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Bone homeostasis, which involves formation and resorption, is an important process for maintaining adequate bone mass in
humans. Rheumatoid arthritis (RA) is an autoimmune disease characterized by inflammation and bone loss, leading to joint
destruction and deformity, and is a representative disease of disrupted bone homeostasis. The bone loss and joint destruction
are mediated by immunological insults by proinflammatory cytokines and various immune cells. The connection between bone
and immunity has been intensely studied and comprises the emerging field of osteoimmunology. Osteoimmunology is an
interdisciplinary science investigating the interplay between the skeletal and the immune systems. The main contributors in
osteoimmunology are the bone effector cells, such as osteoclasts or osteoblasts, and the immune cells, particularly lymphocytes
and monocytes. Physiologically, osteoclasts originate from immune cells, and immune cells regulate osteoblasts and vice versa.
Pathological conditions such as RAmight affect these interactions, thereby altering bone homeostasis, resulting in the unfavorable
outcome of bone destruction. In this review, we describe the osteoclastogenic roles of the proinflammatory cytokines and immune
cells that are important in the pathophysiology of RA.

1. Introduction

Rheumatoid arthritis (RA) is a devastating autoimmune
disease characterized by progressive bone destruction. Under
physiological conditions, bone remodeling occurs continu-
ally, as a coordinated process that results in the formation
and degradation of bone. This process is a balance between
bone formation, which is mediated by osteoblasts, and bone
resorption, which is regulated by osteoclasts, and ensures
bone homeostasis. In pathological conditions such as RA,
bone homeostasis is disrupted, resulting in uncoordinated
osteoclast formation.

Osteoclasts are generated from precursor cells that are
usually of the monocyte-macrophage lineage. Interactions

between receptor activator of the nuclear factor kappa B
(RANK) and its ligand (RANKL) are essential in osteoclas-
togenesis. RANK on monocyte binds to RANKL, initiating
osteoclast differentiation. Under physiological conditions,
the main source of RANKL is osteoblasts. However, immune
cells and fibroblast-like synoviocytes (FLS) are the main
source of RANKL in pathological conditions such as arthritic
RA joints (Figure 1). Several systemic and local factors
influence the process of osteoclastogenesis. In RA, excessive
activation of the immune system could affect the forma-
tion and function of osteoclasts. Proinflammatory cytokines
tend to be osteoclastogenic; however, the opposite has also
been observed [1]. In our literature review, proinflammatory
cytokines such as interleukin (IL)-1, IL-6, IL-8, IL-11, IL-17,
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and tumor necrosis factor (TNF)-𝛼 were frequently reported
to be osteoclastogenic, and IL-4, IL-10, IL-13, IL-18, inter-
feron (IFN)-𝛾, and IFN-𝛽 were anti-osteoclastogenic. T cell
subpopulations have been studied for their contribution to
osteoimmunology. T helper 17 cells (Th17 cells), a specific
subtype of T helper cells that produce IL-17 andRANKL,were
reported to be osteoclastogenic, whereas the classicalTh1 and
Th2 cells were generally reported to be anti-osteoclastogenic
through their production of IFN-𝛾 (Th1) and IL-4 (Th2) [2, 3].

We could not drawuniformconclusions about the various
factors involved in osteoclastogenesis. Some proinflamma-
tory cytokines, such as IL-7, IL-12, IL-23, and TGF-𝛽, possess
dual osteoclastogenic and anti-osteoclastogenic properties.
Their net effect depends on the specific pathophysiological
conditions in in vivo models, whereas it depends on the
developmental stage of the osteoclasts [4–6] in in vitro
experiments. The determination of their exact role in the
bone microenvironment is even more difficult because these
cytokines can have synergistic or antagonistic effects on
osteoclasts [7–11].

The joint structure is invaded and the bone is destroyed by
the pannus, which contains a massive infiltration of immune
cells, proliferative vessels, and increased numbers of osteo-
clasts (Figures 2(a) and 2(b)). These complicated structures
are frequently observed inRA at the synovium-bone interface
(Figure 2(c)). This review will address immune-mediated
bone destruction in two sections. First, the osteoclastogenic
role of proinflammatory cytokines will be discussed. In the
following section, the osteoclastogenic role of inflammatory
cells that play important roles in the pathogenesis of RA will
be described.

