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Abstract

Background: Obesity is associated with an increased risk of multiple conditions,

ranging from heart disease to cancer. However, there are few predictive models for

these outcomes that have been developed specifically for people with overweight/

obesity.

Objective: To develop predictive models for obesity‐related complications in pa-
tients with overweight and obesity.

Methods: Electronic health record data of adults with body mass index 25–80 kg/

m2 treated in primary care practices between 2000 and 2019 were utilized to

develop and evaluate predictive models for nine long‐term clinical outcomes using
a) Lasso‐Cox models and b) a machine‐learning method random survival forests

(RSF). Models were trained on a training dataset and evaluated on a test dataset

over 100 replicates. Parsimonious models of <10 variables were also developed

using Lasso‐Cox.
Results: Over a median follow‐up of 5.6 years, study outcome incidence in the
cohort of 433,272 patients ranged from 1.8% for knee replacement to 11.7% for

atherosclerotic cardiovascular disease. Harrell C‐index averaged over replicates
ranged from 0.702 for liver outcomes to 0.896 for death for RSF, and from 0.694 for

liver outcomes to 0.891 for death for Lasso‐Cox. The Harrell C‐index for parsi-
monious models ranged from 0.675 for liver outcomes to 0.850 for knee

replacement.

Conclusions: Predictive modeling can identify patients at high risk of obesity‐
related complications. Interpretable Cox models achieve results close to those of

machine learning methods and could be helpful for population health management

and clinical treatment decisions.
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1 | INTRODUCTION

There is a broad spectrum of conditions whose incidence is increased

in people with obesity, including coronary artery disease, stroke,

diabetes mellitus, chronic kidney disease, liver disease, and certain

types of cancer. Comprehensive lifestyle intervention, including

caloric restriction, increased physical activity, and behavioral modi-

fication counseling, is the cornerstone of obesity treatment. Studies

show that these interventions can reduce the risk of diabetes.1

Pharmacological options are also available, including pancreatic

lipase inhibitors, GLP‐1 receptor agonists, sympathomimetics, and
combination drugs. Finally, bariatric surgical procedures are an

effective, albeit invasive, means of reducing excess weight and have

been shown to reduce the incidence of a broad range of obesity‐
related complications.2,3 On the other hand, many of these in-

terventions are costly,4–7 and may also carry a risk of adverse

events.8–11 Therefore, being able to identify patients who are likely

to reap the greatest benefits from the intervention could help direct

healthcare resources. This could be accomplished using predictive

models that can assess the risk of obesity‐related complications.
While several predictive models for individual obesity‐related com-
plications exist,12,13 for many of these complications, there are no

predictive models that incorporate measures of the patient's weight.

Additionally, no published risk prediction models for obesity‐related
complications have been specifically developed in people with over-

weight or obesity.

Increasing availability of electronic health records (EHR) data

provides an opportunity to assess adverse clinical outcomes and their

risk factors across large populations over extended periods of

time.14,15 A number of methods have been used to develop these

models, including both traditional statistical (e.g., regression) and

machine learning techniques, each of which has its own strengths and

weaknesses.16,17 Therefore, this study was conducted to leverage a

large EHR dataset to develop risk prediction models for long‐term
obesity‐related complications using both machine learning and

traditional statistical approaches.

2 | MATERIALS AND METHODS

2.1 | Study design

Electronic health records data of a cohort of patients with over-

weight and obesity were used to develop and evaluate predictive

models for nine long‐term clinical outcomes using a) Lasso‐Cox
proportional hazards models and b) random survival forests (RSF).

2.2 | Study cohort

Study participants included adults (age ≥18 years) with body mass
index (BMI) between 25 and 80 kg/m2 who were being treated in

primary care practices affiliated with Mass General Brigham, a large

integrated healthcare delivery network in Massachusetts founded by

Brigham and Women's Hospital and Massachusetts General Hospital,

between 01/01/2000 and 12/31/2019. Patients were excluded from

the study if they: a) were older than 80 years old, b) had missing

demographic information, or c) were diagnosed with a disease

outcome of interest at baseline. The last exclusion criterion was

applied on a per‐analysis basis (e.g., patients with history of cancer
were only excluded from the analysis where incidence of cancer

served as the outcome).

