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A B S T R A C T   

Reducing emissions from the transport sector is one of the crucial countermeasures for climate 
action. This study focuses on the optimization and emission analysis regarding the impacts of left- 
turn lanes on the emissions of mixed traffic flow (CO, HC, and NOx) with both heavy-duty vehicles 
(HDV) and light-duty vehicles (LDV) at urban intersections, combining high-resolution field 
emission data and simulation tools. Based on high-precision field emission data collected by 
Portable OBEAS-3000, this study first develops instantaneous emission models for HDV and LDV 
under various operating conditions. Then, a tailored model is formulated to determine the 
optimal left-lane length for mixed traffic. Afterward, we empirically validate the model and 
analyze the effect of the left-turn lane (before and after optimization) on the emissions at the 
intersections using the established emission models and VISSIM simulations. The proposed 
method can reduce CO, HC, and NOx emissions crossing intersections by around 30% compared to 
the original scenario. The proposed method significantly reduces average traffic delays after 
optimization by 16.67% (North), 21.09% (South), 14.61% (West), and 2.68% (East) in different 
entrance directions. The maximum queue lengths decrease by 79.42%, 39.09%, and 37.02% in 
different directions. Even though HDVs account for only a minor traffic volume, they contribute 
the most to CO, HC, and NOx emissions at the intersection. The optimality of the proposed method 
is validated through an enumeration process. Overall, the method provides useful guidance and 
design methods for traffic designers to alleviate traffic congestion and emissions at urban in-
tersections by strengthening left-turn lanes and improving traffic efficiency.   

1. Introduction 

The transport sector takes up around a quarter of greenhouse gas (GHG) emissions globally and plays a crucial role in realizing the 
ultimate goal of net-zero emissions in the era of climate change [1,2]. Meanwhile, transport-related air pollution contributes to a large 
part of global air pollution [3,4]. Although air quality standards have been improved by government and agencies such as the US 

* Corresponding author. 
** Corresponding author. 

E-mail addresses: aoyong@tsinghua.edu.cn (A. Li), gkun@chalmers.se (K. Gao).  

Contents lists available at ScienceDirect 

Heliyon 

journal homepage: www.cell.com/heliyon 

https://doi.org/10.1016/j.heliyon.2023.e16260 
Received 23 March 2023; Received in revised form 26 April 2023; Accepted 11 May 2023   

mailto:aoyong@tsinghua.edu.cn
mailto:gkun@chalmers.se
www.sciencedirect.com/science/journal/24058440
https://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2023.e16260
https://doi.org/10.1016/j.heliyon.2023.e16260
http://crossmark.crossref.org/dialog/?doi=10.1016/j.heliyon.2023.e16260&domain=pdf
https://doi.org/10.1016/j.heliyon.2023.e16260
http://creativecommons.org/licenses/by-nc-nd/4.0/


Heliyon 9 (2023) e16260

2

Environmental Protection Agency and the World Health Organization (WHO) to guide and facilitate air quality improvements, more 
than 90% of the world’s population lives in areas where pollutant levels are higher than WHO air quality standards [5]. Excessive 
emissions in terms of GHG emissions and pollutants in the transport sector have been resulting in profound negative impacts on air 
quality, climate, and public health that influence almost every piece of daily life [6,7]. Especially, traffic congestion due to large traffic 
volume reduces driving speed and thus leads to significantly higher energy consumption and emissions during operations [8,9]. 
Therefore, it is crucial to reduce emissions in the transport sector by improving infrastructure, vehicles, and the operation of the 
systems from different aspects. Urban transport managers and policymakers worldwide are pressing to reduce transport emissions to 
fulfill the national target of reducing emissions. 

One of the focuses of reducing transport emissions in urban areas is to reduce traffic congestion in typical bottlenecks (e.g., 
intersection and freeway merging areas) and corresponding traffic emissions, taking advantage of effective infrastructure and traffic 
management. In traffic congestion situations, internal combustion engine (ICE) vehicles emit 5–10 times more pollutants than in 
normal driving conditions [10]. One essential component for establishing effective infrastructure and traffic management to reduce 
traffic emissions is the use of vehicle emission models. These models quantify the emission patterns of vehicles under different driving 
conditions, providing important insights for reducing emissions and improving air quality. (e.g., speed and acceleration). Vehicle 
emission models are essential for evaluating and optimizing the actual performances of traffic management. The necessity of vehicle 
emission models has motivated researchers to develop various modeling approaches based on different data sources [11]. used a 
portable emission test system to test and examine the on-road fuel consumption and carbon dioxide (CO2) emissions of 60 light 
passenger vehicles. Their results indicated that the on-road fuel consumption and emissions under the average driving patterns were 10 
± 2% higher than type-approval values and were highly influenced by speeds. Their results highlighted the necessity of measuring 
emissions in the type approval test based on real-world driving features [12]. studied traffic emissions in the work zone using the 
Comprehensive Modal Emissions Model (CMEM) to generate second-by-second emissions. They reported that fuel consumption rates 
and emission rates of hydrocarbons (HC), carbon monoxide (CO), nitrogen oxide (NOx), and CO2 were highly related to traffic con-
ditions. Meanwhile, the emission patterns of light-duty and heavy-duty vehicles in different traffic conditions presented different 
principles. Meanwhile [13], developed a method for assessing the representativeness of fuel-specific vehicle-based emission factors. 
The method was validated based on actual emission data for 23 selected light gasoline vehicles. Results indicated that route average 
emission factors varied by approximately 20% for NOx or CO, and site-specific emission factors varied by 20% for NOx and 30% for CO 
between sites, respectively. However, fuel-based HC emission rates varied little with engine load, between routes, or between sites. 
This showed that estimating vehicle operational emissions was a complex process, especially in traffic flow with much complexity and 
randomness [14]. confirmed the importance of accurate emission modeling for different vehicle types (e.g., hybrid electric vehicles) in 
the Vehicle Specific Power model and improved the emission models tailored for hybrid electric vehicles. They also made significant 
improvements to the emissions detection tool in terms of temporal resolution, simultaneous data recording capability and data 
accuracy. 