2. Cytokines and Bone: The Osteoclastogenic
Effect of Proinflammatory Cytokines

Proinflammatory cytokines promote osteoclastogenesis via
RANKL expression. Some researchers have shown that proin-
flammatory cytokines such as TNF-𝛼, IL-1, and IL-6 are
capable of inducing osteoclast differentiation independently
of RANKL [12–14]. Others showed that a minimal level
of RANKL is essential for TNF-𝛼-induced osteoclastogene-
sis, revealing that TNF-𝛼 alone does not induce osteoclast
formation [15]. To clarify this controversy, we adopted a
simplifiedmonocellular culture system instead of a co-culture
system, which consists of osteoblasts and bone marrow
cells [16]. In our experience, permissive levels of RANKL
were required for cytokine-associated osteoclastogenesis. IL-
1 increased and IL-6 decreased the number of mature osteo-
clasts in a dose-dependentmanner. Treatment with IL-23, IL-
17, or TNF-𝛼 resulted in various responses according to the
exposure time and the cytokine concentration.

The effects of important cytokines on osteoclastogenesis
in vitro and in vivo are summarized in Table 1. Based on labo-
ratory observations, cytokine-targeting therapies were tested
in bone resorptive conditions. The results of experimental
and clinical trials are presented in Table 2.

2.1. TNF-𝛼. TNF-𝛼 has received attention from immunolo-
gists and rheumatologists because several TNF-𝛼 inhibitors
show enormous pharmaceutical success in treating RA.
TNF-𝛼 is produced by activated T cells and is involved in
inflammation- and cancer-induced bone loss [17]. Treatment
with TNF-𝛼 inhibitors results in decreased inflammation and
bone protection in RA patients [18]. In vivo blockade of TNF-
𝛼 reduces bone resorption in postmenopausal osteoporosis
[19]. Thus, TNF-𝛼 is regarded as a major contributor to bone
destruction and osteoclast formation.

TNF-𝛼 promotes bone destruction by upregulating the
production of RANKL and macrophage colony-stimulating
factor (M-CSF) from osteoblasts and stromal cells, and by
augmenting differentiation into osteoclasts independently
of RANK-RANKL signaling [20]. In addition, TNF-𝛼 and
RANKL synergistically upregulate the expression of RANK
[21]. This osteoclastogenic effect of TNF-𝛼 is closely asso-
ciated with other inflammatory cytokines, including IL-1
and M-CSF [22–24]. Although osteoclastogenesis is a more
dominant mechanism in the bone erosion of inflammatory
disease, osteoblast formation is also affected by TNF-𝛼. TNF-
𝛼 inhibits osteoblast differentiation primarily through TNF-
receptor 1 signaling [25, 26].

2.2. IL-1. IL-1, a proinflammatory cytokine, is highly ex-
pressed in patients with RA [27]. An earlier study showed a
prominent protective effect of IL-1 blockade against structural
damage in an arthritis animal model, suggesting a crucial
effect of IL-1 on bone metabolism [28]. Animal models
with a deficiency of IL-1 signaling present with reduced
osteoclastogenesis, leading to significantly increased levels of
bone density, trabecular bone mass, and cortical thickness
[29, 30]. IL-1 also plays an important role in the bone loss
induced by estrogen deficiency; the level of IL-1 increases
after menopause and decreases with estrogen replacement
[31, 32]. Bone resorption is suppressed by blockade of IL-1 in
postmenopausal women [19].

IL-1 induces RANKL to promote osteoclastogenesis
through the production of prostaglandin E in periodontal
tissue [33, 34]. Furthermore, IL-1 might exert a bone resorp-
tive effect via an alternative pathway independent of the
RANK/RANKL signal [35, 36]. IL-1 is essential for TNF-𝛼-
induced osteoclastogenesis. Human TNF-𝛼 transgenic mice
lacking IL-1𝛽were protected from systemic bone loss regard-
less of sustained inflammation [37]. The activation of p38
mitogen-activated proteinase kinase is involved in TNF-
𝛼- and IL-1-mediated osteoclastogenesis by upregulating
RANKL expression in stromal cells and stimulating osteoclast
precursor differentiation [23].

