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Enhanced catalysis 
through structurally modified 
hybrid 2‑D boron nitride 
nanosheets comprising 
of complexed 2​‑hy​dro​xy‑​4‑m​eth​
oxy​ben​zophenone motif
Pooja Rana1, Ranjana Dixit1, Shivani Sharma1, Sriparna Dutta1, Sneha Yadav1, Aditi Sharma1, 
Bhawna Kaushik1, Pooja Rana1, Alok Adholeya2* & Rakesh K. Sharma1*

Tuning the structural architecture of the pristine two dimensional hexagonal boron nitride (h-BN) 
nanosheets through rational surface engineering have proven advantageous in the fabrication 
of competent catalytic materials. Inspired by the performance of h-BN based nanomaterials in 
expediting key organic transformations, we channelized our research efforts towards engineering the 
inherent surface properties of the exclusively stacked h-BN nanosheets through the incorporation of a 
novel competent copper complex of a bidentate chelating ligand 2-hydroxy-4-methoxybenzophenone 
(BP). Delightfully, this hybrid nanomaterial worked exceptionally well in boosting the [3 + 2] 
cycloaddition reaction of azide and nitriles, providing a facile access to a diverse variety of highly 
bioactive tetrazole motifs. A deep insight into the morphology of the covalently crafted h-BN signified 
the structural integrity of the exfoliated h-BN@OH nanosheets that exhibited lamellar like structures 
possessing smooth edges and flat surface. This interesting morphology could also be envisioned to 
augment the catalysis by allowing the desired surface area for the reactants and thus tailoring their 
activity. The work paves the way towards rational design of h-BN based nanomaterials and adjusting 
their catalytic potential by the use of suitable complexes for promoting sustainable catalysis, 
especially in view of the fact that till date only a very few h-BN nanosheets based catalysts have been 
devised.

Two-dimensional hexagonal boron nitride nanosheets based architectures with long-range ordered atomic 
arrangements have recently stimulated the exponential growth in the arena of materials chemistry. Indeed, 
it is the exclusive stacked structure of BN nanosheets due to electronegativity difference between B and N 
atom which imparts several fascinating features such as excellent mechanical strength, outstanding thermal 
and chemical stability, low dielectric constant, oxidative resistance, nanometre size, large surface area to vol-
ume ratio and high complex loading1–3. Considering such intrinsic characteristics, research on structurally 
flexible h-BN based nanomaterials has been flourishing across the globe in myriad of diverse fields including 
sensing, electronics, sensors, hydrogen storage, gas separation, etc4–8. Very recently, these exotic materials have 
significantly garnered the attention of scientific community as a promising candidate to design new generation 
catalytic materials for cascade reactions due to their unique atomic structure. Notably, atomically thin h-BN 
nanosheets have received tremendous recognition as a solid matrix amongst various nanostructured materials 
to develop surface engineered catalysts as they are capable of dissipating considerable amount of heat in exo-
thermic organic reactions9,10. Besides, they not only prevent catalyst deactivation by driving off the moisture 
owing to hydrophobic surface but also prevent the issue of silicates or aluminates formation often encountered 
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in other oxide supports11,12. To date, catalytic efficacy of h-BN supported nanomaterials has been investigated 
in some organic reactions including oxidation of methane, benzene and alcohols, reduction of NOx, selective 
hydrogenation of unsaturated aldehyde and semi-hydrogenation of alkynes13,14. However, as evident from existing 
literature reports the potential of such 2D nanocomposites has not been explored in catalyzing cycloaddition of 
azide and nitriles. This industrially significant transformation furnishes 5-substituted 1H-tetrazoles which have 
gained tremendous impetus as active pharmaceutical ingredients since their pioneering discovery in year 1885 
by Bladin due to their biological properties including antibiotic, anti-viral, anti-fungal, anti-cancer, anti-diabetic 
and anti-hypertensive agents (Fig. 1)15–25. Besides, these synthons also possess immense potential as promising 
candidates in coordination chemistry, photographic industry, agricultural field, organocatalysis and information 
recovery systems26–31. Such diverse applications of tetrazole derivatives and their inability to exist in nature have 
inspired various research groups worldwide to explore newer synthetic routes for their access32,33. Hantzsch and 
Vagt in 1901 attempted the first successful [3 + 2] cycloaddition of azide and nitriles to synthesize 5-substituted 
1H-tetrazoles34. Thereafter, a plethora of homogeneous catalysts like bronsted acids, lewis acids, AlCl3, CdCl2, 
Fe(OAc)2, copper (I) chloride, etc. as well as a few heterogeneous catalytic systems have been reported for their 
synthesis in literature35–38. However, commercial utilization of aforementioned protocols is hindered due to 
innate shortcomings such as use of expensive metal salts, toxic solvents, prolonged reaction time, unsatisfac-
tory yield, difficulty in separation and recovery of the catalyst39–44. In this perspective, advanced heterogenized 
nanocomposites comprising of homogeneous metal complexes immobilized on diverse support matrices, bearing 
uniform active sites similar to their homogeneous counterparts is highly desirable to expedite the concerned 
reaction45,46. Taking into consideration the scientific impression of these materials and in continuation of our 
ongoing research in the field of catalysis47–53, herein we demonstrate the fabrication of a surface engineered 2D 
hexagonal boron nitride supported copper (h-BN@APTES@BP@Cu) nanocomposite and investigation of its 
catalytic efficacy in the synthesis of tetrazole derivatives.