2.3 | Study measurements

A patient was entered into the study (Index Date) on the first date

when they met all of the following criteria: 1) had had at least one

primary care encounter (to ensure availability of baseline clinical

characteristics, as patients who only receive specialist care at the

study institution are less likely to have their medical history

comprehensively documented in the EHR); 2) was ≥18 years old; 3)
had first of two consecutive BMI measurements ≥25 kg/m2; and 4)
on or after Study Start date (01/01/2000). Patients exited the study

(Study Exit Date) on the first of the following dates: a) reaching an

outcome endpoint (this criterion was specific to the outcome being

analyzed); b) death (even when it is not a component of the outcome

being analyzed); c) 24 months after the last primary care note (i.e.,

lost to follow‐up) or d) Study End (12/31/2019). Patients were

enrolled into the study until 12/31/2018 (to allow at least 12 months

of follow‐up to assess study outcomes).
Outcomes were obtained from EHR data (both in‐ and outpa-

tient). Dates of death were obtained from the Social Security Death

Master File. The following endpoints were assessed: a) atheroscle-

rotic cardiovascular disease (ASCVD); b) heart failure (HF); c) dia-

betes mellitus type 2 (T2DM); d) non‐alcoholic steatohepatitis
(NASH)/ non‐alcoholic fatty liver disease (NAFLD); e) sleep apnea; f)
cancer (excluding non‐melanoma skin cancer); g) degenerative joint
disease (DJD); h) knee replacement and i) all‐cause mortality. The
length of time (days) from the Index Date to each of the clinical

events listed above served as study outcomes.

A literature search was performed to identify the candidate

predictor variables for study outcomes (Table 1). These predictor

variables included demographic characteristics, vital signs and labo-

ratory measurements, past medical history, family history, and his-

tory of substance abuse. Predictor variables were also assessed

based on EHR data. All variables were assessed at baseline, defined

as the most recent record/measurement prior to study entry. For

quantitative variables, if no measurements prior to study entry were

available, the earliest measurement within 1 month after study entry

was used. International classification of diseases codes used to

identify candidate predictor variables and study outcomes in the EHR

data are provided in Supplemental Table 1.

Missing information for predictor variables was handled using

imputation. Imputation was first performed for HbA1c (which was

missing for 290,131/67.0% of observations). HbA1c measurements
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TAB L E 1 Candidate predictor variables and their utilization in lasso‐cox predictive models.

Variable

Outcomes

ASCVD Heart failure T2DM NASH/NAFLD Sleep apnea Cancer DJD Knee replacement Death

Age X X X X X X X X X

Sex X X X X X X X X X

Marital status X X X X X X X X X

Commercial insurance X X X X X X X X

BMI X X X X X X X X X

SBP X X X X X X X

DBP X X X X X X X X

eGFR X X X X X X

HbA1c X X X X X X X X X

LDL‐C X X X X X X X

Proteinuria X X X X X X X X

ASCVD X X X X X X X X

Heart failure X X X X X

T2DM X X X X X X X X

NASH/NAFLD X X X X X X

Sleep apnea X X X X

Cancer X X X X X

DJD X X X X X X X

Knee replacement X X X X X X X

Hepatitis B X X X X X

Hepatitis C X X X X X X X X X

HIV X X X X X X X X

Chronic inflammation X X X X X X X X

H. pylori X X X

PCOS X X X X

GDM X X

COPD X X X X X X X

Dementia X X X X X X

Sepsis X X X X X X X

Knee injury X X X X X X X

Joint infection X X X X X X X X

Valvular heart disease X X X X X X

Hypertension X X X X X X X X X

Hypercholesterolemia X X X X X X X

Stimulant abuse X X X X X X

Alcohol abuse X X X X X X X X

Smoking X X X X X X X X X

Family history of ASCVD X X X X X X X X X

(Continues)
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were imputed using random draws from normal distributions based

on published data for similar populations, separately for patients

with (mean 8.3% and SD 1.7%) versus without (mean 5.6% and SD

0.7%) diabetes.18,19 Imputed HbA1c data were left truncated at

4.0%, which is generally considered to be the lower limit of

normal.

