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Inheritance of gene expression 
throughout fruit development 
in chili pepper
Christian Escoto‑Sandoval1, Neftalí Ochoa‑Alejo2 & Octavio Martínez1*

Gene expression is the primary molecular phenotype and can be estimated in specific organs or tissues 
at particular times. Here we analyzed genome‑wide inheritance of gene expression in fruits of chili 
pepper (Capsicum annuum L.) in reciprocal crosses between a domesticated and a wild accession, 
estimating this parameter during fruit development. We defined a general hierarchical schema to 
classify gene expression inheritance which can be employed for any quantitative trait. We found 
that inheritance of gene expression is affected by both, the time of fruit development as well as the 
direction of the cross, and propose that such variations could be common in many developmental 
processes. We conclude that classification of inheritance patterns is important to have a better 
understanding of the mechanisms underlying gene expression regulation, and demonstrate that sets 
of genes with specific inheritance pattern at particular times of fruit development are enriched in 
different biological processes, molecular functions and cell components. All curated data and functions 
for analysis and visualization are publicly available as an R package.

Relative gene expression, as measured by genome wide methods such as RNA-Seq1 or microarrays, constitutes 
the primary molecular phenotype. The study of gene expression, or “transcriptomics”, favors the understanding of 
the molecular processes that give rise to the whole phenotype, and thus contributes to solve the central problem 
of how the interaction of genotype and environment produces the  phenotype2.

There are reports of substantial heritability for gene expression in various  organisms3; for example, a study 
of human cell  lines4 found that 31% of the genes had significant heritability, while in Arabidopsis it has been 
reported a median heritability of 28.6% and 74.7% when calculating the parameter from parental data or a RIL 
population,  respectively5.

Heterosis or hybrid vigor, the superior performance of the F1 hybrid compared with their  parents6–10, is an 
important phenomenon whose molecular foundations remain enigmatic. Nevertheless, heterosis cannot be 
directly inferred from gene expression, because while the former is directly measured in traits of interest, as for 
example yield, the latter rarely has a direct and unique effect in such traits. In fact, variations in the presence of 
genes, the presence of novel beneficial alleles and modified levels of gene expression in hybrids may all contrib-
ute to the heterotic  phenotypes11; thus, heterosis for different characters is likely due to different sets of genes.

Hybrid vigor is classified as “mid-parent heterosis”, when the F1 is superior than the mean of the two parents, 
or “better parent heterosis”, when the F1 is superior to the best of the two  parents6,11. There are different geneti-
cal models to explain heterosis, as dominance, overdominance, epistasis or pseudo-dominance11–14. However, 
not single model can always explain heterosis, and it must be studied on a case by case basis, evaluating the 
contribution of each possible model.

Recent studies are helping to unveil the molecular bases of heterosis. For  example11, mentions studies that 
found between 5 and 10% of genes with differential expression in maize that have effects on heterosis, and 
also discuss evidence of allelic interactions that lead to novel hybrid expression patterns. In their review of 
the molecular basis of  heterosis6, discuss how complex gene expression networks, detected in maize, rice and 
Arabidopsis for different developmental stages and tissues could contribute to improve our understanding of 
the molecular basis of heterosis, but also underline that no uniform global expression patterns were observed in 
these studies. Related to this point, a gene expression analysis in maize inbreds and hybrids with varying levels 
of heterosis, suggests that transcriptional diversity at specific sets of genes may influence heterosis for differ-
ent  traits7.  In12, the authors remark that heterosis is an environmentally modified phenotype, and suggest that 
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an integrated “phenomics” approach—including not only genomics and transcriptomics, but also QTL-based 
phenotyping followed by map-based cloning should be employed in order to understand the role of heterosis in 
evolution and the domestication of plants. In sunflower heterotic gene pools were developed through the use of 
crop-wild  relatives14, and in that paper the authors suggest that there may be underexploited variation within 
open-pollinated varieties, and thus mining older lines for useful traits could be fruitful. Furthermore,  in15 the 
authors showed the importance of variation and inheritance of small RNAs in maize inbreds and F1 hybrids, 
 while16 demonstrated that pathway expression complementation contributes to biomass heterosis in Arabidopsis, 
 while17 brings new insights into the molecular mechanisms of heterosis during the cabbage head development.

In Capsicum, the study  in18 reports that crosses performed with local chili pepper from Thailand showed 
significant heterosis for yield, and fruit size and quality in some of the F1’s. Also in chili  pepper19, found sig-
nificant heterosis for yield components and fruit quality in the F1 of various crosses between Indian varieties. 
Also in this  crop20, addressed heterosis estimation in 72 hybrids, finding positive heterosis of more than 30% 
for yield related components in 8 of those hybrids. Even when there is currently no direct link between hybrid 
vigor and individual gene expression in Capsicum, and heterosis in this crop might be attributed to the complex 
molecular regulation that is required for the manifestation of even a single phenotypical  trait6, we assert that 
the detailed knowledge of gene expression inheritance patterns within crosses will help in the understanding 
of this phenomenon.

In summary, gene expression is a heritable quantitative character that affects agronomical fitness and consti-
tutes a molecular  phenotype21. Genome wide estimation of gene expression using high-throughput methods, as 
RNA-Seq, will allows us to understand how the variation in this parameter arose and to predict how it is most 
likely to evolve in the  future22.

On the other hand, gene expression studies constitute the base to identify gene regulatory  networks23, and 
these in turn help to understand the dynamics of processes, as the Arabidopsis flower organ  specification24, or 
the changes induced by osmotic stress in that  plant25. Also,  in26, we presented a robust network of cell cycle 
genes with a time shift in expression, which explains some of the differences between domesticated and wild 
phenotypes in chili pepper.

Gene expression can be characterized by ordering the values of that parameter in the parents and the F1 of 
the cross, and then performing statistical tests to evaluate significance. In this way, we determine gene expression 
inheritance classes and models that can be used to examine this quantitative phenotype in a formal manner. Even 
when gene expression has been intensely studied in humans and model organisms to determine  eQTL3,5,27, these 
studies generally omit the basic step of characterizing gene expression inheritance.

Here we studied gene expression by RNA-Seq in a cross between a domesticated and a wild accession of chili 
pepper in both directions (female × male and male × female) at seven time points during fruit development. At 
each one of the crosses and fruit development times we characterized gene expression inheritance, showing that 
this framework unveils interesting aspects of the transcriptome landscape. We also show that gene expression 
inheritance depends on the fruit development stage as well as on the direction of the cross, and that specific inher-
itance types are enriched in genes with different biological processes, molecular functions, and cell components.

Materials and methods
Plant accessions and fruit development sampling. We confirm that all plant materials used in this 
study comply with the relevant institutional, national, and international guidelines and legislation.

To study gene expression inheritance, we selected two accessions of chili pepper which presented broad dif-
ferences in both, fruit phenotype and domesticated history. The first was the large fruit domesticated accession 
Capsicum annuum cv. CM334, also known as “Criollo de Morelos 334”28 and the second was the wild accession 
of C. annuum var. glabriusculum29 known as “Chiltepin” or “Piquín Querétaro”. Thereafter, these two accessions 
are labeled with keys “CM” (Criollo de Morelos 334, Parent 1; P1 ) and “QU” (Piquín Querétaro, Parent 2; P2 ) for 
the domesticated and wild accessions, respectively.