2.3. IL-6. Dysregulation of IL-6 is frequently observed in
RA patients [38–40]. IL-6 is responsible for synovial inflam-
mation as well as the structural damage of RA. An IL-
6 receptor antagonist, a new immunotherapeutic, reduced
bone turnover, favoring bone protection in RA patients [41,
42]. IL-6 is also involved in other diseases associated with
accelerated bone turnover, such as multiple myeloma and
Paget’s disease of bone [43].
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Figure 1:Osteoblast-derivedRANKLbinds to RANKonmonocytes to differentiate them intomature osteoclasts. Osteoblast-derivedRANKL
plays important role in generating osteoclast in physiological condition. However, immune cell and FLS-derived RANKL play pathogenic role
in RA. Proinflammatory cytokines such as IL-1 and TNF𝛼 effectively stimulate osteoblast to express RANKL. FLS-derived RANKL enhances
osteoclastogenesis in RA joints. RANK: receptor activator of the nuclear factor kappa B; RANKL: receptor activator of the nuclear factor
kappa B ligand; FLS: fibroblast like synoviocyte; RA: rheumatoid arthritis; IL-1: Interleukin-1; TNF𝛼: tumor necrosis factor-alpha.
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Figure 2: (a) Bone is destroyed by a proliferative and invasive synovium,which is called pannus. It originates from adjacent synovial tissue and
invades the cartilages and bones. (b)Magnified view of the pannus-bone interface.The pannus-bone interface is lined withmature osteoclasts
(arrows). Various inflammatory cells and stromal cells comprise the invading pannus. (c) Schematic depiction of the pannus-cartilage-bone
structure. Inflammatory cells such as B cells, T cells, macrophages, monocytes, and fibroblast-like synoviocytes accumulate in the pannus.
For metabolic support, intensive angiogenesis is usually followed. Excessive provision of RANKL from the accumulated cells in the pannus
enhances osteoclastogenesis, resulting in the erosion of bone at the pannus-bone interface.
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Table 1: Roles of cytokines on osteoclastogenesis.

In Vitro In Vivo

TNF-𝛼

Osteoclastogenic
(i) Upregulates the expression of RANKL and osteoclast
activators
(ii) Enhances osteoclast differentiation synergistically with
RANKL or independently of RANKL
(iii) Inhibits osteoclast apoptosis

Osteoclastogenic
(i) Upregulates the expression of RANKL and osteoclast
activators
(ii) Induces osteoclastogenesis in the presence or absence of
RANKL
(iii) Plays a critical role in inflammatory arthritis
(iv) Associated with estrogen-deficient osteoporosis and
joint destruction in RA

References: [12, 21, 110–116] References: [15, 24, 36, 117–119]

IL-1

Osteoclastogenic
(i) Upregulates the expression of RANKL and osteoclast
activators
(ii) Enhances osteoclast differentiation synergistically with
RANKL or independently of RANKL

Osteoclastogenic
(i) Induces osteoclastogenesis in the presence or absence of
RANKL
(ii) Mediates TNF-𝛼-induced osteoclastogenesis
(iii) Participates in physiological bone metabolism
(iv) Associated with estrogen-deficient osteoporosis

References: [33, 35, 116, 120–122] References: [23, 29–32, 36, 37]

IL-6

Osteoclastogenic
(i) Upregulates the expression of RANKL and osteoclast
activators
(ii) Induces RANKL-dependent osteoclastogenesis

Osteoclastogenic
(i) Enhances osteoclastogenesis in the prepubertal stage
(ii) Supports osteoclastogenesis in callus formation during
fracture healing
(iii) Associated with bone loss from inflammatory arthritis
and estrogen deficiency

References: [10, 44, 123–129] References: [46, 48, 49, 130–132]

Antiosteoclastogenic
(i) Suppresses the RANK signaling pathway
(ii) Diverts cells into the macrophage lineage

Antiosteoclastogenic
(i) Suppresses the differentiation of early osteoclast
precursor cells
(ii) Decreases osteoclast formation, leading to reduced bone
turnover

References: [6, 133, 134] References: [46, 47, 135]

IL-17

Osteoclastogenic
(i) Induces the expression of RANKL and proinflammatory
cytokines
(ii) Increases sensitivity to RANKL
(iii) Enhances osteoclastogenesis via prostaglandin E2
(PGE2) in osteoblasts