Random forest imputation was not used for HbA1c because of

the high missingness (67%) of this variable (primarily because it is not

typically measured in patients who are not suspected to have dia-

betes). Previously published reports showed that at this level of

missingness random forest imputation performs no better than

“strawman imputation” (i.e., imputation of the mean or the median of

the non‐missing population).20 Under these circumstances, the

approach of using data (mean þSD) from the published literature for

(separately) patients with versus without diabetes was preferable.

All other missing data were imputed using a random forest al-

gorithm applied to all covariates (using already imputed HbA1c

values). MissForest random forest imputation algorithm21 was used

to impute missing variables on the entire dataset (prior to it being

split into training, testing and validation datasets). The MissForest

algorithm regresses each variable against all other variables and then

predicts missing data for the dependent variable using fitted for-

est.20,21 The following variables had missing values that were

imputed using this approach: a) systolic blood pressure, b) diastolic

blood pressure, c) estimated glomerular filtration rate, and d) low‐
density lipoprotein cholesterol.

2.4 | Predictive models

To identify the initial set of variables for the risk prediction model,

bivariate analyses of the relationships between each of the candidate

variables and each of the outcomes being analyzed were conducted.

Candidate variables that were associated with one of the risk pre-

diction model outcomes with a p‐value <0.15 were selected for
further development of the risk prediction model for that outcome.

This approach was taken in part because the ultimate goal of the

study was to develop compact predictive models that could be used

in patient‐facing applications requiring manual data entry and in
provider‐facing applications drawing data from EHRs, which in some
cases may only have complete information on a limited number of

variables. Therefore, we prioritized candidate variables likely to have

the strongest predictive relationship with obesity‐related
complications.

The entire dataset was randomly split into 80% training and

testing versus 20% that were held out for validation after model

development was complete. The training and testing 80% were

further split into 70% training and 30% testing (56% and 24% of the

entire dataset, respectively) datasets. The overall approach to model

training and selection is illustrated in Figure 1.

The training dataset was utilized to build models using Lasso‐Cox
regression and RSF22 (RSF) methods for variable selection and pre-

diction modeling. Lasso‐Cox model regularization selects variables by
shrinking the coefficients of less important variables to zero.23 The

optimal penalty parameter lambda for the variable selection was

estimated using cross‐validation. Variable selection for the RSF
model was conducted using the minimal depth approach.24 For every

variable used in the growing of the tree, the minimum depth of the

variable is the minimum depth of tree nodes split on this variable.

Variables used for splitting closer to the root of the tree are applied

to larger subsets than those used later in the growing process and are

thus expected to have greater predictive power. Variable selection

took place in the process of model building. After constructing an RSF

model, the variable selection was conducted based on the minimal

depth threshold of mean þ one standard deviation of minimal depth,

and a new RSF model was generated using the selected variables.

Both the Lasso Cox regression and RSF models were developed using

the 56% of patients included in the training dataset.

The relationship between the variables and the outcome of in-

terest was assessed using a) Lasso‐Cox proportional hazards model
and b) a machine learning–based method, RSF model. A RSF is an

ensemble classification method that determines a consensus predic-

tion by averaging the results of many individual decision trees.22

Lasso‐Cox and RSF predictive models were evaluated for each study
outcome using multiple replicates of the variable selection and model

fitting process (Figure 1). Each replicate included as the first step a

random split of the 80% training þ test dataset into 56% training

dataset and 24% test dataset. Subsequently, both Lasso‐Cox and RSF
models were developed (including variable selection and model

fitting) on the 56% training dataset. These models were then evalu-

ated by calculating Harrell's C‐index,25 on the corresponding 24%
test dataset. Replicates were stopped once the average prediction

T A B L E 1 (Continued)

Variable

Outcomes

ASCVD Heart failure T2DM NASH/NAFLD Sleep apnea Cancer DJD Knee replacement Death

Family history of DM X X X X X X X X

Family history of cancer X X X X X X X X X

Note: Cells corresponding to identical predictor and outcome variables are grayed out.