We performed the cross P1 × P2 in both directions to obtain the corresponding F1 ’s as shown in Table 1.
In Table 1 we see that in the cross denoted as C1 pollen donator was the accession QU, resulting in the F1 with 

key “CQ”, while in the cross C2 pollen donator was the accession CM, resulting in the F1 with key “QC”.
To obtain robust estimates of relative gene expression during fruit development, we sampled total RNA from 

developing fruits of genotypes CM, QU, CQ and CQ (Table 1) at 0, 10, 20, 30, 40, 50 and 60 Days After Anthesis 
(DAA). Two RNA-Seq libraries (biological replicates) were constructed, sequenced and mapped to the Capsicum 
reference genome for each one of the 4× 7 = 28 combinations of genotype × time of fruit development, for a 
total of 28× 2 = 56 RNA-Seq libraries. The total number of clean reads mapped to the reference genome from 
these 56 libraries was of 985.8 million with an average of approximately 17.6 million per library. This study was 
performed in parallel with the one reported by us  in26, and full details of plant cultivation, fruit sampling, RNA-
Seq libraries construction, sequencing and curation can be consulted in the supplementary material of that article. 
The full RNA-Seq data have been deposited in NCBI’s Gene Expression  Omnibus30 and are accessible through 
the GEO Series accession number GSE165448.

Table 1.  Definitions of crosses as function of parents and F1 keys.

Cross id Definition P1 P2 F1

C1 CM female × QU male CM QU CQ

C2 QU female × CM male CM QU QC
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Gene expression inheritance classification and statistical analyses. A total of 35,883 genes were 
detected in the RNA-Seq data, however, only 29,946 of these ( ≈ 83% ) were consistently expressed in all acces-
sions and thus were studied here. Both, raw and curated data, as well as a set of functions to data-mine the 
transcriptomes were gathered into a computer tool called “Salsa”31, programed in the  R32 environment. Our R 
package Salsa is publicly available  in33.

Here we denote standardized gene expression for a gene by the same symbol used for the genotype, say, P1, P2 
and F1 . To classify inheritance, we will consider the order in which these numbers can be sorted. First, noticing 
the order of the F1 with reference to their parents, we obtain three classes: “Low F1 ” –when the value of the F1 is 
lower than either of the two parents; “Intermediate F1”—when the F1 is within the parent’s values and “High F1
”—when the value of the F1 is higher than either of the two parents. The main rectangles in Fig. 1 show the three 
classes within the main rectangles.

By taking into account the order of the parents, P1 and P2 , within each one of the three classes we obtain a 
further classification of “models”, denoted as mi; i = 1, 2, 3, 4, 5 and 6, and represented within the blue rectangles 
in Fig. 1; for example, class “Low F1 ” is divided into models m1 : F1 < P1 < P2 and m2 : F1 < P2 < P1 , etc. Up to 
here we exhaustively classified inheritance into three classes that imply 6 different models, simply by observing 
the values of standardized gene expression in the cross participants, but without employing any statistical test.

However, we must perform statistical tests in order to decide if the inequalities postulated between pairs of 
gene expressions at each one of the mi models are significant or not. Table 2 presents the possible tests as well 
as their null hypotheses.

Take as an example the model m1 : F1 < P1 < P2 , which belongs to the “Low F1 ” class and is presented in 
the upper left hand side blue rectangle in Fig. 1. This model arises when we observe that a particular gene has 

Figure 1.  Inheritance class, model and sub-model. Inheritance classes are presented in main rectangles (Low 
F1 , Intermediate F1 and High F1 ); models ( m1 to m6 ) are presented in blue rectangles within each class and sub-
models are presented in the orange rectangles below each model. Adjacent to orange rectangle the symbols “L” 
and “R” represent the left and right hand side inequality of the corresponding model ( mi ). In those letters, green 
means that the corresponding inequality stands, while red means that the inequality is substituted by equality. 
The final result of each row (sub-model) is shown in the orange rectangle.

Table 2.  Formal hypotheses definitions for pairs of cross participants.

Pair H0

P1, P2 P1 = P2

P1, F1 P1 = F1

P2, F1 P2 = F1
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the lowest expression in F1 , followed by the value in P1 and then by the highest value in P2 . Assume that the 
observed order is correct. Then we still need to test if in fact the values of F1 and P1 (the left hand side of the 
F1 < P1 < P2 inequality) are different or not by testing the hypothesis P1, F1 on Table 2, and also we need to 
corroborate if the values of P1 and P2 (the right hand side of the F1 < P1 < P2 inequality) are different or not by 
testing the hypothesis P1, P2 on Table 2. From the four possible results of these two test we have the four sub-
models presented in the orange rectangle below the blue rectangle containing model m1 : F1 < P1 < P2 in Fig. 1. 
Those sub-models are F1 < P1 < P2 , F1 < P1 = P2 , F1 = P1 < P2 and F1 = P1 = P2 and result from rejecting 
(green letter) or not rejecting (red letter) the hypotheses about the “left” (L) hand side participants –in this case 
F1 and P1 , and also rejecting or not the “right” (R) hand side participants—in this case P1 and P2 . For example, 
sub-model F1 < P1 = P2 , results when we observed model m1 : F1 < P1 < P2 , and rejected the null hypothesis 
H0 : P1 = F1 , but fail to reject the null hypothesis H0 : P1 = P2 . This results in the annotation with a green L 
followed by a red R in the corresponding sub-model in Fig. 1.

Note that each one of the six orange rectangles in Fig. 1 contains the four different sub-models for a given 
model (blue rectangle), making a total of 6× 4 = 24 sub-models. Nevertheless, in all cases when the tests for 
the left and right hand side participants are not rejected (rows annotated with red letters LR; last rows at each 
orange rectangle) the sub-model is always the one in which all three participants have statistically the same 
expression, and those six sub-models can be written as P1 = F1 = P2 by the property of equality’s transitivity. 
Thus we have in fact not 24, but 24− 5 = 19 different sub-models, and sub-model “ P1 = F1 = P2 ” is considered 
to be the “null model”.

In all the six orange rectangles presenting sub-models in Fig. 1, the first row presents a sub-model equal to 
the corresponding model. Those are the case annotated with green LR letters—cases where both hypotheses were 
rejected, and we call those cases “main significant sub-models” in posterior analyses.

Given that we have a time course experiment with 7 times points sampled along fruit development 
( 0, 10, · · · , 60 DAA), the three hypotheses shown in Table 2 must be tested for each one of those time points. To 
obtain the p-values for each test at each time and in crosses C1 and C2 (see Table 1), we used the exactTest 
function of the R package “edgeR”34. Then the p-values were transformed to q-values by the method  in35 to obtain 
a suitable False Discovery Rate (FDR) of approximately 5% (see details in Supplementary S1).

In summary, for each cross we used a hierarchical classification of inheritance which is shown in Fig. 1. In a 
first step we observed the relative position of the F1 with reference to both parents, obtaining classes “Low F1 ”, 
“Intermediate F1 ” and “High F1 ” (main rectangles in Fig. 1). On a second step we determined by observation the 
order of the two parents within each class, obtaining two models for each class—those models are shown as blue 
rectangles within each class in Fig. 1. Finally, in a third step we took into account the results of the statistical tests 
performed to subdivide each model into the four possible sub-models shown in the orange rectangles in Fig. 1. 
We end up with an exhaustive classification of 19 inheritance patterns, represented as sub-models.

To test independence of classification criteria in contingency tables—resulting from counting frequencies of 
inheritance types, we used the log likelihood ratio test or “G-test”36. With this tool we tested randomness and 
consistency in time of inheritance patterns. Details of these analyses are given in Supplementary S2.