Osteoclastogenic
(i) Induces the expression of RANKL and proinflammatory
cytokines
(ii) Mediates estrogen-deficient osteoporosis

References: [1, 53, 136–141] References: [52, 142–144]
Anti-osteoclastogenic
(i) Suppresses osteoclast formation at high concentrations
(ii) Inhibits osteoclastogenesis by induction of GM-CSF
References: [145, 146]

IL-23

Osteoclastogenic
Induces osteoclastogenesis via IL-17

Osteoclastogenic
(i) Induces the expression of RANKL
(ii) Expands myeloid-lineage osteoclast precursors

References: [56] References: [65, 147–150]

Antiosteoclastogenic
Inhibits osteoclast formation via T cells

Antiosteoclastogenic
Limits the resorption of immature bone below the growth
plate

References: [57, 151] References: [57]

The previous data indicate the dual functions of IL-6 on
bone remodeling. The addition of IL-6 and the soluble IL-6
receptor into bone tissue cultures stimulates bone resorption
through increased RANKL expression on osteoblasts [44] via
activation of the STAT3 pathway [45]. However, IL-6 exhibits
a direct inhibitory effect on RANK signaling in osteoclast
progenitor cells in the absence of other supporting cells [6].

In vivo studies also suggest that the role of IL-6 varies
in a context-dependent manner. IL-6 transgenic mice with
a high level of circulating IL-6 exhibited enhanced osteo-
clastogenesis, leading to impaired skeletal growth at the
prepubertal stage [46] but decreased osteoclast formation at
the adult stage [46, 47]. Under physiological conditions, IL-
6 deficiency resulted in no detectable change in osteoclast
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Table 2: Effects of biologic therapies on bone.

Mice Human

TNF-𝛼 blockers
Bone-protective in inflammatory arthritis and estrogen
deficiency

Bone-protective in inflammatory disease
Changes in bone turnover markers in postmenopause
(small observational study)

References: [152–158] References: [17, 19, 20, 159]

IL-1 blockers
Bone-protective in inflammatory arthritis and estrogen
deficiency

Bone-protective in RA (not usually recommended; less
effective than other biologic agents)
Changes in bone turnover markers in postmenopause
(small observational study)

References: [28, 155, 157] References: [19, 160, 161]

IL-6 blockers
Bone-protective in inflammatory arthritis
No effects in estrogen deficiency Bone-protective in RA

References: [155, 156, 162, 163] References: [41, 42, 164, 165]

IL-17 blockers
Bone-protective in inflammatory arthritis and estrogen
deficiency No data in bone metabolism

References: [55, 138, 144, 166, 167]

IL-23 blockers Bone-protective in inflammatory arthritis No data
References: [56]

number [48]. However, IL-6 knockout mice were protected
against ovariectomy-induced bone loss [48]. IL-6 knock-
out mice with experimental arthritis showed significantly
decreased osteoclastogenic activity and impaired osteoclast
recruitment to inflammatory sites [49].These results indicate
that IL-6 is associated with bone loss from inflammation
and estrogen deprivation. IL-6, along with TGF-𝛽, induces
the differentiation of näıve T cells into Th17 cells, which are
typically osteoclastogenic [50].

2.4. IL-17. IL-17 is predominantly expressed by Th17 cells, a
specific type of human T helper cells [51]. It is hypothesized
that this cytokine plays a crucial role in inflammation and
the development of autoimmune diseases, including RA.
There is evidence that IL-17 enhances osteoclastogenesis by a
RANKL-RANK dependent mechanism. Studies of an arthri-
tis animal model indicate that IL-17 induces the expression
of RANKL and proinflammatory cytokines such as IL-1 and
TNF-𝛼 [52].These inflammatorymediators (IL-17, IL-1, TNF-
𝛼, and RANKL) interact with each other in the progression
of RA. IL-17A also upregulates the expression of RANK
on osteoclast precursors and increases their sensitivity to
RANKL [53]. Similarly, treatment with an IL-17 neutralizing
antibody inhibited bone destruction in collagen-induced
arthritis [54, 55]. However, the mechanisms of action of IL-
17 in bone erosion remain to be determined, particularly in
association with other osteoclastogenic cytokines such as IL-
1, TNF-𝛼, and RANKL.