Abbreviations: ASCVD, atherosclerotic cardiovascular disease; BMI, body mass index; COPD, chronic obstructive pulmonary disease; DBP, diastolic

blood pressure; DJD, degenerative joint disease; eGFR, estimated glomerular filtration rate; GDM, gestational diabetes mellitus; HIV, human

immunodeficiency virus; LDL‐C, low density lipoprotein cholesterol; NAFLD, non‐alcoholic fatty liver disease; NASH, non‐alcoholic steatohepatitis;
PCOS, polycystic ovarian syndrome; SBP, systolic blood pressure; T2DM, type 2 diabetes mellitus.
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error (calculated as 1—Harrell's C‐index) stabilized; 100 replicates
were used.

The performance of the Lasso‐Cox and RSF predictive models
was compared using the mean Harrell concordance index (C‐index)25

for each outcome across all replicates. This selection process was

used to identify the optimal variable selection strategy þ modeling

approach (Cox regression with Lasso vs. random survival forests)

based on both the value of the mean Harrell concordance index

across all replicates for the particular outcome as well as on

computational resource utilization and interpretability (and ulti-

mately face validity) of the predictive modeling approach. Once the

best modeling approach was identified, the final set of variables was

selected and coefficients for the model that included these variables

were re‐estimated using the combined 80% training þ testing data-
sets. Specifically, Lasso‐Cox model was computed on the 80%

training þ testing dataset with cross‐validation to select the final set
of variables. These variables were then used in the final Cox model

that included the evaluation of competing risk of death (except the

model for the mortality outcome) as previously described26 and was

fitted on the 80% training þ testing dataset. Тhe final Harrell C‐index
was assessed for this final model on the 20% held‐out validation
dataset.

After the models were developed and evaluated as described

above, risk models that included a more limited number of variables

appropriate for implementation of provider‐ and/or patient‐facing
risk calculators were subsequently selected and evaluated. These

(parsimonious) models were developed by using the lasso procedure

to identify the order in which variables are added to the model in an

incremental fashion to maximize the model fit for any given number

of variables (using penalized partial likelihood function) while taking

into account the variables' clinical relevance, similar to the previously

described approach.27,28 Parsimonious predictive models were

developed based on the combined training þ testing dataset and

evaluated on the held‐out validation dataset. The development of the
models started with the calculation of the Harrell C‐index for each
model that had ≤10 variables using the combined training þ testing
dataset. Body mass index was forced into the parsimonious model if

not included using the lasso variable selection procedure. The

discriminative ability of models with different number of variables

was manually reviewed and a representative model was selected for

each study outcome that included the lowest number of variables

when the inclusion of additional variables did not lead to significant

increases in the model's discriminative ability. A qualitative approach

that took into account the trade‐off between the increase in the
model's discriminative ability (as represented by Harrell's C‐index)
versus the required increase in the number of variables that would

make the predictive model's practical implementation more chal-

lenging as well as clinically perceived relevance of the variable being

added was used to identify the final set of variables for each parsi-

monious predictive model. Each parsimonious predictive model

developed in this way was then evaluated on the held‐out validation
dataset.

Analyses were conducted using R (R Foundation for Statistical

Computing, Vienna, Austria). The RSF models and random forest

imputation were implemented using the randomForestSRC package

(R version 3.6.3 and randomForestSRC version 2.9.3 were used).29

Lasso‐Cox modeling was implemented using the R package glmnet (R
version 4.0.3 and glmnet package version 4.0.2 were used).30

3 | RESULTS

3.1 | Study cohort and selection of predictor
variables

A total of 448,639 adults with BMI between 25 and 80 kg/m2 who

were being treated in primary care practices affiliated with Mass

General Brigham were identified. After excluding patients who a)

were older than 80 or b) did not have information available for de-

mographic characteristics, 433,272 patients were included in the

study (Table 2). The median age of the study patients (Table 3) was

48 years and their median BMI 28.9 kg/m2; they were followed for a

median of 2030 days (5.6 years). Over this period of time, the inci-

dence of study outcomes ranged from 1.8% for knee replacement to

11.7% for ASCVD (Table 4). Based on the analysis of bivariate re-

lationships between candidate predictor variables and study out-

comes, all candidate predictor variables (Table 1) were selected for

further analysis.