One of the most critical infrastructure and traffic management for reducing traffic emissions is optimizing the design of in-
tersections [15–17], which are the most critical bottlenecks of urban transportation systems. To name a few [16], investigated the 
design of multiple target signal cycle lengths to minimize vehicle delays and traffic emissions. The simulation software INTEGRATION 
was used to simulate traffic demand distribution, traffic demand levels, signal timing loss times, and signal cycle lengths and to es-
timate intersection delays and emissions (CO2, HC, CO, and NOx) [18]. pointed out that emissions of road pollutants were related to 
many infrastructure parameters as well as to the intensity and type of traffic. They investigated the performances and the pollutant 
emissions of turbo roundabouts (CO, CO2, CH4, NOx, PM2.5, and PM10), assessed by COPERT software (European emission calculation 
tool) [19]. studied road geometries that continuously guide drivers from the entrance to the exit while eliminating weaving and queue 
jumping, and investigated the impact of conventional single-lane and two-lane roundabouts on traffic emissions, traffic capacity, and 
safety. Their results showed that the implementation of turbo-roundabouts has no benefit in terms of reducing emissions. 

In urban intersections, the lane functions are generally set to left-turn (or turnaround), through, and right-turn. The left-turn lane 
generates the most conflict points among vehicles from different directions and thus has the most significant impact on traffic effi-
ciency and emissions [16,20,21]. When the left-turn traffic volume reaches a certain threshold, a dedicated left-turn lane is required to 
reduce the impact of left-turn vehicles in the opposite road lanes to improve traffic efficiency at the intersections [22]. Therefore, 
rationalizing the design of left-turn lanes is one of the most effective measures to improve traffic efficiency and reduce traffic emissions 
at intersections [15]. In the relevant studies of optimizing left-turn lanes, the main design objectives are generally to reduce conflict 
points and improve capacity and efficiency. For instance Ref. [23], developed a method to determine the length of left-turn lanes at 
signalized intersections that can prevent spillover. The study considered intersection capacity, arrival rates, different signal schemes, 
and sequences of left-turn and through traffic to obtain the probabilities of lane blockage and lane overflow to calculate the recom-
mended length of left-turn lanes. Yao and Zhang (2013) proposed three models to optimally allocate lane space and green divisions for 
isolated signalized intersections with short left-turn lanes. Two performance metrics were proposed to compare the performance of the 
three models and to investigate their sensitivity to the model parameters. Afterward, Bing et al. (2014) investigated the impact of lane 
configurations on traffic emissions based on the traffic simulation tools VISSIM and VSP emission models. Traffic emissions under 
different lane configurations were analyzed in different scenarios in terms of five indicators, including average delay per vehicle, the 
average number of stops per vehicle, and total emissions of CO, HC, and NOx. Results showed that the presence of dedicated left-turn 
lanes (with or without widening) had a significant impact on the traffic flow and emission characteristics of the intersection [24]. 
focused on improving the operation of urban intersections, which are often congested and a key bottleneck of the road network. The 
study proposes a model that integrates an improved optimal velocity model and a multi-intersection signal state function to analyze 
traffic flow, including vehicles turning left accurately. The model also considers pollutant emissions and has been tested through 
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simulation analysis to show its effectiveness in describing actual traffic flow [25]. proposed an optimization model for minimizing 
delay in traffic for left-turns at signalized intersections using exit-lanes for a left-turn (EFL) traffic organization. The model considered 
the relationship between the pre-signal start node of the EFL and the queuing dissipation time of left-turn vehicles. The validation of 
the model showed that a well-designed pre-signal control scheme can improve capacity and reduce emissions while minimizing 
average vehicle delays compared to conventional left-turn lanes. 

There is extensive literature on the effects of left-turn lanes on traffic flow characteristics (e.g., travel time and speed) [26,27]. 
However, there is much less research about the impact of dedicated left-turn lane settings on different exhaust emissions. In particular, 
most existing studies ignored the complexity of mixed traffic flow with different vehicle types and mainly focused on single traffic flow 
with merely light-duty passenger vehicles. Few studies have investigated the left-turn lane optimization specific for mixed traffic flows, 
even though heavy-duty vehicles (HDVs) and light-duty vehicles (LDVs) have significantly distinct emission patterns, vehicular sizes, 
and kinetic characteristics [12–14]. Therefore, the left-turn lanes at the intersections for mixed traffic are anticipated to have different 
design principles and should be tailored based on new methods for mixed traffic rather than existing methods for LDVs. 

To address the gap, this study focuses on the optimization and emission analysis regarding the impacts of left-turn lanes on the 
emissions (CO, HC, and NOx) of mixed traffic flow with HDVs and LDVs, combining high-resolution field emission data and simulation 
tools. We utilize portable OBEAS-3000 to collect high-precision emission data for LDVs and HDVs in various traffic scenarios. Based on 
the field data, we first develop separate instantaneous emission models for HDVs and LDVs under various operating conditions. Then, 
we formulate a tailored optimization model to determine the optimal left-lane length considering the penetration rate of HDV and 
traffic volumes from different directions at the intersection. Finally, we empirically validate the proposed model and analyze the effect 
of the length of the left-turn lane (before and after optimization) on the emissions of mixed traffic flows based on the established 
emission model and microscopic traffic simulations using VISSIM. 

The remaining sections of the paper are structured as follows. Section 2 provides a description of the emission data collection 
process and emission modeling. In Section 3, we elaborate on the model to determine the length of the left-turn lane for mixed traffic 
flow. Section 4 describes the simulation method and empirical case study, followed by concluding remarks in Section 5. 