2.5. IL-23. One of the most important stimuli for IL-17
synthesis is IL-23 produced by activated dendritic cells and
macrophages [50]. IL-23 is implicated in inflammatory dis-
eases, in association with IL-17. Accordingly, the IL-23/IL-17
axis plays a critical role in controlling inflammatory bone loss.
Recent work suggests that osteoclastogenesis is promoted
by IL-23 and inhibited by an anti-IL-23 antibody [56]. By

contrast, another study shows the indirect inhibition of osteo-
clast differentiation by IL-23 in vitro. Under physiological
conditions, IL-23 promotes higher bone mass in long bones
by limiting bone resorption near the growth plate in vivo [57].
These conflicting data suggest different roles for this cytokine
in physiological or inflammatory bone turnover.

3. Immune Cells and Bone:
The Osteoclastogenic Effect of
Inflammatory Cells

Various immune cells play important roles in the pathogen-
esis of RA. These cells comprise the rheumatoid synovium
that is continuously inflamed and invades adjacent tissue,
resulting in joint destruction (Figure 2). Although osteoclasts
are the final effectors of bone erosion, osteoclastogenesis is
regulated by various cells in the RA synovium. FLS are the
main cellular component of the matrix that is involved in
bone turnover. Monocytes, T cells, B cells, and neutrophils
also infiltrate the RA synovium and interact with each other.
These cells vigorously contribute to osteoclast formation
under inflammatory conditions by producing osteoclasto-
genic cytokines or RANKL (Figure 3).

3.1. Fibroblast-Like Synoviocytes (FLS). Under physiological
conditions, the synovium secretes synovial fluid and provides
mechanical stability to the joint. However, pathological con-
ditions such as RA render the synoviummore aggressive.The
synovium forms a pannus with inflammatory cells, enabling
invasion into the bone [58, 59]. Histopathology demonstrates
increased bone resorption at the bone-pannus interface in the
joints of patients with RA.Thus, FLS play an active role in the
pathogenesis of RA [59].
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Thebone and cartilage destruction inRApatients is partly
mediated by metalloproteinases secreted by activated syn-
oviocytes and chondrocytes [60, 61]. More importantly, bone
destruction is further exacerbated by osteoclasts induced
by the RA synovium [62, 63]. We reported that RANKL
is produced by FLS from RA patients (RA-FLS) and that
osteoclasts are formed in cocultures of RA-FLS and human
monocytes [64]. Consistent with a previous report [62],
this result indicates that RA-FLS have the capability to
support osteoclast differentiation. In RA, FLS upregulate the
expression of RANKL and osteoclastogenic cytokines. Earlier
studies show that RANKL in RA-FLS can be increased by
IL-23 [65], IL-22 [66], and SDF-1 [67]. Furthermore, FLS
produce osteoclastogenic cytokines such as IL-6 in response
to IL-17 and IL-23 [68, 69]. These inflammatory mediators
from stimulated RA-FLS act on stromal cells to upregulate
RANKL expression and on osteoclast precursor cells to
promote differentiation into osteoclasts (Figure 4).

3.2. Monocyte and Dendritic Cells. Bloodstream monocytes
migrate into inflammatory tissue where they differentiate
into resident macrophages and dendritic cells (DCs) [70].
Macrophages and DCs express a variety of inflammatory
cytokines involved in the pathogenesis of RA [71].

Synovial macrophages play a central role in rheumatoid
inflammation. TNF-𝛼, IL-1, and IL-6 are largely produced
by activated macrophages and synovial fibroblasts in the
RA synovium [71, 72]. As discussed above, these cytokines
directly exert osteoclastogenic effects, either synergistically
with RANKLor independently of the RANKL signaling path-
way.Moreover, macrophages in the RA synovium also secrete
TGF-𝛽, IL-21, and IL-23 to differentiate CD4+ T cells into
Th17 cells, which are typically referred to as osteoclastogenic
T cells.

DC, highly differentiated antigen-presenting cells, inter-
act with T cells and B cells in RA. The physiological function
of DC in bone remodeling appears to be modest, as DCs
are not frequently observed in bone or the adjacent stroma
under normal conditions. By contrast, active lesions of RA
and periodontitis retain mature and immature DCs [73–
78]. At these sites, DCs contact and interact with T cells
to elicit inflammatory processes that involve RANK-RANKL
signaling [77]. In multiple myeloma, DCs promote osteoclas-
togenesis, leading to bone destruction, possibly by activation
of RANK-RANKL signaling [79] and the overproduction of
IL-17 [80].