We used Gene Ontology (GO)37 enrichment analysis for all the 19× 7 = 133 sets of genes resulting from 
the combinations of the 19 sub-models and 7 times of development. These analyses were performed for aspects 
“Biological Process” (BP), “Molecular Function” (MF) and “Cell Component” (CC), with an initial FDR of 10%. 
See Supplementary S3 for details.

All analyses were performed with the data and functions implemented in our Salsa31 package. Statistical 
results were gathered into a set of R objects, which were documented and deposited in a public  repository38 (See 
Supplementary S4).

R package. Curated data and functions are deposited as an R package (“ChiliCross”)38, available at (Link: 
https:// zenodo. org/ record/ 51197 46#. YPhQX ZOuIcg).

Plant collection. Seeds for the parent accessions, C1 (CM) and C2 (QU), were obtained from the seed bank 
of the “Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias” (INIFAP), México. F1 crosses of 
the parents, CQ and QC (see Table 1), were performed in our laboratory. All plants were grown as previously 
described  in26 and we confirm that all plant materials used in this study comply with the relevant institutional, 
national, and international guidelines and legislation.

Results
Inheritance of gene expression overall times of fruit development. Of the 29,946 genes consist-
ently expressed in all accessions, 22,374 ( ≈ 75% ) were expressed in frequencies > 0 in at least one of the par-
ticipants in the crosses (accessions CM, QU, CQ and QC; see Table 1). Because we have 2 crosses and 7 times 
of development, we will be studying a total of 22,374 ×2× 7 = 313,236 cases of inheritance. However, of these 
313,236 cases 3,440 ( ≈ 1% ) have an observed expression equal to zero in the three participants of a cross. Those 
cases represent particular instances of the null sub-model “ P1 = F1 = P2 ”, i.e., cases where P1 = F1 = P2 = 0.

To obtain a general panorama of the inheritance of gene expression, we classified all patterns into classes, 
models and sub-models as shown in Fig. 1 without taking into account the time of fruit development.

Panel (A) in Fig. 2 shows bar plots of percentages of cases per class. Without taking into account the cross, 
i.e., in the grey bars for the total of both crosses, we see that the proportion of low, intermediate and high F1 
classes are 30, 42 and 28%, respectively; thus, the cases where the F1 has a value intermediate to the ones in 
the parents is the most prevalent. Confidence intervals (CI’s) for these percentages—represented by vertical 
red lines in the top of the bars, show that there are significant ( p < 1× 10−5 ) differences between crosses for 
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Figure 2.  Frequency of class, model and main sub-model per cross over all times of fruit development. Colored 
bars give percentages for cross C1 , C2 and the Total of both crosses. Red lines in the middle of the top of bars are 
Confidence Intervals (CI) for percentages with α = 1× 10−5 . Numbers in bold at the base of each bar give raw 
number of cases. Rounded percentages are given in bars in panels (A,B), and above bars in panel (C). Panel (A) 
Frequency per class; Panel (B) Frequency per model; Panel (C) Frequency per main significant sub-model.
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classes “Low F1 ” and “High F1 ”. The “Low F1 ” is higher by ≈ 4% in cross C1 compared with cross C2 (values of 
≈ 32 and 28% respectively), while the reverse happens for the proportions in the class “High F1 ”. For that class 
we have percentage higher in C2 ( ≈ 30%) compared with the percentage of C1 ( ≈ 26%). These differences imply 
that there is a clear effect of the sex of the parent in the proportion of the “Low F1 ” and “High F1 ” classes, while 
that effect is not strong for the “Intermediate F1 ” class, where both percentages are close to 41%, with a differ-
ence between crosses of ≈ 1%.

Panel (B) in Fig. 2 presents the percentages of cases for the six models ( mi; i = 1, 2, · · · 6 ; blue rectangles in 
Fig. 1) within the three classes. This panel allow us to analyze with more detail than in Panel (A) the inherit-
ance patterns per cross and in total. Within class “Low F1 ” we see that in total the pattern “ F1 < P1 < P2 ” has 
a significantly ( p < 1× 10−5 ) larger percentage ( ≈ 16% ) than the pattern “ F1 < P2 < P1 ” ( ≈ 14% ), and the 
differences in percentages of “ F1 < P1 < P2 ” between the two crosses are larger than the differences in percent-
ages of “ F1 < P2 < P1 ” between the two crosses. On the other hand, within the class “Intermediate F1 ” model 
“ P1 < F1 < P2 ” ( ≈ 24% ) is preponderant with regard to the model “ P2 < F1 < P1 ” ( ≈ 17% ); however, there are 
not high differences between crosses for those two models. Finally, models “ P1 < P2 < F1 ” and “ P2 < P1 < F1 ” 
within class “High F1 ” present heterogeneity both, between models and crosses, with percentages that vary 
between ≈ 13% and ≈ 16% . In summary, panel (B) shows that different models present heterogeneous propor-
tions that in various cases differ between crosses.

It is important to remember that in panels (A) and (B) of Fig. 2 the results are purely observational; i.e., 
percentages of classes and models are presented directly as observed, without performing any statistical tests. 
In contrast, panel (C) in Fig. 2 presents percentages in the “main significant sub-models”, i.e., sub-models that 
are equal to the corresponding models but statistically significant. Thus, while in panel (B) the percentages 
refer to the total number of cases, in panel (C) such percentages are exclusively for genes that present the cor-
responding main significant sub-models after performing the statistical tests, having a FDR of ≈ 5% . As in 
panel (B), in panel (C) percentages over all the 6 models per cross add to 100%, however, as can be seen by 
the numbers in each one of the bars, the numbers of main significant sub-models in panel (C) are always a 
small fraction of the same model presented in panel (B). For example, while the number of cases with model 
“ F1 < P1 < P2 ” is 27,526 in panel (B), it is only 712 in panel (C). This is because, after observing all the 27,526 
cases of model “ F1 < P1 < P2 ”, we performed statistical tests to re-classify these cases into the four possible 
sub-models: “ F1 < P1 < P2 ”, “ F1 < P1 = P2 ”, “ F1 = P1 < P2 ” and “ F1 = P1 = P2 ” (see orange rectangle in 
upper left hand side corner of Fig. 1), and only in 712 cases both statistical tests, P1 = F1 and P1 = P2 (Table 2) 
were rejected. Details for the 19 sub-models are presented in Supplementary S1.

In panel (C) of Fig. 2 we see that the percentages of the six main significant sub-models are heterogeneous; 
nevertheless, standing out by having the highest percentages are the significant sub-models “ P1 < F1 < P2 ” in 
C1 with ≈ 44% and “ F1 < P1 < P2 ” in C2 with ≈ 34% of the totals per cross. Interestingly, the main significant 
sub-models with lower percentages are the ones in class “High F1 ”, with values that range between 5 and 9%.

After statistical analyses to determine significant sub-models (presented in the orange rectangles in Fig. 1), 
a total of 114,436 and 100,474 combinations of genes × times of development in C1 and C2 , respectively, were 
classified as the null model P1 = F1 = P2 . To appreciate the differences in frequencies of the other 18 sub-models 
in each one of the two crosses, Fig. 3 presents the percentages of such sub-models per cross, with reference to 
the total number of null models.