F I GUR E 1 Selection and validation of
predictive models.
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3.2 | Machine learning predictive models

Training of 100 replicates of RSF predictive models for a single

outcome took approximately 24 h on 80 central processing unit

(CPU) cores of a computational cluster, totaling c. 1920 h (80 days)

of computing time. For most outcomes studied, in each 100 repli-

cates, the RSF model selected all available variables for the pre-

dictive model. The only exceptions were the predictive models of

HF, knee replacement and all‐cause mortality, for which the RSF
model did not select gestational diabetes mellitus for 37%, 28% and

31% of replicates, respectively. The mean Harrell C‐index for RSF
predictive models over 100 replicates on the test dataset ranged

from 0.702 for NASH/NAFLD to 0.896 for all‐cause mortality
(Table 5).

3.3 | Traditional statistical predictive models

Training of 100 replicates of Lasso‐Cox models for a single outcome
took approximately 160 s on a single CPU. The mean Harrell C‐index
for Lasso‐Cox predictive models on the test dataset over 100 repli-
cates ranged from 0.694 for NASH/NAFLD to 0.891 for all‐cause
mortality (Table 5). Across all study outcomes, the average mean

Harrell C‐index for Lasso‐Cox predictive models was lower than the
Harrell C‐index for the corresponding RSF predictive models by
0.012, ranging from 0.005 for all‐cause mortality to 0.020 for T2DM.

Based on its predictive accuracy (slightly lower but comparable

to RSF), significantly lower computational requirements and greater

interpretability, Lasso‐Cox modeling approach was selected for the
final predictive model validation. On the training þ testing (80% of

the overall dataset) dataset, the final Lasso‐Cox models were
selected from 26 (knee replacement) to 35 (ASCVD) out of 40

available predictor variables (Table 1). Body mass index, age, sex,

marital status, HbA1c, hepatitis C, hypertension, smoking status,

family history of ASCVD and family history of cancer were included

in models for all study outcomes based on Lasso variable selection.

On the held‐out validation dataset, the Harrell C‐index for these
Lasso‐Cox predictive models, trained on the training þ testing

dataset, ranged from 0.675 for NASH/NAFLD to 0.849 for all‐cause
mortality. Body mass index was significantly (p < 0.0001) associated
with all study outcomes. Hazard ratios for the relationship between

TAB L E 2 Patient flow.

Exclusion
criterion

N after

criterion
applied

N
excluded

%
Excluded

Patients who met

inclusion criteria

448,639

Patients >80 years old 433,283 15,356 3.4%

Patients with missing

gender

433,272 11 0.003%

TAB L E 3 Baseline characteristics of study patients: Primary
analysis.

Variable Mean (SD) or N (%) Missing, N (%)

Study population 433,272

Age, years 47.9 (15.7) 0

Female 226,172 (52.2) 0

Race/Ethnicity

Asian 13,715 (3.2)

Black 34,813 (8.0)

Hispanic 28,136 (6.5)

White 324,836 (75.0)

Other (includes unknown) 31,772 (7.3)

Partnereda 240,465 (55.5) 0

Smoking 179,587 (41.5) 0

Alcohol abuse 10,417 (2.4) 0

Stimulant abuse 2047 (0.47) 0

Commercial insurance 271,755 (62.7) 0

ASCVD 33,912 (7.8) 0

Heart failure 11,668 (2.7) 0

Diabetes mellitus 33,561 (7.8) 0

NASH/NAFLD 4274 (1.0) 0

Sleep apnea 14,484 (3.3) 0

Cancer 39,111 (9.0) 0

DJD 29,410 (6.8) 0

Knee replacement 3937 (0.9) 0

Proteinuria 27,489 (6.3) 0

Hepatitis B 2037 (0.47) 0

Hepatitis C 4359 (1.0) 0

HIV 1305 (0.30) 0

Chronic inflammationb 11,431 (2.6) 0

Helicobacter pylori infection 2487 (0.57) 0

PCOS 3132 (0.72) 0

COPD 4589 (1.1) 0

Dementia 1033 (0.24) 0

Sepsis 3964 (0.91) 0

Gestational diabetes 1125 (0.26) 0

Knee injury 20,537 (4.7) 0

Joint infection 2936 (0.68) 0

Valvular heart disease 17,575 (4.1) 0

Hypertension 120,583 (27.8) 0

Hypercholesterolemia 57,175 (13.2) 0

Family history of ASCVD 114,409 (26.4) 0

Family history of diabetes 133,844 (30.9) 0
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BMI and study outcomes (using one standard deviation of BMI in