2. Emission data collection and emission model establishment 

This study uses the portable emission monitoring device OBEAS-3000 to collect vehicle emission data regarding CO, HC, and NOx in 
real traffic scenarios, considering the complexity of road conditions and the contingent nature of vehicle operating conditions. The 
instantaneous emission rate of CO, HC, and NOx operating in different traffic conditions for LDV and HDV are collected to establish 
vehicle-type specific emission models. 

2.1. Emission data collection equipment 

The OBEAS-3000 portable emission monitor in Fig. 1 was used to continuously collect the instantaneous emission of CO, HC, NOx, 
and corresponding vehicle operating dynamics, including positions (coordinates), speed, and accelerations. The data acquisition 
frequency is 10 Hz, namely, ten times in a second. The data reflect the quantitative relationship between instantaneous emissions and 
vehicle dynamics in a high resolution [28]. The experimental vehicles include both LDVs and HDVs. LDVs refer to M1, M2, and N1 
vehicles with a total mass not exceeding 3.5 tonnes, while HDVs refer to vehicles with a total mass exceeding 8 tonnes [29]. The LDVs 
in this study were the Volkswagen Lavida and Harvard SUV, which were typical and popular household passenger cars in China. For 
HDVs, we used the vehicle of FAW Liberty. The petrol emission standards for the experimental vehicles were Chinese National IV, with 
engine displacements of 1.6 L (Volkswagen Lavida), 2.0 L (Harvard SUV), and 6.6 L for the HDV. The detailed parameters of the 
experimental LDVs and HDV are summarized in Table 1. The vehicles were driven in the urban contexts of Shanghai, China in the 
daytime to collect the emission data under real traffic conditions. After experiments, a total of 170972, 66804 and 52251 valid records 
were finally collected for Volkswagen Lavida, Harvard SUV, and the heavy-duty vehicle, respectively. 

Fig. 1. OBEAS-3000 portable emission monitor.  
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2.2. Instantaneous vehicle emission models for light- and heavy-duty vehicles 

The VSP calculation model can effectively describe the instantaneous emission characteristics of vehicles, and it has a higher time 
and driving state resolution than other macroscopic emission models, which can effectively express the time-varying characteristics of 
traffic emissions. Vehicle emission patterns depend highly on vehicle dynamics during operations, which is a complex process. In this 
study, we adopt the well-known Vehicle Specific Power (VSP) model to establish the relationship between vehicle dynamics and 
instantaneous emissions of different exhausts. Utilizing field data we have collected in Shanghai of China, we develop instantaneous 
emission models for both LDVs and HDVs in terms of CO, HC and NOx for quantifying vehicle emissions. VSP is the instantaneous 
power per unit mass of a vehicle (kW/t), and the transient emissions of a vehicle are closely related to the VSP values [30]. It should be 
noted that the VSP models for vehicles in different countries may be different due to different vehicle emission standards. Herein, we 
use the field emission data in Shanghai for empirical analysis. The formula of VSP [31] can be seen in Eq. (1). 

VSP= v×(a+ g× grade+ g ·CR)+
1
2
· ρα ·

CD

m
·A · v3 (1)  

where v is the instantaneous speed, m/s. a is the instantaneous acceleration, m/s2. g is the acceleration of gravity and is set to be 9.81 
m/s2. grade is the road gradient, %. CR is the rolling resistance coefficient. ρa is the air ambient density. CD is the air resistance co-
efficient. Ai is the area of the vehicle cross-section, m2. m is the total vehicle mass, kg [32]. provided model parameters of VSP model 
for LDVs based on empirical data, and the VSP value of LDVs can be expressed by Eq. (2). 

VSP= v×(1.1a+ g× grade+ 0.132) + 0.000302v3 (2)  

In this study, the effect of the slope is not considered because the experimental areas (i.e., Shanghai, China) are plain without much 
variation in altitude, so grade is set to be 0 [28]. The VSP formula for HDVs is not the same as that for LDVs due to the considerable 
distinctions in vehicular characteristics [33]. Referring to Ref. [33]; this study uses the following VSP calculation formula for HDVs 
considering vehicle weight, front-end cross-section, and other parameters regarding HDVs. 

VSP= v×(a+ g× grade+ 0.09199) + 0.000169v3 (3) 

Based on second-by-second speed and acceleration data, the corresponding VSP is calculated and then grouped into discrete bins, 
which will link to the emissions of different exhausts. Please note that even though the device can record emission and vehicle dynamic 
data in a high resolution (0.1s), we aggerated the data into 1s on account of variation and monitoring accuracy to obtain more reliable 
results. In terms of determining the number of VSP bins, two basic rules of thumb are generally adopted: (1) the emission rates in 
different VSP bins should be statistically different; and (2) the resolution of bins should be high enough to avoid minor VSP bins that 
dominate the estimate of emissions [34]. To make full use of fine-grained vehicle operating and emission data, we divide the VSP 
values by a step of 1 kW/t to generate the BIN partition, which can well satisfy the aforenoted two rules. 

∀VSP∈VSPBI.Ni =

⎧
⎨

⎩

( − ∞, − 30]
[n − 1, n), n = ( − 29, 29], n ∈ Z

[30,+∞)

(4)  

in our field data, we have collected the instantaneous vehicle dynamics, including speed and accelerations, and corresponding 
instantaneous emissions of exhausts (CO, HC and NOx) detected by the OBEAS-3000 system. Using Eqs (2) and (3), the VSP at a certain 
time slot can be calculated based on speed and acceleration. To establish the relationship between VSP values and instantaneous 
exhaust emissions, we group the instantaneous emission rates (CO, HC and NOx) by the VSP interval (every 1 kW/t) and then calculate 
the instantaneous emission rates in the same VSP interval to obtain representative emission rates within each VSP interval. Especially, 
the processes are separately conducted for LDVs and HDVs. The final results for the instantaneous emissions within different VSP 
intervals for LDVs and HDVs are summarized in Table 2. These results construct a relationship between the vehicle operating con-
ditions (speed and acceleration), VSP values, and the corresponding emission rates for the different exhausts, which can be utilized for 
the following analysis. Particularly, there are remarkable differences in the emission rates of different exhausts in the same VSP in-
terval, which corroborates the necessity to develop separate emission models for HDVs and LDVs. 