In Fig. 3 we can notice, by the height of the whole bars, that the percentage of sub-models with reference 
to the null model varies between approximately 1.2 and 10.2%. Even when the proportions of the sub-models 
are heterogeneous and different for each cross, there is a significant ( p ≈ 0.03 ) linear correlation of r̂ ≈ 0.53 
between the percentages per cross. For C1 the sub-model with larger frequency is P1 = F1 < P2 with ≈ 5.3% , 
while for C2 that place corresponds to sub-model P1 < F1 = P2 with ≈ 6.4% . These two models belong to the 
class “Intermediate F1 ”, which as we saw in Fig. 2 is the most frequent class. On the other hand, the two less 
frequent sub-models are P2 < P1 < F1 in C1 with ≈ 0.2% and F1 = P1 < P2 in C2 also with ≈ 0.2% . These less 
frequent sub-models belong to the extreme classes “High F1 ” and “Low F1 ”, respectively.

Inheritance of gene expression during fruit development. As explained before, by taking into 
account statistical considerations, i.e., significance of the tests performed, we exhaustively classified genes into 
19 inheritance sub-models. It is important to remember that the null sub-model, “ P1 = F1 = F2 ”, is assigned to a 
given gene within a time of development either, when the expression in the three participants of the cross is equal 
to zero, or when the corresponding tests between the mean were not significant. As a result of these conditions, 
the most frequent sub-model over all times of development was the null one, with a frequency of 114,436 cases 
( ≈ 73% ) in cross C1 and 100,474 ( ≈ 65% ) in cross C2 . Previously we showed results without taking into account 
the time of fruit development. Figure 4 displays the frequency of classes when the time of fruit development is 
considered.

Panel (A) in Fig. 4 is a bar plot for the percentages of genes per class (“Low F1 ”, “Intermediate F1 ” and “High 
F1 ”) and time of fruit development ( 00, 10, · · · , 60 DAA –label at the bottom of each bar) in cross C1 , exclud-
ing the null model. Numbers above each bar give the number of genes. In this plot we can see that the time of 
development strongly influences inheritance class; i.e., the percentages and raw gene numbers are highly variable 
per time within each class. For example, “Low F1 ” class is preponderant at 50 DAA by being present in 4,724 
genes, but at time 60 DAA the number of genes with this class is only of 410. Panel (B) in Fig. 4 is as panel (A) 
but for cross C2 , and there we can see also high heterogeneity of frequencies of the three classes along the times 
of development.

To compare frequencies of genes per class and time of development, panel (C) in Fig. 4 presents the fold 
changes of the number of genes per combination of class × time of development of the frequency in C1 over the 
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Figure 3.  Percentages of sub-models per cross with reference to the total number of null models 
( P1 = F1 = F2 ). Sub-model identified in or over each one of the bars. The six main significant sub-models (that 
contain only inequalities) are identified with an asterisk.

Figure 4.  Frequency of class per time of fruit development. In panels (A–C) bars present values per class (label 
in X-axis) and time of development (at bottom of each bar). Null sub-model ( P1 = F1 = F2 ) is not included. 
Panels (A,B) give percentages of genes per class × time combination for crosses C1 and C2 , respectively. Number 
of genes are presented over each bar. Panel (C) gives fold change for percentages C1/C2 for each class × time 
combination; the green line at Y = 1 denotes equality of proportion. Panel (D) gives percentages of null sub-
model ( P1 = F1 = F2 ) in Y-axis as function of time of development in X-axis per cross.
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corresponding frequency in C2 . Equality of frequencies in the two crosses happens if this fold change is equal to 
1, a point marked by the green horizontal line. We can see that only in class “Low F1 ” at 0 DAA the fold change 
is ≈ 1 , signaling equality of frequencies. In all other cases the observed fold changes are highly different from the 
neutral value of 1; in two cases, “Low F1 ” at 50 DAA and “Intermediate F1 ” at 40 DAA the fold changes are larger 
than 2, indicating that the frequency in C1 is more than twice times the frequency than in C2 , and conversely, in 
4 cases, say “Low F1 ” at 10 DAA, “Low F1 ” at 20 DAA, “Intermediate F1 ” at 60 DAA and “High F1 ” at 20 DAA the 
fold is smaller than 0.5, indicating that the frequency in C2 is more than twice times the frequency than in C1 . 
In general, these differences in fold change indicate that the cross of origin highly influence inheritance pattern.

Panel (D) in Fig. 4 presents the plot of the percentages of the null sub-model, P1 = F1 = F2 , per time of devel-
opment in each cross. Those percentages vary from a minimum of ≈ 45% for cross C2 at 20 DAA, up to a maxi-
mum ≈ 95% for cross C1 at 60 DAA, with a median of ≈ 67% . Given that the power of the tests for each inherit-
ance sub-model at each time of development is approximately equal, this heterogeneity in the percentages of cases 
where the three participants of the crosses have statistically equal gene expression (sub-model P1 = F1 = F2 ), 
indicates that the dynamics of inheritance patterns change with both, cross and time of development.

To evaluate the relative importance of the factors “cross” ( C1 or C2 ) and “time of fruit development” (seven 
points) on the number of cases of each sub-model, we carried out various statistical analyses. Even when the 
number of cases of each sub-model is differentially influenced by cross and time, in general the cross of origin 
is approximately 3.8 times more important than the time of development in determining the number of sub-
models (see Supplementary S2).

In summary, frequencies of gene expression sub-model are influenced by both, the direction of the cross as 
well as by the time of development. Even when for a given gene sub-models can change through fruit devel-
opment, there is a strong and significant tendency of the genes to have a consistent inheritance pattern over 
development; details of this fact are presented in Supplementary S2.

Gene Ontology (GO) enrichment analyses. GO enrichment analysis was performed within the Salsa 
 package31,33 for all the 133 gene sets resulting from the combinations of the 19 sub-models and 7 times of devel-
opment for each one of the two crosses. Full results are gathered into the “ChiliCross”38 R package (see Supple-
mentary S4). We used an initial FDR of 10% for the analyses and Table 3 presents the raw numbers and percent-
ages of enriched terms found for each aspect in each one of the crosses.

In Table 3 we see that the total number of enriched terms is roughly the same for both crosses, comprising 
approximately 51 and 49% of the total for crosses C1 and C2 , respectively. On the other hand, the approximate 
percentages for the aspects are 53, 36 and 11% for BP, MF and CC, respectively. By taking into account that GO 
enrichment was performed for 133 gene sets per cross, we obtained a median of approximately 9 terms enriched 
for each individual analysis performed. This demonstrates that particular inheritance sub-models, found at 
specific times of fruit development, have sets of genes preferentially involved into particular BP, with distinct 
MF and related with specific CC.

Biological Process (BP) enrichment. Of the total number of 3,481 BP results obtained (Table 3), 3,096 (89%) 
have an odd value larger than one, and thus present in fact a significant gene enrichment, while the remaining 
385 (11%) have an odd value smaller than one, and thus the gene set is depleted of the corresponding term. Here 
we are going to study only the 3,096 cases of enrichment.

The 3,096 enrichment cases are heterogeneously distributed among the 133 combinations of sub-model × 
development time. The most frequent sub-model over all times was, by much, the null one ( P1 = F1 = P2 ), with 
a total of 2,572 cases, i.e., 83% of the total. Because the null model implies equality of expression in the three 
participant of each cross, those enrichment cases in fact refer to enrichment at particular times of development. 
On the other hand, the remaining 3, 096− 2, 572 = 524 (17%) cases occur in one of the 18 not null sub-models, 
distributed among different development times. The number of cases in particular combinations of not null sub-
model × times of development varies between a minimum of 0 (in 74 of the 126 combinations) and a maximum 
of 68, with a mean of 4.159 cases per combination. The combination with the largest number of enriched terms 
(68) occurs for the sub-model F1 < P2 = P1 at time 20 DAA.