each respective study population) varied from 1.060 for cancer to

1.602 for sleep apnea (Table 6).

3.4 | Parsimonious risk predictive models

Parsimonious Lasso‐Cox models included four (cancer and knee
replacement) to seven (ASCVD, HF, NASH/NAFLD, DJD and all‐cause
mortality) variables (Table 7). Body mass index was selected by the

lasso procedure as one of the first 10 variables for allmodels except all‐
cause mortality and was forced into the all‐cause mortality model.
Among the rest of the predictor variables, age was included most

frequently (eight out of nine predictive models) followed by hyper-

tension (five models). Assessment of model accuracy on the validation

(held‐out) dataset demonstrated a Harrell C‐index ranging from 0.675
for NASH/NAFLD to 0.850 for knee replacement (Table 5).

4 | DISCUSSION

This large observational study of over 400,000 overweight and obese

patients successfully developed predictive models for a broad range

of obesity‐related complications. Most predictive models achieved

good to strong discriminative ability, confirmed on the held‐out
validation dataset that was not used in model development. Model

accuracy was largely retained in the corresponding parsimonious

predictive models that only used four to seven predictor variables,

facilitating incorporation into medical decision‐making.
Models developed using the machine learning technique RSF

attained the highest discriminative ability. However, predictive

models that utilized Cox proportional hazards regression were only

slightly less accurate, with the majority of models having a Harrell C‐
index above 0.8 (considered strong discriminative ability) and only

one slightly below 0.7 (considered good discriminative ability). One

possible explanation for this small difference is the nature of the data,

where most variables (e.g., diagnoses) were binary. One important

advantage of machine learning methods such as RSF is their superior

ability to model non‐linear relationships. However, data with a pre-
dominance of binary variables will not have extensive non‐linear
relationships, thus decreasing the possible gains from machine

learning analytical techniques. Another possible explanation is that

the number of variables in the models was relatively small, minimizing

the opportunity to leverage interactions between multiple variables—

another potential strength of machine learning techniques.

The accuracy of predictive models ranged (in their most accurate,

RSF implementation) from 0.702 for NASH/NAFLD to 0.896 for

mortality. Lower discriminative ability for conditions like NASH/

NAFLD and sleep apnea could be explained, in part, by their likely

underdiagnosis.31,32 On the other hand, the incidence of death was

ascertained from a combination of local hospital data and the Social

Security Death Master File, leading to a fairly comprehensive iden-

tification of deceased individuals, which could potentially explain the

particularly high performance of the predictive models in this area.

The accuracy of the predictive models developed in this study was

comparable to other previously published predictive models for the

same outcomes.13,33,34

Even though multiple variables were selected into the predictive

models by the lasso procedure and many of these had highly signif-

icant relationships with the corresponding outcome, parsimonious

risk models that only included four to seven predictor variables had

only slightly lower discriminative ability. One potential explanation

could be the relatively low prevalence of many of the patient char-

acteristics that were highly predictive of complications (e.g., human

immunodeficiency virus infection) and relatively low strength of the

effect of others (e.g., elevated blood pressure or hypercholesterole-

mia) that were not ultimately included in the parsimonious models.

On the other hand, relatively common risk factors such as age,

smoking and family history of related conditions were included in

many of the parsimonious risk models.