In fact, this is the first ever research study on cycloaddition of azide and nitriles catalyzed by two-dimen-
sional h-BN based nanomaterial. As anticipated, the results of present work unveil that h-BN@APTES@BP@
Cu besides exhibiting excellent catalytic performance in the concerned reaction is also capable of furnishing 
array of tetrazole derivatives under mild reaction conditions. However, it is worth mentioning that the native 
h-BN nanosheets do not themselves possess any significant catalytic activity as experimentally proven (Table S1, 
Supporting Information) but work as an appealing support material in the immobilization of the targeted metal 
complex. Further, it is envisaged that h-BN@APTES@BP@Cu can be employed as a high performance catalyst 
in expediting other industrially significant organic transformations in near future.

Figure 1.   Biologically active molecules bearing tetrazole framework.
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Motivation and significance.  This work is a step taken towards accomplishing the key goals of sustainable 
development that portray a strong vision of hope for humanity. The manipulation of h-BN to generate a surface 
engineered nanomaterial that works as a green catalyst for expediting the industrially significant cycloaddition 
reaction holds promising potential to completely revolutionize the chemical sector. The tethering of APTES has 
been accomplished for the very first time on this heteroatom containing boron nitride nanosheets which has 
been further attached to a novel ligand. The synergistic integration of unique properties of BN, Cu metal center 
and bidentate ligand in a single platform along with the unique schistose like morphology of the nanocatalyst 
conferring prospects of increased surface area have been envisaged to accelerate the performance of the catalyst 
(in terms of yield, reaction time and conditions).

Results and discussion
Catalyst fabrication.  The catalyst has been fabricated in a stepwise manner through successive surface 
modifications of h-BN nanosheets, as displayed in Fig.  2. In the initial step, hydroxyl functionalized boron 
nitride (h-BN@OH) nanosheets were fabricated via ion-assisted liquid exfoliation approach by subjecting the 
homogeneous mixture of h-BN, sodium hydroxide (NaOH) and potassium hydroxide (KOH) to heating condi-
tions in a stainless steel autoclave. A growth mechanism for the formation of h-BN nanosheets from bulk boron 
nitride micropowder is illustrated in Fig. S1, which comprises of molten alkali-assisted pretreatment and sub-
sequent sonication. In molten alkali metal hydroxide treatment, ions such as Na+, K+ and OH- are inserted into 
the interlayer space of the stacked sheets. In particular, these ions get adsorbed on the h-BN surface and then 
undergo diffusion into the space employed by adjacent BN lattices which results in the enlargement of interlayer 
spacing by weakening of adjacent layers held by van der Waals forces and curling of topmost BN sheet at the 
edges. As more number of ions get inserted, the curling up layer peels away from the parent counterpart by vir-
tue of hydroxyl immobilized BN. Further, the resultant pretreated powder is subjected to liquid exfoliation under 
sonication which ensures high yield of h-BN nanosheets54.