Table 1 
Technical details of the experimental vehicles.  

Model/Parameters Light vehicles Heavy vehicles 

Brands Volkswagen Lavida Harvard SUV FAW Liberty 
Mass（kg） 1285 1725 15790 
Engine Displacement（L） 1.6 2.0 6.6 
Fuel type Petrol Petrol Diesel 
Emission standards State IV Standard State IV Standard State IV Standard 
Year of manufacture 2010 2014 2012  
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Table 2 
Instantaneous emission data for VSP at 1 kW/t partition for LDV and HDV.  

VSP LDV HDV 

Instantaneous emissions (mg/s) Instantaneous emissions (mg/s) 

CO HC NOx CO HC NOx 

（-∞，-30） 4.27 0.77 0.15 111.84 13.71 18.59 
[-30，-29） 4.28 0.42 0.08 68.45 10.99 14.89 
[-29，-28） 4.62 0.59 0.15 92.02 11.37 12.18 
[-28，-27） 2.92 0.74 0.23 87.14 11.88 14.90 
[-27，-26） 2.16 0.34 0.03 101.90 13.81 17.80 
[-26，-25） 7.95 0.57 0.24 116.41 15.56 21.67 
[-25，-24） 5.72 0.60 0.27 103.48 9.40 14.62 
[-24，-23） 4.80 0.57 0.20 151.47 14.57 11.74 
[-23，-22） 2.30 0.47 0.03 150.56 14.54 22.91 
[-22，-21） 3.06 0.50 0.45 96.43 12.78 18.73 
[-21，-20） 5.05 0.72 0.26 94.08 10.62 8.31 
[-20，-19） 4.49 0.51 0.10 131.80 12.39 26.63 
[-19，-18） 5.50 0.57 0.19 70.33 9.79 14.96 
[-18，-17） 3.06 0.62 0.16 82.79 11.78 10.88 
[-17，-16） 3.78 0.55 0.15 65.97 8.61 10.20 
[-16，-15） 4.25 0.62 0.36 108.66 13.05 15.14 
[-15，-14） 5.59 0.51 0.18 83.90 13.32 22.83 
[-14，-13） 5.21 0.65 0.07 71.29 9.00 10.73 
[-13，-12） 5.19 0.72 0.13 97.78 10.85 16.90 
[-12，-11） 5.54 0.54 0.07 72.69 11.87 14.59 
[-11，-10） 4.45 0.88 0.17 78.75 9.81 17.12 
[-10，-9） 5.67 0.59 0.20 68.22 10.15 14.64 
[-9，-8） 5.45 0.57 0.18 72.19 10.51 12.09 
[-8，-7） 4.56 0.85 0.14 86.53 10.18 15.16 
[-7，-6） 5.14 0.46 0.16 63.44 11.11 15.15 
[-6，-5） 4.23 0.53 0.05 65.69 11.54 13.29 
[-5，-4） 6.22 0.95 0.24 63.83 9.04 12.25 
[-4，-3） 3.74 0.49 0.10 70.91 9.54 12.91 
[-3，-2） 3.94 0.69 0.06 64.36 8.84 10.11 
[-2，-1） 3.13 0.53 0.12 75.58 11.72 17.61 
[-1，0） 3.31 0.59 0.08 100.49 11.19 14.50 
[0，1） 2.24 0.42 0.02 46.95 7.29 7.44 
[1，2） 3.56 0.65 0.07 66.88 9.38 11.09 
[2，3） 4.09 0.60 0.16 60.13 9.35 13.09 
[3，4） 4.67 0.71 0.09 69.81 10.73 14.52 
[4，5） 7.24 0.80 0.22 103.63 9.79 15.63 
[5，6） 3.90 0.56 0.14 73.96 11.21 16.24 
[6，7） 6.92 0.81 0.21 87.71 9.40 11.86 
[7，8） 7.82 0.84 0.10 97.53 10.64 13.26 
[8，9） 5.62 0.69 0.22 91.18 10.45 14.83 
[9，10） 8.96 0.82 0.41 73.50 10.37 16.70 
[10，11） 7.27 0.67 0.16 84.97 10.50 13.36 
[11，12） 7.68 0.75 0.30 100.07 11.69 15.73 
[12，13） 6.60 0.77 0.18 81.80 11.77 16.48 
[13，14） 9.29 0.85 0.38 92.66 11.56 14.74 
[14，15） 8.99 0.89 0.23 103.44 11.97 18.88 
[15，16） 7.95 0.72 0.14 100.01 12.36 17.27 
[16，17） 8.22 0.95 0.18 82.90 12.08 16.32 
[17，18） 6.14 1.19 0.26 107.68 14.08 20.35 
[18，19） 6.66 0.86 0.23 159.31 14.13 12.92 
[19，20） 7.74 0.80 0.32 93.99 11.32 20.34 
[20，21） 11.87 0.94 0.32 94.69 11.43 14.51 
[21，22） 7.01 0.79 0.22 102.21 11.87 21.39 
[22，23） 8.85 0.86 0.28 86.06 12.50 19.13 
[23，24） 8.89 1.05 0.26 76.94 11.99 16.88 
[24，25） 12.19 0.93 0.23 72.89 11.73 16.74 
[25，26） 5.82 1.00 0.26 96.07 12.32 19.84 
[26，27） 6.91 0.81 0.20 90.50 10.95 17.97 
[27，28） 11.08 1.01 0.33 111.83 13.61 18.04 
[28，29） 5.73 1.82 0.55 102.11 12.49 16.47 
[29，30） 16.03 0.97 0.32 117.23 11.97 22.59 
[30，+∞） 6.77 1.51 0.27 110.06 13.62 23.34  
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3. Determining the left-turn lane for mixed traffic flow 