In the 3,096 enrichment analyses there are 580 different GO BP terms, of which 176 (30%) are unique, i.e., 
present in a single sub-model × time combination, and the remaining 404 (70%) are shared by two or more of 
those combinations. Supplementary S3 presents the bi-variate distributions of the numbers of GO BPs.

An interesting example of an enriched BP is given by the term “negative regulation of growth” (GO:0045926). 
All three genes annotated in this BP in Capsicum present the sub-model P2 < P1 = F1 at the time of fruit devel-
opment 0 DAA, and the p-value for the enrichment analysis was ≈ 0.0004 , reaching a FDR < 8% . The three 

Table 3.  Number of GO terms significant at 10% FDR in aspects “Biological Process” (BP), “Molecular 
Function” (MF) and “Cell Component” (CC). Values inside parenthesis are approximated percentages of the 
total.

Cross BP MF CC Total

C1 1,762 (27) 1,231 (19) 356 (5) 3,349 (51)

C2 1,719 (26) 1,177 (18) 377 (6) 3,273 (49)

Total 3,481 (53) 2,408 (36) 733 (11) 6,622 (100)
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genes annotated in BP “negative regulation of growth” are pentatricopeptide repeat-containing proteins, with 
Arabidopsis orthologs AT5G66520, AT1G59720 and AT2G46050. Figure 5 presents a plot for the standardized 
gene expression of the first gene annotated in the BP “negative regulation” of growth, which is the gene coding 
for protein XP_016567845.1, ortholog to AT5G66520.

Figure 5 is an example of running the R function “cross.plot()”, that we developed to analyze the data 
with the package “ChiliCross”38. That function can be used to plot and interpret the inheritance patterns of any 
set of seven cases (combinations of gene × time of development) for the almost 30,000 genes studied, and thus 
represents a powerful interpretation tool for inheritance patterns (see Supplementary S4 for details).

To interpret plots given by the function “cross.plot()”, it is necessary to keep in mind that the X-axis 
shows always standardized gene expressions for the participants of the cross, defined by the upper left hand side 
legend of the plot. Thus, the vectors formed by the mean expression of parents and F1 have always an average of 
zero and a standard deviation of one, representing the model of inheritance of a given gene id (annotation in 
the left had side margin) at a particular time of development (annotation in the right had side margin). Below 
the line that expands along the standardized gene expression in each row, we have an annotation corresponding 
to the sub-model –which takes into account the significance of the differences observed.

For example, the first row in Fig. 5, corresponds to the time 00 DAA, and has annotation “C1; P2 < P1 = F1 ”, 
meaning that the plot shows results from cross C1 and that the sub-model estimated for that gene at that cross 
is P2 < P1 = F1 ; i.e., even when we see that the observed values are in the order P2 < P1 < F1 , the difference 
between P1 and F1 was not-significant. Interpretation for the other six rows in Fig. 5 (times 10, 20, · · · , 60 DAA) 
is analogous to the one for the first row (time 00). In Fig. 5 we can see how the standardized expression of the 
gene changes through the time of development, and the annotations below each row tell us which changes were 
significant, implying a change in sub-model. In rows 2, 3, 4 and 5 in Fig. 5, corresponding to times 10, 20, 30 
and 40, we see changes in the observed values of mean inheritance in the participants; however, in those four 
rows the annotation is the same: “C1; P1 = F1 = P2 ”, meaning that the estimated sub-model was the same in 
the four cases, i.e., the null sub-model “ P1 = F1 = P2 ”. Thus, between 10 and 50 DAA there are not significant 
changes in gene expression between the participants of the cross C1 for the gene plotted.

Previously,  in31, we developed a methodology to estimate, test and plot “Standardized Expression Profiles” 
(SEPs) for sets of genes. Briefly, a SEP for a set of genes is a numerical vector for the means at each time of devel-
opment which has a mean of zero and a standard deviation of one. Approximate Confidence Intervals (CIs) for 
the mean at each time are obtained using the dispersion of individual genes at each time. Figure 6 presents the 
SEPs for the three genes involved in “negative regulation of growth” in accessions CM, QU and CQ, which cor-
respond to P1 , P2 and F1 , respectively.

In Fig. 6 we can see how at 0 DAA the set of the three genes annotated in the BP “negative regulation of 
growth” have a sub-model P2 < P1 = F1 , i.e. the mean expression of the three genes in P2 (accession QU) is the 
lowest at 0 DAA, while the mean expression of P1 (accession CM) and the F1 (accession CQ) is higher, and not 
significantly different between P1 and F1 –because the corresponding CIs are overlapped. It is important to note 

Figure 5.  Standardized gene expression (X-axis) for gene coding protein XP_016567845.1 at each time of 
development (rows in Y-axis). Left margin presents gene id while right margin gives the time of development in 
DAA. Each row is annotated with the cross ( C1 ), followed by the sub-model.
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that the mean of standardized gene expression for these sets of three genes changes through time—a fact that 
was already observed for one of the three genes in Fig. 5. For example, in Fig. 6 at time 50 DAA, the inheritance 
of these three genes is reversed with reference to the one at 0 DAA; at 50 DAA we have that F1 = P1 < P2 —a 
fact that is corroborated for the first gene in Fig. 5.

Figures 5 and 6 illustrate the fact that all GO BP results can be studied in detail by plotting the inheritance 
patterns of the genes involved—as in Fig. 5, or showing and testing the standardized expression of the sets of 
genes along time of development—as in Fig. 6. Supplementary S4 shows how to perform such analyses by using 
the data deposited  in38.

Table 4 breaks down the 3,096 cases of enriched GO BPs into classes to facilitate interpretation.
In Table 4 columns “Low F1 ”, “Intermediate F1 ” and “High F1 ” present the numbers of enriched GO BPs which 

are exclusive to those classes, column“P1 = F1 = P2 ” gives the numbers of enriched GO BPs in instances of the 
null sub-model, while column “Shared” presents the number of enriched GO BPs that are shared by more than 
one class and time combination. From this table we can see that there are not strong differences between the 
numbers of enriched GO BPs between crosses, and also that the largest numbers of those processes are shared 
in more than one class, followed by the ones present in the null sub-model.

The degree of enrichment in a GO analyses is measured by the “odds” from the 2 × 2 contingency table ana-
lyzed. In this context, the odds estimate how more likely is to find a gene annotated with the process analyzed 
in the target set of genes, compared with the probability of finding it in the set of genes not annotated with the 
process. When all genes annotated with the given process are in the target set, the value of the odds become 
“infinite” (x/0), denoting that it is impossible to have a larger enrichment, and that value is denoted by the sym-
bol “ ∞ ”. Table 5 presents the GO BPs with larger odd values for each one of the combinations of class × cross 
presented in Table 4.

In rows 1 to 4 in Table 5 we can see that the GO BPs with the largest odds for classes “Low F1 ” and “Inter. 
F1 ” (intermediate F1 ) are different GO BPs that happen for different sub-models and times in both independent 
crosses, thus those enriched BPs are cross and time dependent. In contrast, rows 5 to 10 in that table repeat the 
same GO BP with the same sub-model and, in all cases except for row 10, at the same time of development. This 
implies that such BPs are consistently highly enriched, independently of the cross and almost independently 

Figure 6.  Standardized Expression Profiles (SEPs) for the sets of the three genes annotated in BP “negative 
regulation of growth” in accessions CM, QU and CQ. Confidence Intervals (CIs) for each SEP at each time are 
presented as thin vertical lines.