Thereafter, the obtained h-BN@OH nanosheets were functionalized with amine moieties i.e. 3-aminopro-
pyltriethoxysilane (APTES) under reflux condition in ethanol. This was done in order to generate the functional 
moieties on the surface of the nanosheets as amine groups are considered to be one of the most promising linkers 
that allow further scope for ready surface modification. Finally, h-BN@APTES@BP@Cu catalyst was synthesized 
by immobilizing 2-hydroxy-4-methoxybenzophenone onto the amine functionalized BN nanosheets (h-BN@
APTES) via Schiff base condensation followed by metalation using copper acetate. The designed nanocatalyst 
was then characterized well using various physicochemical techniques such as scanning electron microscopy 
(SEM), transmission electron microscopy (TEM), fourier transform infrared (FT-IR), X-ray diffraction (XRD), 
energy-dispersive X-ray spectroscopy (EDS), energy-dispersive x-ray fluorescence (ED-XRF), Laser Raman 
spectroscopy and X-ray photoelectron spectroscopy (XPS).

Catalyst characterizations.  SEM was employed to analyse the shape and surface morphology of the 
nanocomposites. The morphologies of h-BN@OH, h-BN@APTES, h-BN@APTES@BP and h-BN@APTES@
BP@Cu using the technique and the resulting SEM micrographs have been provided in Fig. 3. The SEM micro-
graph of exfoliated h-BN@OH exhibits lamellar like structures comprising of smooth edges and flat surface. Fur-

Figure 2.   Fabrication of hexagonal boron nitride nanosheets based copper catalyst (h-BN@APTES@BP@Cu).
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ther, on moving to h-BN@APTES, h-BN@APTES@BP and h-BN@APTES@BP@Cu, no morphological change 
is observed which suggests that the structural integrity remains unaltered even after functionalization. Besides 
SEM, TEM analysis of synthesized materials was also carried out which reveals layered like structure aligned in 
lateral dimension. TEM micrograph of h-BN@OH also shows 4–5 stacked sheets with average thickness lying 
between 3 and 7 nm. The typical six-fold symmetry of h-BN nanosheets was confirmed by selected area electron 
diffraction (SAED) pattern which further depicts its hexagonal crystal structure (Fig. 3e, inset). Moving to h-
BN@APTES, h-BN@APTES@BP and h-BN@APTES@BP@Cu, no significant change in morphology is observed 
even after surface modification and successive metalation. However, the appearance of dark spots in the TEM 
micrograph of h-BN@APTES@BP@Cu can be attributed to the presence of Cu in the final catalyst.

FT-IR was performed to elucidate the stepwise synthesis of surface modified BN nanosheets as depicted in 
Fig. S2. The spectrum of h-BN@OH represents two intense peaks at 1372 and 820 cm−1 that are assigned to the 
B−N stretching and B − N − B bending vibration. Furthermore, an additional broad peak appearing at 3430 cm−1 
confirms the presence of hydroxyl group on the surface of h-BN nanosheets as compared with the bulk h-BN. 
On moving to h-BN@APTES spectrum, emergence of bands at 1040 and 1120 cm-1 corresponds to the charac-
teristic absorption of Si−O symmetric and asymmetric mode of vibrations which authenticates the existence of 
APTES moiety on the BN nanosheets surface through silylation process55,56. Additionally, absorption bands at 
2936 and 1633 cm-1 are attributed to the CH2 and NH2 stretching vibrations of amino-propyl moiety. Further-
more, on moving to the FTIR spectra of h-BN@APTES@BP and h-BN@APTES@BP@Cu, no noticeable peak of 
C=N absorption (that usually is observed around 1632–1645 cm−1 due to the imine bond formation as a result 
of Schiff ’s condensation between NH2 groups of h-BN@APTES and carbonyl groups of the ligand) can be seen 
which indicates that this peak is concealed under the broad band of B−N bonds57,58.