The left-turn lane at an intersection generally includes a deceleration section (traverse section) and a storage section (see Fig. 2 (a)). 
Vehicles complete the traverse from through to left-turn in the deceleration section and then turn left or queue to wait for the next 
green-light phase. Inadequate lengths of the storage section will result in two consequences, as shown in Fig. 2 (b) and (c). A large 
number of left-turn vehicles will cause the left-turn queue to block the adjacent straight lane, making it impassable for the through 
traffic, as shown in Fig. 2(b). A long queue of through traffic will block the left-turn lane, preventing left-turn vehicles from passing into 
the storage section, as shown in Fig. 2(c). Short left-turn lane length can cause increased conflict between left-turning and straight- 

Fig. 2. Diagram showing the impact of insufficient left-turn lane storage length on traffic flow.  
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through vehicles, so the length of the left-turn storage section is, therefore, crucial to the operational efficiency of the intersection. Our 
design aim is to determine the optimal storage length of the left-turn lane for mixed traffic with different penetration rates of HDVs for 
reducing conflict points, traffic delays, and thus traffic emissions at the intersection. Due to the large difference in the length of HDVs 
and LDVs, the left-turn lane storage length for mixed traffic flow must consider not only the number of vehicles in the traffic flow but 
also the proportion of HDVs in the traffic flow. It is worth noting that it is implausible to directly formulate an optimization in which 
left-turn lane length is the decision variable and the overall traffic emission at the intersection is the objective function [15,26,27]. The 
reason is that the quantitative relationships between left-turn lane length and traffic emission cannot be mathematically modeled 
directly or indirectly. However, leveraging the validated relations between traffic delays and emissions, it is plausible to formulate an 
optimization model minimizing traffic delays and minimizing traffic emissions indirectly. This strategy has been adopted and validated 
by several relevant studies [15,16,20,26,27] and is utilized herein. 

Assuming that the traffic flow on the road section consists of n different types of vehicles and the length of the vehicle type i is Li 
with L1 < L2 < · · · < Li < · · · < Ln. The proportion of vehicle type i is Pi and P1 + P2 + · · · + Pi + · · · + Pn = 1. Because the combination 
of two adjacent vehicles in the traffic flow is random, the probability of the combination that the preceding vehicle is the type i and the 
following vehicle is the type j, is PiPj. Then, it is easy to verify, as shown in Eq. (5). 

∑r

i=1

∑r

j=1
pipj =(p1 + p2 + ⋯ + pr)

2
= 1 (5) 

Assume tij is the time headway between vehicle type i and vehicle type j when the traffic volume reaches the capacities of a lane. We 
can estimate the average time headway in the mixed traffic of various vehicle types, as shown in Eq. (6). 

Ht =
∑n

i=1

∑n

j=1
pipjtij (6) 

Based on the average time headway, the theoretical capacity of one lane for mixed traffic is 

CP=
3600

Ht
=

3600
∑n

i=1

∑n

j=1
pipjtij

i, j = 1, 2, 3, · · ·, n (7) 

The above equations are genera for mixed traffic flows with several vehicle types. However, this study mainly investigates the case 
of two types of vehicles on account of the available emission models, namely n = 2. Let us assume the proportion of LDVs and HDVs are 
p and 1 − p. We use subscripts l and h to denote light- and heavy-duty vehicles, respectively. It can be deduced that the capacity of a 
lane for mixed traffic flow is 

CP=
3600

∑2

i=1

∑2

j=1
pipjtij

=
3600

tllp2 + (tlh + thl)p(1 − p) + thh(1 − p)2 (8)  

In a mixed traffic flow, the arrival rate of left-turn vehicles at the intersection is λ (veh/h), and the maximum number of vehicles per 
hour that can pass the intersection at the left-turn green light phase is μ. λ is set to be less than μ. Otherwise, it will be undissipated 
traffic congestion. We assume that vehicle arrivals follow a Poisson distribution and time headway follows a negative exponential 
distribution, as most traffic flow studies did [8,9]. In this regard, this is a typical M/M/1 queuing model. As per the queueing theory, 
the probability that there is a queue of nl LDVs waiting in the left-turn lane at a given time is 

Pnl = p
(

1 −
λ
μ

)(
λ
μ

)nl

(9) 

The probability of having nh HDVs waiting in the left-turn lane is 

Pnh =(1 − p)
(

1 −
λ
μ

)(
λ
μ

)nh

(10) 

The probability of fewer than N vehicles queuing in the left-turn lane is 

P(x≤N)= 1 −

(
λ
μ

)N+1

(11)  

N =

⎡

⎢
⎢
⎣

ln(1 − P(x ≤ N))

ln
(

λ
μ

) − 1

⎤

⎥
⎥
⎦ (12)  

In the N vehicles, the number of LDVs queuing in the left-turn lane Nl is 
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Nl =Np= p ×

⎡

⎢
⎢
⎣

ln(1 − P(x ≤ N))

ln
(

λ
μ

) − 1

⎤

⎥
⎥
⎦ (13)  

and the number of HDVs queuing in the left-turn lane Nh is 

Nh =(1 − p) ×

⎡

⎢
⎢
⎣

ln(1 − P(x ≤ N))

ln
(

λ
μ

) − 1

⎤

⎥
⎥
⎦ (14) 

The maximum number of vehicles per hour that can pass the intersection at the left-turn green light phase μ. 

μ=
SLGL

C
(15)  

where SL is the hourly maximum traffic throughput of a single left-turn lane (veh/h), namely the capacity, which can be calibrated 
based on Eq. (8). GL is the effective green time of the left-turn protection phase (in seconds), and C is the signal cycle length in seconds. 
Then, we can get Eq. (16). 

λ
μ=

λC
SLGL

(16)  

In mixed traffic flows, the average length occupied by an LDV while parking is approximately 1.5 times its length, with a default value 
of 7.6 m. Referring to relevant literature [35], the average length occupied by an HDV Lh is related to the percentage of HDV in mixed 
traffic and can be approximated by Eq. (17). 