Body mass index was significantly associated with all nine out-

comes studied. This finding underscores the importance of excess

weight as a major contributor to human health and quality of life. It is

thought that overweight and obesity play a significant role in the lag

of life expectancy in the U.S. compared to many other developed

countries.35 Nevertheless, this major health problem is often not

addressed by treating clinicians36 and potential treatments are not

T A B L E 3 (Continued)

Variable Mean (SD) or N (%) Missing, N (%)

Family history of cancer 185,788 (42.9) 0

BMI, kg/m2 30.5 (5.4) 0

25.0–29.9 kg/m2 254,153 (58.7%)

30.0–34.9 k/m2 109,090 (25.2%)

35.0–39.9 kg/m2 43,099 (9.9%)

≥40.0 kg/m2 26,930 (6.2%)

SBP, mm Hg 125(16) 52,531 (12.1)

DBP, mm Hg 77(10) 52,531 (12.1)

HbA1c, % 6.0 (1.4) 290,131 (67.0)

LDL‐C, mg/dL 111(34) 114,248 (26.4)

eGFR, mL/min/1.73 m2 89(21) 78,825 (18.2)

Length of follow‐up, days 2669 (1937) 0

aPartnered: married or living with a partner. Excludes single, separated,

divorced and widowed.
bChronic inflammation incudes a) inflammatory bowel disease; b)

rheumatoid arthritis; c) systemic lupus erythematosus; and d) multiple

sclerosis.

Abbreviations: ASCVD, atherosclerotic cardiovascular disease; BMI,

body mass index; COPD, chronic obstructive pulmonary disease; DBP,

diastolic blood pressure; DJD, degenerative joint disease; eGFR,

estimated glomerular filtration rate; HIV, human immunodeficiency

virus; LDL‐C, low density lipoprotein cholesterol; NAFLD, non‐alcoholic
fatty liver disease; NASH, non‐alcoholic steatohepatitis; PCOS,
polycystic ovarian syndrome; SBP, systolic blood pressure.
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being discussed with patients,37 reflecting possibly a mix of social

stigma and therapeutic inertia.

The development of compact and highly accurate predictive

models for obesity‐related complications could have important clinical
applications. These models could be used by clinicians at the point of

care to identify patients most likely to benefit from anti‐obesity in-
terventions; by patients and their family members to decide which

treatment options, including bariatric surgery and anti‐obesity medi-
cations, to pursue (patients with overweight/obesity initiate many

discussions of anti‐obesity treatments38,39); and in population man-
agement to make decisions on allocation of healthcare resources.40

The present study had a number of strengths. It was based on a

large population of over 400,000 patients, the majority of whom

were followed for over five years. It drew on a rich dataset of 40

variables selected based on published literature and compared both

traditional regression‐based and machine learning methodologies.
Predictive models that were generated in the course of the study

were rigorously validated on a held‐out dataset that was not used in
the development of the models. Finally, the study also developed

parsimonious predictive models that utilized a limited number of

variables in order to facilitate practical implementation while

retaining most of the accuracy.

The findings of this study should be interpreted in light of several

limitations. The study was conducted in Eastern Massachusetts (a

state with lower‐than‐average prevalence of overweight and obesity)
and therefore, the findings may not be fully generalizable to the rest

of the U.S. The analysis used data from EHR which might have been

incomplete or sometimes inaccurate with respect to either outcomes

TAB L E 5 The accuracy of predictive

models of obesity‐related complications
(Harrell's C‐index).

Outcome

On testing (24%)

dataseta On validation (held‐out 20%) dataset

Lasso‐cox RSF Lasso‐cox: Full Lasso‐cox: Parsimonious

ASCVD 0.805 0.812 0.801 0.788

Heart failure 0.862 0.871 0.856 0.840

Diabetes 0.809 0.823 0.803 0.782

NASH/NAFLD 0.702 0.702 0.694 0.671

Sleep apnea 0.730 0.731 0.725 0.721

Cancer 0.727 0.734 0.724 0.720

DJD 0.749 0.757 0.741 0.736

Knee replacement 0.865 0.862 0.847 0.843

All‐cause mortality 0.888 0.896 0.891 0.850

aMean over 100 replicates.

Abbreviations: ASCVD, atherosclerotic cardiovascular disease; DJD, degenerative joint disease;

NAFLD, non‐alcoholic fatty liver disease; NASH, non‐alcoholic steatohepatitis; RSF, random survival
forest.