An insight into the crystalline behaviour of the designed nanocomposites was acquired through powder XRD 
analysis as shown in Fig. 4. XRD spectrum of h-BN@OH exhibits characteristic Bragg’s diffraction peak similar 
to the pristine h-BN powder at 2θ = 26.9°, 41.6°, 43.8°, 50.0° and 55.1° corresponding to the (002), (100), (101), 
(102) and (004) planes respectively (JCPDS card no. 34–0421)59. Further, similar diffraction peaks are obtained 
in the XRD spectra of h-BN@APTES, h-BN@APTES@BP and h-BN@APTES@BP@Cu which unveils no signifi-
cant change in the crystallinity of nanosheets after being modified with the functionalizing agents. Moreover, 
no additional peaks corresponding to any other impurity is observed which indicates high purity of the sample.

X-ray photoelectron spectroscopy was employed to investigate the surface electronic states of the developed 
catalyst. XPS survey spectrum of h-BN@APTES@BP@Cu and core level spectra of B 1 s, N 1 s, O 1 s, Si 2p and 
C 1 s elements are shown in Fig. 5a and Fig. S3 respectively60,61. In addition, a wide scan spectrum of h-BN@
OH and corresponding core spectra of B 1 s, N 1 s and O 1 s are also provided in Fig. S4. As can be viewed from 
Fig. S3a, the appearance of two peaks located at 191.1 and 190.1 eV are attributed to the B−O and B−N bonds 
respectively62. Hence, it can be interpreted that −OH is attached to B atoms effectively rather than N atoms. The 
Si 2p spectrum (Fig. S3e) reveals strong peak at 102.1 eV which is accredited to the bond formation between 
silicon and oxygen (B−O−Si) and thus provides a strong evidence of silylation of the support material63. In 
N 1 s spectrum (Fig. S3b), an emerging peak at 397.8 eV is attributed to the binding energy of N-B bonds in 
h-BN nanosheets, whereas peaks observed at 398.6 and 399.1 eV are assigned to the N=C and N–H bonds, 
respectively64,65. Specifically, the peak corresponding to N=C authenticates the successful grafting of ligand onto 
the amine functionalized BN nanosheets via Schiff base condensation. In addition, the C 1 s spectrum of h-BN@
APTES@BP@Cu (Fig. S3d) represents two bands amongst which band at 284.7 eV is attributed to the binding 
energy of C=C bonds and 286.7 eV is assigned to the C−O−C bonds66. Besides, the core level XPS spectrum of 
Cu 2p (Fig. 5b) displays two intense bands at 934.5 and 954.5 eV, which correspond to the binding energy of 
Cu(II) and an additional peak at 943.9 eV indicates the coordination linkage between copper and the ligand.