Lh = 7.6(1+M)= 7.6(2 − p) (17) 

To accommodate the N vehicles with Nl LDVs and Nh HDVs, the length of the stored section of the left-turn lane should be followed 
Eq. (18). 

LS = 7.6Nl + LhNh (18) 

Combining Eqs. (13), (14) and (18), the length of the stored section of the left-turn lane that wants to ensure no spillover in Fig. 2 (a) 
at the probability of P is 

LS = 7.6p
[

ln(1 − P)
ln(λC) − ln(SLGL)

− 1
]

+ 7.6(2 − p)(1 − p)
[

ln(1 − P)
ln(λC) − ln(SLGL)

− 1
]

(19) 

The value of P denotes the probability of ensuring no spillover in the left-turn storage lane and is the empirical value that considers 
the tradeoff between construction costs and service levels. If the value of P is too large, the length of the left-turn storage lane will be 
very long, which can ensure service levels but be a waste of the lane in most periods. If the value of P is too small, there will be a high 
risk or probability of left-turn lane spillover. Based on the arrival rate of left-turn traffic, the signal phases and cycles in an intersection, 
lane capacity of left turning, and penetration rate of HDVs in the traffic flow, we can design the corresponding left-turn lane length as 
per Eq. (19), which is tailored for mixed traffic. 

Fig. 3. Cao’an road – Jiasong north road intersection.  
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4. Empirical analyses based on field scenarios 

To validate the effects of the proposed method on the traffic emissions of mixed traffic at intersections, we conduct an empirical 
analysis regarding a typical intersection with mixed traffic in Shanghai, China. We use the VISSIM simulator to simulate the traffic and 
obtain high-resolution vehicle trajectories before and after optimizing the left-turn lane. In the simulation, we consider motor vehicles 
including LDVs and HDVs, but do not consider micro-mobility such as bicycles and scooters, which are out of the scope of this study. 
The intersection of Cao’an Road and North Jiasong Road (see Fig. 3) was chosen for the case study. The reasons for selecting the 
intersection are 1) the intersection has a high traffic flow with congestion in the morning and especially has high left-turn traffic flow; 
2) all inlet lanes from four directions of the intersection have left-turn lanes; 3) the traffic flow at the intersection has many HDVs and is 
a typical mixed traffic flow. At this intersection, Cao’an Road is a two-way 12-lane urban road, with each inlet lane comprising two left- 
turn-only lanes, three through lanes, and one right-turn lane. North Jiasong Road is a six-lane urban road in both directions, which 
includes one left-turn lane, one straight-through lane, and one right-turn lane. A bird’s view of the intersection is shown in Fig. 3. To 
reflect the real traffic flow characteristics in the intersection appropriately, we have conducted field surveys in the morning peak hours 
at the intersection for one week (from Monday to Friday, 7:30 a.m.-8:30 a.m.). Drones were used to record video above the inter-
section. Details about traffic flow in terms of traffic volumes and penetration rate of HDVs were extracted manually from the recorded 
videos. We did not apply computer vision techniques as manual counting is more accurate even though time-consuming. The details of 
the traffic flow are summarized in Table 3. Please note that we average the data from five consecutive days to get the representative 
values. 

The traffic volumes in VISSIM are inputted according to the traffic volumes at the intersections of the field survey, and the road 
network is built according to the actual construction of the intersections in the original scenario of the simulation. Based on the field 
research, the VISSIM simulation platform is built with the intersections taken in the field as the base map (see Fig. 4). 

The total number of LDVs in the morning peak hour was 4062, representing 85.91% of the total traffic, while HDVs were 666, 
representing 14.09% of the total traffic. For different directions, the proportion of LDVs ranged from 76.43% to 95.18%, while the 
proportion of HDVs ranged from 4.82% to 23.57%. It can be observed that the penetration rate of HDVs in different directions is 
distinct. Meanwhile, the traffic volumes from and to different directions have considerable variation as well. As indicated by the results 
of the field survey, there are considerable delays in different import lanes. We compare the traffic emissions and efficiency at the 
intersections in original and optimized scenarios. In the original scenario, we use the real and current settings about the length of left- 
turn lanes in different directions at the intersections. In the optimized scenario, we use our proposed method to determine the length of 
left-turn lanes in different directions according to the traffic volume, the penetration rate of HDVs, and signal timing. The lengths of 
left-turn lanes in different directions in two scenarios are summarized in Table 4. We simulate the case of morning peak hours as per 
our field survey data. In the VISSIM simulation, the velocity and acceleration of each vehicle are recorded and outputted at the fre-
quency of 1 s. We record the vehicles’ information during the period from the time frame when they arrive 200 m away from the stop 
line of the entrance lane to the time frame when they leave 200 m away from the stop line of the exit lane. Based on these data, we use 
the developed instantaneous emission models for LDV and HDV in Section 2.2 to estimate the emissions of CO, HC, and NOx of each 
vehicle crossing the intersections. In this manner, the emissions of all vehicles crossing the intersection in the two scenarios can be 
directly quantified and compared. We repeat the simulation five times to eliminate the potential biases due to randomness. The mean 
values of emissions in the five simulations are used for representatives. 

The results of the emissions in the two comparative scenarios are summarized in Table 4. The results show that the CO, HC, and NOx 
emissions of all traffic, including LDVs and HDVs at the intersections, are substantially reduced at the intersection in the optimized 
scenario. More specifically, the CO emission in the optimized scenario decreases by 34.43% as compared to the original scenario, 
which is a significant improvement. The same goes for HC and NOx emissions, which reduce by 29.77% and 30.42% in the optimized 
scenario, respectively. The results indicate that the proposed method for improving left-turn lane settings can cut down traffic 
emissions considerably in terms of CO, HC, and NOx. 