Table 4.  Number of GO terms enriched in “Biological Process” (BP) per class.

Cross Low F1 Intermediate F1 High F1 P1 = F1 = P2 Shared Total

C1 26 17 9 543 979 1,574

C2 30 29 10 445 1,008 1,522

Total 56 46 19 988 1,987 3,096
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of the time of development. Supplementary S3 presents an additional table of enriched BPs per time × pattern 
combinations.

Molecular Function (MF) enrichment. As seen in Table 3, we have a total of 2,408 significant cases for MF. 
However, of those cases only 1,772 have odds > 1 , and thus are truly “enriched”. Table 6—which is homologous 
to Table 4 but for MF, presents the numbers of enriched GO MF per class, while Table 7 presents the MF for class 
and cross that gave the highest value of odds within each combination.

In Table 6 we can see that cross C1 has a higher number of enriched MF, 936 (53%), than C2 , which has 
836 (47%). We can also note that the numbers of enriched MF exclusive of each class, excluding the ones in 
P1 = F1 = F1 (676; 38%), are in decreasing order 51 (3%) for “Intermediate F1 ”, 36 (2%) for “Low F1 ” and only 
11 (1%) for the “High F1”.

In Table 7 we can see that in 8 of the 10 cases presented, the enrichment level is the highest that can be 
reached, presenting values of ∞ for the odds, and thus denoting that in those cases all genes annotated in the 
corresponding GO MF were present in the corresponding set of target genes. Also, in Table 7 we can note that for 
classes “High F1 ” and null model ( P1 = F1 = F1 ), the same MF was the one with the highest odd value, “protein-
glutamine gamma-glutamyltransferase activity” for “High F1 ” in both crosses at the same time (50 DAA), and 
“growth factor binding” for P1 = F1 = F1 at times 00 and 50 DAA for C1 and C2 , respectively.

Cell Component (CC) enrichment. As seen in Table 3, we have a total of 733 cases for MF; however, of these 
only 374 are enriched by having odd values > 1 . Table 8—homologous to tables 4 and 6 but for CC, presents the 

Table 5.  Enriched “Biological Process” (BP) with the highest odds per combination of class × cross.

Row Class Cross Sub-model time GO Description Odds

1 Low F1 C1 F1 < P2 = P1 00 GO:0015758 Glucose transport 86

2 Low F1 C2 F1 < P1 < P2 00 GO:0046500 S-adenosylmethionine metabolic process 62

3 Inter. F1 C1 P1 < F1 = P2 50 GO:0010109 Regulation of photosynthesis 27

4 Inter. F1 C2 P2 = F1 < P1 20 GO:0010466 Negative regulation of peptidase 95

5 High F1 C1 P1 < P2 < F1 50 GO:0018149 Peptide cross-linking 421

6 High F1 C2 P1 < P2 < F1 50 GO:0018149 Peptide cross-linking 805

7 P1 = F1 = F1 C1 P1 = F1 = P2 60 GO:0040029 Epigenetic regulation of gene expression ∞

8 P1 = F1 = F1 C2 P1 = F1 = P2 60 GO:0040029 Epigenetic regulation of gene expression ∞

9 Shared C1 P1 = F1 = P2 60 GO:0046834 Lipid phosphorylation ∞

10 Shared C2 P1 = F1 = P2 40 GO:0046834 Lipid phosphorylation ∞

Table 6.  Number of GO terms enriched in “Molecular Function” (MF) per class.

Cross Low F1 Intermediate F1 High F1 P1 = F1 = P2 Shared Total

C1 14 27 8 357 530 936

C2 22 24 3 319 468 836

Total 36 51 11 676 998 1,772

Table 7.  Enriched “Molecular Function” (MF) with the highest odds per combination of class × cross.

Row Class Cross Sub-model time GO Description Odds

1 Low F1 C1 F1 = P1 < P2 50 GO:0003714 transcription corepressor activity 57

2 Low F1 C2 F1 < P1 = P2 30 GO:0008685 cyclodiphosphate synthase activity ∞

3 Inter. F1 C1 P2 < F1 = P1 10 GO:0003785 actin monomer binding ∞

4 Inter. F1 C2 P1 < F1 = P2 50 GO:0004655 porphobilinogen synthase activity ∞

5 High F1 C1 P1 < P2 < F1 50 GO:0003810 protein-glutamine gamma-glutamyltransferase activity ∞

6 High F1 C2 P1 < P2 < F1 50 GO:0003810 protein-glutamine gamma-glutamyltransferase activity ∞

7 P1 = F1 = F1 C1 P1 = F1 = P2 20 GO:0019838 growth factor binding ∞

8 P1 = F1 = F1 C2 P1 = F1 = P2 60 GO:0019838 growth factor binding ∞

9 Shared C1 P1 = F1 = P2 00 GO:0015097 mercury ion transmembrane transporter activity ∞

10 Shared C2 P1 = P2 < F1 50 GO:0005136 interleukin-4 receptor binding 574
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numbers of enriched GO CC per class, while Table 9 presents the CC for class and cross with the highest odd 
value within each combination.

In Table 8 we can see that cross C2 surpass C1 in the number of enriched CC by 24 cases. On the other hand, 
the number of CC exclusively enriched in classes low, intermediate and high F1—the first three columns of the 
table, are small: 14, 10 and 3, respectively.

In Table 9 we have that the CC “extracellular region part” (rows 1 and 2), “transcriptional repressor complex” 
(rows 7 and 8) and “apoplast” (rows 9 and 10), are repeated as the ones with the highest odd values for classes 
“Low F1 ”, “ P1 = F1 = F1 ” and “Shared”, respectively. Such coincidence of enrichment for the three CC in the two 
fully independent crosses, suggests that the detected cell components are specially important at specific times of 
development and have a conserved inheritance class.

Tools to data‑mine the results. Omics studies, as the genome-wide estimation of inheritance performed 
here, process a large amount of information, and every approach reveals only a restricted aspect of the whole 
data  sets39. With the aim of expanding the use of our data for potential discoveries, we gathered them into an  R32 
package called “ChiliCross”38. That package is publicly available in the dataset repository “zenodo”40.

The package ChiliCross contains standardized gene expression for all genes in both crosses ( C1 and C2 ), as 
well as all GO enrichment results at 10% of FDR for BP, MF and CC, in each one of the 133 gene sets resulting 
from the 19× 7 = 133 combinations of 19 sub-models × 7 times of fruit development. Complemented with the 
Salsa33 R package, which includes the possibility to plot and analyze SEPs for all  genes31, these tools assemble 
a powerful platform to study gene expression during fruit development in chili pepper. For example,  in26, we 
found a set of genes that strongly differ in gene expression between domesticated and wild accessions, and that 
partially explain some of the main differences between those kinds of accessions.

Discussion
In Fig. 1 we proposed a hierarchical method to classify gene expression inheritance in the F1 of any cross. In a first 
step we allocated inheritance into three disjoint classes: low, intermediate or high F1 (main rectangles in Fig. 1). 
In a second step we defined two main models within each class (blue rectangles in Fig. 1). Finally, in a third step, 
we took into account statistical significance to define the 19 exhaustive sub-models in which gene expression 
inheritance can be classified (orange rectangles in Fig. 1). This classification system for gene expression as a 
quantitative trait transcends the Mendelian organization of qualitative characters as “dominant”, “recessive” or 
“codominant”—although, when the value of gene expression in one of the parents surpass the one in the other 
we could said that the first “dominates” the second, and when the value in the F1 is between the ones of the two 
parents we could say that the character has “intermediate inheritance”. Notwithstanding, our proposed sub-model 
system gives a precise mathematical definition to inheritance patterns that goes beyond the description that could 
be given by single word, and this is not only desirable but necessary by the quantitative nature of gene expression. 
It is important to underline that the schema of classifying a quantitative character into 19 sub-models is not 
limited to gene expression, but applicable to any quantitative character. Quantitative traits important for crop 
production or improvement could be classified with our schema, with the advantage of precisely determining 
their inheritance before attempting to dissect its nature by a posterior QTL analysis.