DCs can also affect bone metabolism in a more
direct manner. Rivollier and colleagues showed that human
monocyte-derived DCs transdifferentiate into osteoclasts in
the presence of M-CSF and RANKL in vitro, suggesting
that DCs might directly contribute to osteoclastogenesis
[81]. Alnaeeli et al. tested whether the interaction between
DCs and T cells supports osteoclast development using an
in vitro co-culture system of bone marrow-derived CD11c+
DC and CD4+ T cells. Murine CD11c+ DC developed into
functional osteoclasts after interactions with CD4+ T cells
and stimulation with microbial or protein antigens. Adop-
tive transfer of DC-derived osteoclasts could induce bone

resorption in NOD/SCID mice calvarias in vivo [82]. The
differentiation of DCs into osteoclasts is frequently reported
in the pathogenesis of multiple myeloma [79, 83].

3.3. T Cells. T cells are one of the key regulators of synovial
inflammation in RA, having both stimulatory and inhibitory
roles [71]. T cells can also play a destructive or a protective
role in bonemetabolism in a context- and subtype-dependent
manner.

In the resting state, T cells seem to have a positive effect
on bone mineral density, as T cell depletion increased osteo-
clastogenesis in vitro [84] and accelerated bone resorption in
vivo [85]. T cell-deficient nude mice have significantly higher
numbers of osteoclasts and reduced bone density compared
to controls [85].

In response to antigenic stimuli, CD4+ T cells differen-
tiate into distinct effector subsets, Th1 and Th2 cells, which
are classically defined on the basis of cytokine production
profiles [86]. Th1 cells are characterized by the secretion of
IFN-𝛾, IL-2, IL-12, TNF-𝛼, and TNF-𝛽, and are involved
in the elimination of intracellular pathogens [87]. Th2 cells
produce IL-4, IL-5, IL-6, IL-9, and IL-13, and are responsible
for parasite eradication and allergic disorders [87, 88]. In one
comprehensive study,Th1 andTh2 cells were shown to inhibit
osteoclastogenesis through IFN-𝛾 and IL-4, respectively [89].
However, the bone-preserving effects of Th1 and Th2 cells
are not certain, because contradictory responses have been
observed in inflammatory conditions. Infection and inflam-
mation could activate T cells to produce osteoclastogenic
cytokines such as TNF-𝛼 and RANKL. In the pathogenic
state, lymphocytes express significantly higher levels of
RANKL and have the capacity to induce RANKL-dependent
osteoclast differentiation, unlike in healthy conditions [90].
In addition, IFN-𝛾 exerts a bone resorptive effect instead of a
bone-protective effect in an animal model with ovariectomy,
infection, and inflammation [4, 91]. Thus, further research
is required to understand the net effect of Th1/Th2 cells in
disease states such as RA.

Th17 cells, a more recently characterized subset of CD4+
T cells, have been shown to be more osteoclastogenic. Th17
cells are produced when naı̈ve T cells are activated by TGF-
𝛽 and IL-6 in mice or TGF-𝛽 and inflammatory cytokines in
humans [50, 92].Th17 cell play a pivotal role in the pathogen-
esis of RA through the production ofTh17 signature cytokines
[50]. Since IL-17 is predominantly produced by Th17 cells
and is closely associated with osteoclastogenesis, Th17 cells
are likely to affect bone metabolism primarily through IL-17.
IL-17 directly induces the expression of RANKL from sur-
rounding cells and facilitates the recruitment of inflammatory
cells, leading to an abundance of inflammatory cytokines
such as TNF-𝛼 and IL-1. Moreover, Th17 cells drive RA-FLS
to produce IL-6, IL-8, and matrix metalloproteinases, which
potentiate structural damage [93]. A prominent role forTh17
cells has been demonstrated in bone destructive diseases such
as RA and multiple myeloma [94, 95] (Figure 5).