More importantly, the emission patterns of LDV and HDV show divergences. It can be observed in Table 5 that the percentage of 
HDV in the mixed traffic flow is much smaller than that of LDV. The proportion of LDV in the traffic flow from different directions 

Table 3 
Morning peak-hour Traffic volume at the investigated intersection.  

Entrance Turning LDV HDV Percentage of LDV Percentage of HDV Average delay(s) Max. delay(s) Max. Queue length(m) 

West Entrance Left 45 21 95.18% 4.82% 81.5 197.8 103.2 
Right turn 59 7 89.39% 10.61% 11.2 29.1 0 
Straight 737 137 84.32% 15.68% 72.6 174.2 106.2 

East Entrance Left 313 31 90.99% 9.01% 62.9 190.1 57.6 
Right turn 231 61 79.11% 20.89% 1.5 7.4 0 
Straight 563 72 88.66% 11.34% 83.7 183.5 154.5 

North Entrance Left 253 45 84.90% 15.10% 57.7 146.5 124.4 
Right turn 160 27 85.56% 14.44% 3.5 16.9 13.2 
Straight 597 85 87.54% 12.46% 66.7 164.0 53.9 

South Entrance Left 207 58 78.11% 21.89% 88.9 191.1 169.2 
Right turn 120 37 76.43% 23.57% 28.5 83.0 90.2 
Straight 407 85 82.72% 17.28% 75.3 186.8 172.7 

Total number vehicles 4062 666 85.91% 14.09%     
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varies from 76.43% to 95.18%, with an average value of 85.91%. The percent of HDV from different directions varies from 4.82% to 
23.57%, with a mean of 14.09%. However, the emission results in Table 4 show that in the original scenario, the LDVs merely 
contribute 27.86% of CO, 31.61% of HC, and 5.67% of NOx, which is not proportional to the percentage of LDV in traffic volumes. In 
contrast, HDVs produce 72.14% of CO, 68.39% of HC, and 94.33% of NOx in the studied intersection, even though they merely take up 
14.09% of traffic flows. The same phenomenon is observed in the optimized scenario. HDVs contribute the most emissions of CO, HC, 
and NOx, although the percentage of HDVs is not large. These results imply the necessity of specific measures for reducing the traffic 
emissions of traffic flow with only LDVs, and mixed traffic flow with HDVs, as well as the merits of the proposed method for mixed 
traffic. For LDV, the CO emissions reduce by 33.74% in the optimized scenario as compared to the original scenario. A similar 
reduction in CO emissions (34.7%) for HDVs is also found. The HC emissions of LDVs decrease by 17.78%, but the reduction in the HC 
emissions for HDVs is more notable (35.31%). The NOx emissions for LDVs reduce by 27.93% in the optimized scenario, similar to the 
reduction of NOx emissions for HDVs (30.57%). The results demonstrate that the optimization of the left-turn lane has similar impacts 
on the reduction of CO and NOx emissions for LDVs and HDVs, but has a more remarkable influence on the HC emissions for HDVs 
compared to LDVs. 

To further validate the reliability of the proposed method to determine the storage length of left-turn lanes properly, we have 
enumerated the relationship between the storage length of the left-turn lane and corresponding traffic emission in the north import 
directions at an increment of 25 m. The results are summarized in Table 5. It can be seen that the emissions of CO, HC, and NOx from 
LDVs decrease with the increase of left-turn lane length firstly, reach a swale at the length of 125 m, and then increases with a longer 
left-turn lane. The same pattern can be observed for HDV with differences in absolute values. Interestingly, the emissions, to some 
extent, increase with a longer left turn, which seems counterintuitive but rational. The reason found from observing the trajectories of 
vehicles is that straight-through traffic would use the left-turn lane to take over preceding vehicles and cut into the straight-through 
lanes when the left-turn lane is rather long, as demonstrated in Fig. 5. These behaviors will increase the conflicting points in the traffic 
and result in traffic oscillations (deceleration and acceleration behavior) due to cut-in behaviors, which will lead to higher vehicle 
emissions. More importantly, the best length for the left-turn lane is around 125 m in the enumeration, which is highly aligned with the 
theoretically derived value of 122 m based on our proposed method in Table 6. These corroborate the validity and ability of the 
proposed method to determine the optimized left-turn storage length for mixed traffic properly. 

The setting of the left-turn lane storage not only affects emissions but also traffic efficiency at the intersection in terms of travel time 
and delays. Therefore, we compare the changes in the traffic efficiency before and after optimizing the left-turn lane in terms of 
average travel delay, maximum delay, and maximum queue length in different directions. The results are summarized in Table 7. The 
average traffic delays in different entrance directions after optimization reduces by 14.61% (West), 2.68% (East), 16.67% (North), and 
21.09% (South). The maximum delays of vehicles from different directions reduce by 4.73%–9.05%. The maximum queue lengths in 
different directions decrease significantly by 37.02%, 79.42%, and 39.09%. The improvements are mainly attributed to avoiding the 

Fig. 4. Simulation scenario in VISSIM.  

Table 4 
Storage length of the left-turn lane.  

Directions Length of the left-turn lane in original scenario (m) Length of the left-turn lane in optimized scenario (m) 

West Entrance t 70 120 
East Entrance 70 93 
North Entrance 50 122 
South Entrance 50 63  
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Table 5 
Comparison of emissions before and after optimization.   