Table 8.  Number of GO terms enriched in “Cell Component” (CC) per class.

Cross Low F1 Intermediate F1 High F1 P1 = F1 = P2 Shared Total

C1 5 6 1 75 88 175

C2 9 4 2 86 98 199

Total 14 10 3 161 186 374

Table 9.  Enriched “Cell Component” (CC) with the highest odds per combination of class × cross.

Row Class Cross Sub-model time GO Description Odds

1 Low F1 C1 F1 < P1 < P2 00 GO:0044421 extracellular region part 4

2 Low F1 C2 F1 < P1 = P2 00 GO:0044421 extracellular region part 4

3 Inter. F1 C1 P1 < F1 < P2 30 GO:0044815 DNA packaging complex 16

4 Inter. F1 C2 P1 < F1 = P2 50 GO:0009654 photosystem II oxygen evolving complex 11

5 High F1 C1 P2 = P1 < F1 50 GO:0098800 inner mitochondrial membrane protein complex 9

6 High F1 C2 P1 = P2 < F1 00 GO:0043228 non-membrane-bounded organelle 2

7 P1 = F1 = F1 C1 P1 = F1 = P2 00 GO:0017053 transcriptional repressor complex ∞

8 P1 = F1 = F1 C2 P1 = F1 = P2 00 GO:0017053 transcriptional repressor complex 17

9 Shared C1 P2 = F1 < P1 10 GO:0048046 apoplast 73

10 Shared C2 P1 < P2 < F1 10 GO:0048046 apoplast 50
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Our system of classification of inheritance patterns for gene expression into 19 categories is analogous to 
the one presented  in11 for describing the gene expression levels in inbreds and hybrids of maize (Box Text 2 in 
that reference). However, we consider that our system is more adequate than the one presented there, which 
makes a classification into only 8 categories, but needs a previous categorization of the parents as “high” or 
“low” in the measure of expression. In contrast, our system does not need an a priory segregations of the parent’s 
expression—which could be significant or not, and defines all possibilities being fully exhaustive (see Fig. 1 and 
discussion above). Also, in panel (a) of Figure 3  in6, the authors summarize in a box plot the models of gene 
expression inheritance  from41, mentioning that gene expression levels in hybrids are not strictly related to the 
genetic concepts of dominance and overdominance. Even when the schema shown in that figure helps to graphi-
cally appreciate some of the differences in relative gene expression between parents and hybrid, it does not give 
all the possibilities—including statistical equalities, that our classification system does, and thus in some sense 
over-simplify the classification problem.

Gene expression is influenced by variants located within the promoter or enhancer of the gene, i.e., by “cis 
effects”, and also by “trans effects”, which are driven by diffusible elements such as transcription factors located 
anywhere in the  genome42. In general, cis elements may segregate in linkage with the relevant gene, while trans 
elements could frequently segregate  independently43. Up to this point our analyses of inheritance patterns cannot 
discriminate between cis and trans elements; however, allele-specific expression  analyses44 could help to differ-
entiate between them. Using that method in Arabidopsis lyrata  hybrids45, showed that in the majority of cases 
genes with maternal effect expressed both parental alleles, while  in17 the authors studied inheritance patterns 
in cabbage, concluding that cis effects mediate most of the gene expression divergence in the F1 , but also that 
trans factors appear to have a higher effect compared to cis elements on parental expression divergence. In chili 
 pepper46, performed allele-specific expression analyses in a single cross of a domesticated by a wild accession 
and their F1 in fruits of 40 DAA. The authors propose that gene expression differences associated to the cultivated 
form are better explained by cis-regulatory hubs acting through trans-regulatory cascades. However, the scope of 
this conclusion is limited by the fact that the study was performed only in one of the two possible directions of 
the cross and at a single time point of fruit development (40 DAA). As we have seen here, inheritance patterns 
strongly differ between crosses and vary through fruit development.

The results presented here comprise genome-wide inheritance patterns of gene expression in bidirectional 
crosses ( C1 and C2 ) between two phenotypically contrasting accessions, CM—a domesticated landrace extensively 
used in chili pepper research and cultivar  breeding28, and QU, a wild pepper from northcentral México29, repre-
senting the ancestors of all domesticated Capsicum annumm L.47. The fact that gene expression was estimated here 
during the whole fruit development, from mature flower at 0 DAA up to fully mature fruits at 60 DAA, means 
that we have a comprehensive panorama of the way in which the standardized measure of this parameter behaves.

The first general conclusion of our work is that inheritance patterns of gene expression are heterogeneous and 
far from a uniform random pattern. In fact, Fig. 2 shows significant departures from the percentages expected 
under homogeneity of classes, models and sub-models, which are 1/3 ( ≈ 33%) for each one of the three classes 
in panel A of Fig. 2, and 1/6 ( ≈ 17%) for each model and main sub-model in panels B and C of Fig. 2. In Fig. 2 
we can see that the preponderant inheritance pattern corresponds to cases where gene expression in the F1 is 
between the values of the parents, i.e., within class “Intermediate F1 ”. This is consistent with the results presented 
 in48 for Arabidopsis, where in the majority of the differentially expressed genes, the hybrids ( F1’s) exhibited inter-
mediate expression levels compared with the parents. Also in  yeast49, report that essential genes are less likely 
to exhibit an underdominant inheritance pattern, and in Drosophila alleles conferring cis regulatory variation 
tend to have an additive influence on gene expression, with the expression level in the F1 being intermediate 
between those of the two  parents43,50.

While inheritance classes show approximate percentages of 30, 42 and 28% for low, intermediate and high 
F1 , respectively—total for both crosses in panel A, Fig. 2), variations by model within class in panel B in Fig. 2 
demonstrate further heterogeneity of inheritance patterns. For example, in the “Intermediate F1 ” class, model 
“ P1 < F1 < P2 ” is approximately 7% more frequent than model “ P2 < F1 < P1 ”, showing that when the F1 is 
intermediate between the two parents, the domesticated parent (CM = P1 ) tend to have lower expression in 
more cases than in the inverse cross with wild ancestor (QU = P2 ), and such difference is consistent in both 
crosses, C1 and C2 . On the other hand, the final classification in sub-models, which takes into account statistical 
significance between cases to reach an approximate FDR of 5%, accentuates the heterogeneity of inheritance 
patterns differences. For example, in panel C in Fig. 2, we see that main sub-model “ P1 < F1 < P2 ” is estimated 
in 2,389 cases in C1 , representing the highest percentage for that cross, ≈ 44% , but for C2 the number of cases 
of such model is 2,919 which represents only ≈ 25% of the cases of main sub-models in that cross, while the 
highest percentage of the main sub-model in cross C2 is ≈ 34% , which is reached by the 3,911 cases of the main 
sub-model F1 < P1 < P2.