Figure 3.   SEM micrographs of (a) h-BN@OH, (b) h-BN@APTES, (c) h-BN@APTES@BP, (d) h-BN@APTES@
BP@Cu and TEM micrographs of (e) h-BN@OH, inset: corresponding SAED pattern, (f) h-BN@APTES, (g) 
h-BN@APTES@BP, (h) h-BN@APTES@BP@Cu.
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The elemental composition of the synthesized h-BN@APTES and h-BN@APTES@BP@Cu was confirmed 
by EDS (Fig. S5). The well-defined peaks of B, N, O, C and Si in Fig. S5a validates the anchoring of APTES onto 
the surface of BN nanosheets, while distinct peaks of B, C, N, O, Si and Cu in Fig. S5b corroborates the synthesis 
of h-BN@APTES@BP@Cu nanocatalyst. Moreover, well resolved peak of copper in the final nanocatalyst is 
also affirmed by ED-XRF spectroscopy (Fig. S6) which indicates successful introduction of metallic species on 
h-BN@APTES@BP. In addition, elemental mapping of h-BN@APTES@BP@Cu shows uniform distribution of 
B, N, O, C, Si and Cu elements in the final nanocatalyst (Fig. 6). Furthermore, the synthesized nanocatalyst was 
subjected to atomic absorption spectroscopy (AAS) to analyse the copper content and the corresponding loading 
was found to be 0.4878 mmol g-1.

Raman spectrum of pristine BN shows characteristic G band at 1365 cm-1 corresponding to E2g vibration 
mode (Fig. 7). Upon exfoliation, a blue shift to 1366 cm-1 is observed which indicates the formation of thinner 
flakes as a result of strong in-plane stresses and weak interlayer interaction67–69. Additionally, a decrease in peak 
intensity is also observed in case of h-BN nanosheets which provides strong evidence for the existence of highly 
exfoliated sheets compared to the bulk BN powder. On further modification of h-BN nanosheets surface, a blue 
shift in E2g vibration mode is observed indicating smooth surface70.

Catalytic evaluation.  The catalytic potential of the newly fabricated h-BN@APTES@BP@Cu catalyst was 
examined in [3 + 2] cycloaddition of azide and corresponding nitriles leading to the synthesis of 5-substituted 

Figure 4.   XRD spectra of h-BN, h-BN@OH, h-BN@APTES, h-BN@APTES@BP and h-BN@APTES@BP@Cu.

Figure 5.   (a) Full range survey scan XPS spectra of h-BN@APTES@BP@Cu with Auger Cu LMM, O KLL and 
C KLL peaks and (b) core level spectrum of Cu 2p.
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1H-tetrazoles. To commence the investigation, benzonitrile and sodium azide were selected as test substrates. 
Moreover, various reaction parameters such as amount of catalyst, type of solvents, effect of time and tem-
perature were determined to achieve an optimum reaction profile for the cycloaddition reaction with the aid 
of h-BN@APTES@BP@Cu (Fig. 8). A control experiment was carried out in the absence of catalyst using 1:2 
ratio of test substrates (i.e. 1 mmol benzonitrile and 2 mmol sodium azide) which afforded trace amount of the 
desired product (Table S1). In addition, various homogeneous and heterogeneous catalysts were also deployed 
to afford the targeted product. Amongst all the tested catalytic materials, heterogeneous h-BN@APTES@BP@
Cu presented highest conversion percentage and therefore endorsed its remarkable efficacy in the desired trans-
formation.

The influence of variation in catalyst amount was also examined in the one-pot synthesis of tetrazoles. In this 
respect, six different sets of experiments were carried out by increasing the amount of catalyst from 5 to 30 mg 
(Fig. 8a). The results disclosed that on increasing the amount of catalyst from 5 to 20 mg, an increase in conver-
sion percentage was observed due to increase in catalytic active sites. Further increase in catalyst loading led to 
a decrease in conversion percentage which could be attributed to the steric hindrance caused by low dispersity 
of excess catalyst. Therefore, optimum amount of h-BN@APTES@BP@Cu was found to be 20 mg which resulted 
in maximum conversion percentage.

Choice of solvent also plays a pivotal role in enhancing the catalytic efficacy of the reaction. In this con-
text, model reaction was subjected to a series of solvents which included water, ethanol, ethylene glycol (EG), 
N, N-dimethylformamide (DMF), dioxane and N-methyl-2-pyrrolidone (NMP). The results revealed that the 
reaction proceeded with good conversion percentage using ethanol, dioxane, NMP and DMF solvents (Fig. 8b). 