TAB L E 4 The incidence of study
outcomes: Primary Analysis.

Outcome Population

Patients who
reached the

outcome

Fraction who
reached the

outcome

Patient‐years
of follow‐up

Annual
incidence

rate

ASCVD 399,360 46,779 11.7% 2,704,042 1.7%

Heart failure 421,604 21,205 5.0% 3,010,103 0.70%

Diabetes 399,711 38,989 9.8% 2,698,197 1.5%

NASH/NAFLD 418,581 19,217 4.6% 2,969,560 0.65%

Sleep apnea 418,788 38,374 9.2% 2,901,024 1.3%

Cancer 394,161 34,679 8.8% 2,756,490 1.3%

DJD 403,862 50,952 12.6% 2,587,897 2.0%

Knee replacement 429,335 7872 1.8% 3,099,043 0.25%

All‐cause mortality 433,272 21,014 4.9% 3,176,315 0.66%

Abbreviations: ASCVD, atherosclerotic cardiovascular disease; DJD, degenerative joint disease;

NAFLD, non‐alcoholic fatty liver disease; NASH, non‐alcoholic steatohepatitis.
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or patient characteristics, affecting the accuracy of the predictive

models. In particular, HbA1c measurements were missing for 67% of

the study patients, and using imputation for this variable may have

impacted the model accuracy. Finally, the racial/ethnic diversity of

study patients was not representative of the U.S. population (75%

white vs. 65% white for the U.S. population).

The findings of this study could serve as the foundation for the

next steps towards the identification of patients who could derive the

greatest benefits from weight loss interventions, including anti‐
obesity medications. These could include the development of risk

calculators for both healthcare providers and patients, medical de-

cision aides as well as cost‐effectiveness assessments. The develop-
ment of these tools could be further facilitated by increasing

availability of EHR information that also served as the source of data

for the predictive models developed in this study.

5 | CONCLUSIONS

Predictive modeling can identify patients with overweight and

obesity at a high risk of obesity‐related complications. These Cox
models, including those with parsimonious lists of predictors, achieve

high accuracy and can be used to identify patient characteristics

indicative of higher risk, potentially helpful for population health

management and clinical treatment decisions.

TAB L E 6 Body mass index (BMI) and study outcomes in
primary analysis.

Outcome 1 SD of BMI, kg/m2 Hazard ratio (95% CI)

Sleep apnea 5.189 1.602 (1.587–1.618)

Diabetes 5.169 1.502 (1.486–1.517)

NASH/NAFLD 5.346 1.433 (1.416–1.450)

Knee replacement 5.348 1.395 (1.370–1.421)

Heart failure 5.311 1.343 (1.318–1.369)

DJD 5.286 1.235 (1.224–1.246)

ASCVD 5.339 1.148 (1.137–1.160)

All‐cause mortality 5.364 1.142 (1.125–1.159)

Cancer 5.380 1.060 (1.048–1.073)

Abbreviations: ASCVD, atherosclerotic cardiovascular disease; DJD,

degenerative joint disease; NAFLD, non‐alcoholic fatty liver disease;
NASH, non‐alcoholic steatohepatitis.

TAB L E 7 The utilization of candidate variables in parsimonious lasso‐cox predictive models.

Variable ASCVD Heart failure T2DM Sleep apnea NASH/NAFLD Cancer DJD Knee replacement Death

BMI X X X X X X X X X

Age X X X X X X X X

Sex X X X X X

Smoking status X X X X

Family history of cancer X X X

Family history of diabetes X X X

Family history of ASCVD X

ASCVD X X

Heart failure X

T2DM X X X

Cancer X

DJD X

Hypertension X X X X X

Valvular heart disease X

Knee injury X X

Hepatitis B X

Chronic inflammation X

eGFR X X X

HbA1c X X

Abbreviations: ASCVD, atherosclerotic cardiovascular disease; BMI, body mass index; DJD, degenerative joint disease; eGFR, estimated glomerular

filtration rate; NAFLD, non‐alcoholic fatty liver disease; NASH, non‐alcoholic steatohepatitis.
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