In a review of gene expression in the context of maize  heterosis11, the authors define “allelic variation” as the 
sequence or regulatory differences found in different parental genotypes and mention that structural differences 
are are likely to be less important than regulatory ones. We speculate that also in Capsicum, the majority of the 
significant differences in gene expression could be due to regulatory differences, even when the percentages of 
those differences are larger in our results –panels (B) and (C) in Fig. 2, than the ones reported by that reference 
in maize, that vary between approximately 5 and 10%. The large number of significant differences observed in 
expression in our results are possibly due to the large genetic distance between the parents, one of which is a 
wild and the other a domesticated accession—see Figure 1  in26.

In6, the authors assert that heterosis-associated gene expression in maize does not present a direct link 
between classical heterosis hypothesis and gene expression profiles, possibly because of the complex molecular 
regulation that is required for the manifestation of phenotypical traits. In the context of allele-specific gene 
 expression6, cite the work  in41, mentioning that of 32 genes whose expression in the hybrid deviated from the 
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midparent value, more than half ( 18;≈ 56% ) are regulated by elements in—cis. If this is also the case in Capsi-
cum, we can infer that a high percentage of the differences observed in our results could be also due to elements 
in—cis. Also  in6 the authors conclude that detailed expression profiling experiments will further refine the 
insight about genes differentially expressed between inbred lines and hybrids and, therefore, play a role during 
heterosis manifestation. On this framework, our results could be useful to disentangle heterosis in chili pepper.

In7 the authors performed gene expression analyses in maize inbreds and hybrids with varying levels of het-
erosis, observing that ≈ 75% of the differentially expressed genes in each hybrid exhibited additive expression 
patterns, and only a very small percentage exhibited hybrid levels outside the parental range, but the authors 
also mention that other groups have reported much higher frequencies of hybrid expression outside the parental 
range in maize. In contrast, in our analyses a very high percentage of genes presents an F1 with significantly 
lower or higher expression than either of the parents (see Fig. 2). This large difference in inheritance patterns 
between maize and Capsicum could be due, among other causes, to the fact that maize hybrids result from the 
cross of two domesticated and highly inbreed lines, while in chili pepper we examined crosses between a wild 
and a domesticated accessions with high gene expression differences between them—see Figure 1  in26.

In maize heterosis has increased yields by at least 15%, and approximately 65% of maize production worldwide 
is hybrid-based12. In contrast, in chili pepper heterosis needs further studies to be extensively  employed20. In 
the future, Capsicum hybrid vigor adoption could follow the path that happened in sunflower, where heterotic 
gene pools were developed through the use of wild  relatives14, in a way similar to the cases of  tomato51, cotton, 
sorghum, and others crops which are primarily grown as  hybrids20.

To fully appreciate heterogeneity in the proportions of the 18 not null sub-models, Fig. 3 presents the per-
centages of these sub-models per cross, with reference to the total of the null sub-model ( P1 = F1 = P2 ). Under 
homogeneity, each one of the 18 not null sub-models will have an expected frequency of 1/18 ≈ 0.0556 or 
≈ 5.56% . Nonetheless, there is a very high diversity in the proportions of sub-models; two of them in the inter-
mediate F1 class surpass 10%, while three of them are below 2%—one in class low F1 and two in class high F1 , 
showing that the frequency of inheritance patterns is highly diversified. Also, as shown by the partitions of the 
bars per cross in Fig. 3, we see how the direction of the cross has a high influence in the inheritance sub-model. 
However, as mentioned in Results, there is a significant linear correlation with r̂ ≈ 0.53 between the percentages 
of sub-models at each one of the two crosses, implying that ≈ 28%; (r̂2) of the variation in sub-models is due 
to the cross of origin.

In48 the authors compared gene expression in the parents and reciprocal hybrids of Arabidopsis at three dif-
ferent times, finding variations in inheritance patterns during time progression. Even when the availability of 
genomic resources for important crops has had great  progress52, the knowledge of the change of gene expression 
inheritance during fruit development remains poorly studied and understood. Figure 3 shows the dramatic 
changes that occur in gene expression class along fruit development, without taking into account the null model 
( P1 = F1 = P2 ). For example, at the mature flower (0 DAA; panels A and B in Fig. 4), the prevalent class in both 
crosses is “High F1”—and not “Intermediate F1 ” when all times of fruit development are taken into account (see 
Fig. 3). In summary, Fig. 3 shows that inheritance class—and also inheritance sub-models (see Supplementary 
S2), presents a highly dynamic behavior; inheritance pattern change as result of both, time of fruit development 
and direction of the cross. Because it is unlikely that chili pepper could be exceptional in changing inheritance 
patterns along fruit development, it is reasonable to assume that such changes will be present in other plant 
species, even when sub-model frequencies could almost surely be different. This fact is highly relevant for the 
estimation of eQTLs and, indirectly, for plant breeding programs.

Even when eQTL estimation promises a detailed dissection and understanding of the architecture of gene 
 regulation53, our results suggest that time of development is a factor that must be taken into account for this 
endeavor. For example, in the first large-scale global eQTL study in an Arabidopsis population of 211  RILs54, the 
authors report a large and complex set of eQTLs, and show that genetic control of transcript level is highly vari-
able, suggesting that this complexity may be a general characteristic of eukaryotes. However, this study estimated 
gene expression at a single time of development (6 weeks post-germination), and thus the set of eQTLs obtained 
does not take into account the additional complexity due to changes in gene expression through plant develop-
ment. In direct relation with fruit traits,  in55 the authors studied fruit flesh softening rate in peach, detecting a 
set of 133 eQTLs related with a strong QTL (LOD of 9.7) affecting the target fruit character. Nevertheless, RNA-
Seq sampling in this study was performed at a single time point in fruit development. It appears obvious that 
gene expression will be changing during peach fruit development, and a RNA-Seq time profile coupled with an 
inheritance pattern estimation—as the one performed here for chili pepper, could result in a much more detailed 
and robust understanding of the molecular mechanisms involved in fruit flesh softening.

Our results show that the transcriptome landscape of fruit development dynamically changes through time, 
presenting the whole spectrum of inheritance patterns in a bidirectional cross between highly contrasting geno-
types. We propose that changes in inheritance pattern will be observed in many—if not all, development pro-
cesses. Therefore, eQTL studies targeting traits related with development will obtain more relevant, detailed and 
robust conclusions when based into time profiling gene expression experiments.

By performing GO analyses over the 133 sets of genes resulting from combinations of the 7 time points 
of fruit development with the 19 sub-models of inheritance, we showed that many biological proceses (BP), 
molecular functions (MF) and cell components (CC) are over represented at particular times of development, 
having particular inheritance patterns. Even when we are not discussing here the biological relevance of these 
findings, it is evident that there is a plethora of interesting facts to be explored by researchers interested in par-
ticular aspects of this phenomenon.

As mentioned  in39, omics studies aim to extract relevant messages from large-scale and high-dimensional data 
sets. To facilitate this goal, we developed an R package containing all results presented here, as well as a function 
to plot and interpret such  results38. Coupling this package with the methodology presented  in31 and the R package 
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Salsa33, the research community interested in fruit development could fully explore the curated RNA-Seq data 
from 12 chili pepper accessions, deposited at the NCBI Gene Expression  Omnibus30 with accession number 
GSE165448. Data mining of these datasets have already proved to contribute with interesting  findings26,56.

Code availability
The set of RNA-Seq libraries employed in this work have been deposited in NCBI’s Gene Expression Omnibus 
(GEO)30, and are accessible through GEO Series accession number GSE165448 (Link: https:// www. ncbi. nlm. 
nih. gov/ geo/ query/ acc. cgi? acc= GSE16 5448).
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