Figure 6.   EDS elemental mapping images of (a) h-BN@APTES@BP@Cu showing uniform distribution of (b) 
B, (c) N, (d) O, (e) C, (f) Si and (g) Cu.
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Figure 7.   Raman spectra of h-BN, h-BN@OH, h-BN@APTES, h-BN@APTES@BP and h-BN@APTES@BP@
Cu.
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Moreover, the reaction was also performed under solvent free conditions which showed low conversion per-
centage. Evidently, superior result was achieved when the reaction was conducted in ethanol. Hence, further 
optimizations were executed successfully using ethanol as a green solvent.

To determine the effect of time on the rate of reaction, model reaction was monitored at different time 
intervals ranging from 2 to 10 h. As shown in Fig. 8c, the conversion percentage is displayed as a function of 
time which demonstrated that maximum conversion percentage was observed when the reaction was allowed 
to run for 6 h. However, when the reaction proceeded further, no appreciable change was observed. Therefore, 
6 h was considered as optimized time period for the cycloaddition of benzonitrile and sodium azide moieties.

In order to study the effect of temperature variance, test reaction was carried out at diverse range of tempera-
ture (40–90 °C) as presented in Fig. 8d. At 40 °C, conversion of the reactant to the desired product was found to 
be negligible. When temperature was increased to 60 °C, 71% of the product formation was achieved. Thereafter, 
an increase of 10 °C resulted in 90% conversion. The results revealed 100% conversion when temperature was 
raised to 80 °C. However, further rise in temperature resulted in no significant change in conversion percentage. 
Hence, the optimum temperature for [3 + 2] cycloaddition product was found to be 80 °C.

To explore the scope and applicability of this methodology, a series of benzonitriles were subjected to 
[3 + 2] cycloaddition reaction under the established ambient conditions. The concise results are summarized in 
Scheme 1. It was found that benzonitriles bearing both electron donating groups (entry 3e and 3f.) and electron 
withdrawing groups (entry 3b, 3c and 3 g) furnished corresponding tetrazoles in moderate to excellent conver-
sion percentage. In particular, superior results were obtained in case of nitriles possessing electron withdrawing 
groups. This could be attributed to –I effect of the substituents that makes the benzonitrile more electrophilic 
thereby activating the benzonitrile towards nucleophilic attack via azide ion. However, nitriles that comprise of 
electron donating substituents proceeded with relatively longer time period (entry 3e). Besides, the steric hin-
drance caused by chlorine group at ortho position resulted in lower conversion percentage (entry 3d). Moreover, 
aliphatic nitriles were also subjected to the optimized reaction conditions. Unfortunately, the desired products 
were not obtained (entry 3 h and 3i).

On the basis of literature precedents, a plausible reaction pathway has been proposed to synthesize 5-sub-
stituted 1H-tetrazoles using h-BN@APTES@BP@Cu catalyst as outlined in Fig. 9.39 Initially, coordination of 
nitrogen atoms of both the nitrile and azide moieties with Cu (II) generates complex I that accelerates the [3 + 2] 
cyclization step as shown in complex II wherein subsequent nucleophilic attack of azide ion onto the nitrile group 
leads to the formation of complex III. Thereafter, acidic work-up protonates the complex III which results in 

Figure 8.   Effects of (a) amount of catalyst [reaction conditions: benzonitrile (1 mmol ), sodium azide 
(2 mmol), h-BN@APTES@BP@Cu (x mg), ethanol (1 mL), 80 °C, 6 h], (b) various solvents [reaction conditions: 
benzonitrile (1 mmol), sodium azide (2 mmol), h-BN@APTES@BP@Cu (20 mg), solvent (1 mL), 80 °C, 6 h], 
(c) time [reaction conditions: benzonitrile (1 mmol), sodium azide (2 mmol), h-BN@APTES@BP@Cu (20 mg), 
ethanol (1 mL), 80 °C] and (d) temperature variance on the cycloaddition of benzonitrile and sodium azide 
[reaction conditions: benzonitrile (1 mmol), sodium azide (2 mmol), h-BN@APTES@BP@Cu (20 mg), ethanol 
(1 mL), 6 h].
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the formation of desired tetrazole product with the release of catalyst. The structural integrity of the recovered 
catalyst remained unaltered even after being reused for several runs.