3.4. B Cells. Multiple myeloma is a malignant B cell disease
characterized by multiple bone lesions. These are caused by
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Figure 3: (a) Monocytes are differentiated into mature osteoclasts by the aid of RANKL. In pathological conditions such as inflammation,
cancer, and hypermetabolism, various cells extraordinarily provide RANKL to the monocytes, resulting in overweighed osteoclastogenesis.
In this condition, the osteoclasts outnumber the osteoblasts, disrupting the bone homeostasis. Bone erosion or osteoporosis is the major
outcome of disrupted homeostasis. (b) In normal physiological conditions, a few cells, predominantly osteoblasts, express RANKL. A similar
number of osteoclasts and osteoblasts maintain the bone mass by homeostatic equilibrium.

plasma cells expressing RANKL, which stimulate osteoclast
formation, leading to osteolysis [96]. This phenomenon
indicates that B cells could affect bone metabolism via
RANKL expression. In RA, the pathophysiologic role of B
cells is highlighted by the therapeutic success of B cell-
depleting therapy with an anti-CD20 monoclonal antibody
(rituximab) [97, 98]. B cells play an important role in pro-
ducing autoantibodies. Although the role of autoantibodies
such as rheumatoid factor (RF) and anti-citrullinated protein
antibody is not fully understood, these autoantibodies are
associatedwithmore severe bone destruction [99]. Treatment
with rituximab reduced bone destruction as well as joint
inflammation. Taken together, these findings indicate that B
cells contribute to bone destruction through RANKL expres-
sion and the production of autoantibodies in cooperation
with other immune cells.

3.5. Neutrophils. Theneutrophil is the most abundant type of
white blood cell in mammals, and comprises an essential part
of the innate immune system. Neutrophils normally circulate
in the bloodstream and migrate to the site of inflammation
in response to inflammatory stimuli. In the RA synovium,
neutrophils regulate inflammation through the secretion
of inflammatory mediators [100]. Histological analysis of
bony lesions in humans and animal models indicates the
involvement of neutrophils in pathogenic bone remodeling.
Infiltration of neutrophils is observed in human periodontitis
and experimental arthritis [101–103]. The RANKL-RANK-
osteoprotegerin pathway is upregulated in activated neu-
trophils from inflammatory sites [104]. Membrane RANKL
on neutrophils is strongly overexpressed after stimulation

with lipopolysaccharide and thus mediates osteoclastic bone
resorption through the interactions between neutrophils and
osteoclasts [105]. The osteoclastogenic effect of neutrophils
could be reproduced with purified neutrophil membranes,
but not with culture supernatants from activated neutrophils.
Thus, the effect of RANKL in activated neutrophils is pre-
dominantly mediated by the membrane-bound form, in
contrast to activated T cells, where RANKL signaling is
mediated by both cell surface and soluble RANKL [106, 107].
In addition, neutrophils affect the function of osteoblasts in
children on chronic glucocorticoid therapy and in patients
with tophaceous gout, resulting in altered bone remodeling
[108, 109].

4. Conclusions

The human body attempts to maintain bone mass in order
to maintain skeletal strength. Bone mass is not static but
dynamic, and results from the formation or resorbtion of
the bony matrix by osteoblasts or osteoclasts. In pathological
states such as RA, in which bone resorption is favored over
bone formation, osteoblasts are outnumbered by osteoclasts.
Osteoclastogenesis is also favored over osteoblastogenesis
by the inflammatory milieu. Recent studies have shown
that numerous cytokines and immune cells have osteoclas-
togenic effects, although their exact roles in pathological
states are difficult to determine because of the complexity
of immune networks in the human body. Proinflammatory
cytokines such as TNF-𝛼, IL-1, IL-6, and IL-17 tend to
be osteoclastogenic. The immune cells that participate in
the pathogenesis of RA often enhance osteoclastogenesis by
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Figure 5: T cells are activated to produce RANKL or osteoclastogenic cytokines by various stimuli. RANKL and activated T cell-cytokines
have the potential to induce osteoclastogenesis. With T cells, the outnumbered osteoclasts destroy the bone in RA.



Journal of Immunology Research 9

upregulating RANKL directly or by secreting proinflamma-
tory cytokines that influence RANKL expression indirectly.
Understanding the precisemechanisms of immune-mediated
bone destruction would increase opportunities for target-
specific inhibition of bone erosion or osteoporosis. Thera-
peutic interventions specifically targeting osteoclastogenesis
might enable clinicians to spare bone mass in RA patients.
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