Original scenario Optimized scenario Emission reduction 

Overall emission (g/h) The proportion of different vehicle types Overall emission (g/h) The proportion of different vehicle types 

All vehicles CO 26031.94  17068.5  34.43% 
HC 3731.64  2620.74  29.77% 
NOx 3453.18  2402.58  30.42% 

LDV CO 7252.14 27.86% 4804.98 28.15% 33.74% 
HC 1179.72 31.61% 970.02 37.01% 17.78% 
NOx 195.90 5.67% 141.18 5.88% 27.9% 

HDV CO 18779.80 72.14% 12263.52 71.85% 34.70% 
HC 2551.92 68.39% 1650.72 62.99% 35.31% 
NOx 3257.28 94.33% 2261.40 94.12% 30.57% 

Note: The proportion of different vehicle types is calculated by the emissions of one exhaust from a vehicle type (e.g., LDS) divided by the emission of one exhaust from all vehicles. 
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harmful scenarios demonstrated in Fig. 2 by providing appropriate storage lanes for left-turn vehicles. The results demonstrate that the 
proposed method can reduce travel delays and queues considerably and generate benefits in traffic efficiency. Although heavy vehicles 
only account for 13–18% of the vehicle count in the intersection, they generate more than 70% of CO emissions, over 65% of HC 
emissions, and more than 90% of NOx emissions from all heavy vehicles. 

5. Conclusions 

This study investigates the optimization and emission analysis regarding the effects of left-turn lanes on the emissions (CO, HC and 
NOx) of mixed traffic flow with both LDVs and HDVs at urban intersections. High-resolution field emission and vehicle operating data 
of LDVs and HDVs in real urban contexts are collected and used to establish instantaneous emission models for HDVs and LDVs 
regarding CO, HC and NOx. Meanwhile, a tailored model is formulated to determine the optimal left-turn lane length based on 
queueing theories and the penetration rate of HDVs. The proposed method is validated using an empirical case study combining 
established emission models and VISSIM simulation tools and based on field data in a typical intersection. 

The results show that the proposed method can reduce the CO, HC and NOx emissions at the intersection by around 30% as 
compared to the original scenario. An enumeration process is conducted to validate further the ability of the proposed method to 
determine the proper length of left-turn lanes. The optimization of the left-turn lane has similar impacts on the reduction of CO and 
NOx emissions for LDVs and HDVs but has a more remarkable influence on the HC emissions for HDVs as compared to LDVs. It is found 

Fig. 5. Through traffic uses left-turn storage lane to take over.  

Table 6 
The effects of left-turn lane storage length on traffic emission in the north import.   

LDV HDV 

Length of left-turn lane CO（g/h） HC（g/h） NOx（g/h） CO（g/h） HC（g/h） NOx（g/h） 
Original scenario (50 m) 1802.9 293.3 48.7 4426.4 601.5 767.7 
75 m 1514.0 297.8 42.2 3863.1 523.6 702.1 
100 m 1437.6 286.7 41.0 3794.3 513.3 695.6 
125 m 1194.5 241.1 35.1 2890.5 389.1 533.0 
150 m 1536.8 305.2 44.9 4125.5 553.5 757.0 
175 m 1486.9 296.9 43.4 3714.8 496.5 687.4 
200 m 1539.1 306.6 45.3 3683.3 492.2 681.7 

Note: We use the north import direction as the representative and repeating the validation process in other directions can find similar conclusions, 
which are not elaborated in case of redundancy. 

Table 7 
Comparison of emissions under emission optimization and delay optimization.   

West import East Import North Import South Import 

ORS -Average delay(s) 69.16 59.19 54.27 71.2 
OPS -Average delay(s) 59.05 57.6 45.23 56.19 
Reduction percentage 14.61% 2.68% 16.67% 21.09% 
ORS-Maximum delay(s) 197.8 190.1 164 186.8 
OPS-Maximum delay(s) 181.9 181.1 155.9 169.9 
Reduction percentage 8.04% 4.73% 4.94% 9.05% 
ORS-Maximum queue length(m) 106.2 154.5 124.4 172.7 
OPS-Maximum queue length(m) 57.8 97.3 25.6 105.2 
Reduction percentage 45.57% 37.02% 79.42% 39.09% 

Note: ORS and OPS denote the original scenario and optimized scenario, respectively. 
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that HDVs contribute to most of CO, HC, and NOx emissions at the intersection whilst they take up a small percentage of the traffic flow. 
The proposed method can also improve traffic efficiency at the intersection by reducing travel delays and queuing, as evidenced by 
empirical analysis results. This study establishes the instantaneous emission model for mixed traffic flow and provides a model basis for 
calculating traffic emissions from mixed traffic flows. Moreover, the results provide useful guidance and design methods for trans-
portation designers to optimize and improve the left-turn lane configuration to alleviate traffic congestion and reduce traffic emissions 
at urban intersections. 

Compared to former studies, this study offers several unique contributions regarding the impact of left-turn lanes on traffic 
emissions. Firstly, we collected high-resolution field emission and vehicle operating data for both LDVs and HDVs, providing a 
comprehensive understanding and modelling of the emissions of LDVs and HDVs in different operation conditions, which are essential 
for analyzing emissions of mixed traffic flow. Secondly, we formulated a tailored model to determine the optimal left-turn lane length, 
which takes into account queueing theories and the penetration rate of HDVs. Finally, the proposed method was validated using an 
empirical case study, providing evidence of its effectiveness in reducing emissions and improving traffic efficiency. 

Nevertheless, there are several limitations that can be further investigated in future work. Firstly, it is tough to directly formulate 
quantitative models about emissions at the traffic flow level in the optimization model of left-turn lanes, as the change of left-turn lane 
design will influence several aspects and a lot of vehicles rather than a certain vehicle. It will be interesting work to develop a 
quantitative method for reflecting the relationship between changes in traffic flow characteristics and corresponding emissions. In this 
regard, the objective function of the optimization will be more straightforward. Moreover, this study focuses on the left-turn lane 
design and takes the signal timing setting at the intersection as the default input. However, the signal timing can be optimized and 
controlled to facilitate traffic efficiency as well, which a load of literature has been doing. It is an interesting future work to jointly 
optimize lane configuration design and signal timing at the intersection, which is expected to have more remarked benefits. Last but 
not least, our emission models are established based on the field emission data of three representative vehicles due to data limitations 
and the high expense of collecting data from various LDVs and HDVs. Collecting more field emission data will always be beneficial for 
improving the instantaneous emission models and analysis accuracy in relevant studies. 
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