talization for heart failure [58]. Again, a reduc-
tion in heart failure hospitalizations was driven
by the cardiovascular benefit with finerenone
with a relative risk reduction of 22%, even as
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patients with chronic HFrEF were excluded
from the study.

The prespecified composite kidney outcome
(time to onset of kidney failure, sustained at
least 57% decrease in eGFR from baseline over
at least 4 weeks, or renal death) occurred in 360
(5.5%) participants receiving finerenone and
465 (7.1%) participants receiving placebo (HR,
0.77; 95% CI 0.67–0.88; P = 0.0002). The com-
ponent of sustained decrease in eGFR of at least
57% showed a 30% relative risk reduction, and
the time to kidney failure component showed a
20% relative risk reduction. In the entire pooled
analysis, the incidence of hyperkalemia leading
to permanent discontinuation was 1.7% in the
finerenone group and 0.6% in placebo [47].

FUTURE DIRECTIONS
AND CONCLUSION

The data from clinical trials with finerenone has
expanded the treatment options for cardiorenal
disease management for patients with T2DM.
The FIDELIO-DKD and FIGARO-DKD trials
established therapeutic kidney and cardiac
benefit among patients with diabetic
nephropathy. The FDA approved finerenone in
July 2021 for adult patients with CKD and eGFR
greater than 25 ml/min/1.73 m2 secondary to
type 2 diabetes to ‘‘reduce the risk of kidney
function decline, kidney failure, cardiovascular
death, nonfatal heart attacks, and hospitaliza-
tion for heart failure’’ [59]. The approval was
based on results of the phase 3 FIDELIO-DKD
and FIGARO-DKD trials, following the previ-
ously granted priority review designation.
Future directions include the potential thera-
peutic benefit in patients with non-diabetic
proteinuric kidney disease and in the context of
other newer treatments (Table 2). The FIND-
CKD trial, now recruiting, is a multicenter
phase 3 trial to investigate any therapeutic
utility in patients with non-diabetic CKD [60].
The planned phase 2 CONFIDENCE trial will
investigate the safety and efficacy of empagli-
flozin plus finerenone in patients with diabetic
nephropathy already on maximally tolerated
ACEi or ARB.ACEI angiotensin-converting
enzyme inhibitor, ARB angiotensin receptor

blocker, BNP brain natriuretic peptide, CV car-
diovascular, CKD chronic kidney disease, eGFR
estimated glomerular filtration rate, ESKD end-
stage kidney disease, HbA1c glycated hemoglo-
bin, HF heart failure, HFpEF heart failure with
preserved ejection fraction, KCCQ Kansas City
Cardiomyopathy Questionnaire, LVEF left ven-
tricular ejection fraction, NT-proBNP N-terminal
pro-B-type natriuretic peptide, T2DM type 2
diabetes mellitus, TSS total symptom score,
UACR urine albumin–creatinine ratio

With regard to finerenone’s use in patients
with HFrEF, the phase 3 FINESSE trial had orig-
inally been planned to enroll patients with
HFrEF and T2DM, CKD, or both to finerenone
vs. eplerenone to assess a composite cardiovas-
cular endpoint [61]. While a trial comparing
finerenone head-to-head with a steroidal MRA
in the HFrEF population would be useful, the
sponsor decided not to move forward with this
study [61]. After TOPCAT did not show a
reduction in the primary endpoint among
patients with HFpEF, angiotensin recep-
tor–neprilysin inhibitors (ARNIs) were also
shown to be ineffective in reducing heart hos-
pitalizations or cardiovascular mortality in the
HFpEF population [62]. These patients
remained with minimal therapeutic options
until the breakthrough EMPEROR-Preserved
trial, showing a reduced combined risk of hos-
pitalization or cardiovascular death among
HFpEF participants treated with empagliflozin
[63]. The FINEARTS-HF trial, currently recruit-
ing, is investigating the potential therapeutic
benefit of finerenone in the HFpEF population
(with and without T2DM) with cardiovascular
deaths and heart failure events as the primary
outcome [64]. HFpEF remains a formidable
clinical entity and a source of significant mor-
bidity and mortality; another tool in the ther-
apeutic arsenal would be extremely welcome.

Ever since the first trials demonstrated that
blocking the RAAS slowed progression of kidney
disease, many tried to show—without success or
leading to increased adverse events—that dual
blockade of the RAAS could delay kidney pro-
gression even further [12, 14]. The development
of finerenone has created a new opportunity to
achieve this goal, heralding a potential new era
of ‘‘triple therapy’’ to slow the progression of
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CKD [65]. Finerenone also shows promise in
both the treatment of HFpEF and treating
patients with HFrEF who would otherwise not
be a candidate for MRA therapy. This novel
medication has expanded the universe of
patients who could benefit from MRA
treatment.
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