A leaching experiment was also performed using hot filtration method in order to certify heterogeneity of 
the catalyst. Thus, the test reaction was carried out under optimized reaction conditions using h-BN@APTES@
BP@Cu catalyst. After half the reaction time, the catalyst was removed from the reaction mixture. The resulting 
supernatant was allowed to react further for appropriate period of time. GC–MS results displayed no significant 
increment in the conversion percentage of 5-substituted 1H-tetrazole which debarred the possibility of leaching 
of active metal species from its solid support. Therefore, it could be interpreted that the copper complex remained 
intact onto the solid material which provided a strong evidence for the heterogeneous character of the catalyst.

The recyclability of h-BN@APTES@BP@Cu was examined under the optimized reaction conditions using 
benzonitrile and sodium azide as model substrates (Fig. 10). After completion of the reaction, the catalyst was 
retrieved by means of centrifugation, washed with ethyl acetate to remove residue of the reaction mixture and 
eventually dried well under vacuum. The recovered catalyst was then used for successive cycles by maintaining 
similar experimental conditions. The results authenticated that h-BN@APTES@BP@Cu could be reused effica-
ciously for five consecutive runs with no obvious deterioration in its catalytic activity. Further, on comparing 
SEM spectra of the recovered catalyst with the freshly prepared catalyst, no remarkable changes in shape and 
morphology was observed (Fig. S7). Additionally, XRD spectrum of the recovered catalyst showed identical 

Scheme 1.   Synthesis of 5-substituted tetrazoles via [3 + 2] cycloaddition of nitriles and sodium azidea. aReaction 
conditions: Nitrile (1 mmol), sodium azide (2 mmol), h-BN@APTES@BP@Cu (20 mg) in ethanol (1 mL), 80 °C. 
Conversion percentages were determined via GC − MS. TON is the number of moles of the product per mole of 
the catalyst.
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Bragg’s diffraction peaks corresponding to the (002), (100), (101), (102), and (004) planes when compared with 
the freshly prepared catalyst (Fig. S8). These results provided a concrete evidence of the excellent durability of 
the synthesized BN supported copper catalyst.

To date, various homogeneous as well as heterogeneous catalysts have been utilized for the one-pot synthesis 
of tetrazoles. As evident from the Table S2, h-BN@APTES@BP@Cu nanocatalyst showed its superiority over 
previously reported homogeneous and heterogeneous catalysts in terms of product yield, reaction conditions 
and recyclability. The previously reported homogeneous catalyst underwent decomposition immediately after the 
completion of reaction thereby creating separation problems and thus could not be reused for further consecu-
tive runs. In contrast, the present catalyst could be retrieved and reused for several runs without any remarkable 
loss in its catalytic activity. Moreover, the use of ethanol as a green solvent rendered this protocol economic and 
environmentally benign. Conclusively, as compared to the previously reported heterogeneous catalytic systems, 
h-BN@APTES@BP@Cu exhibited higher yield, mild reaction conditions and good recyclability.

Conclusion
The present research discloses the design and fabrication of a novel exclusively stacked h-BN supported copper 
nanocatalyst (h-BN@APTES@BP@Cu) obtained via the covalent tethering of a bidentate 2-hydroxy-4-meth-
oxybenzophenone ligand onto the amine functionalized support, accompanied by the metallation. The resulting 
nanomaterial unveiled exceptional catalytic performance in the cycloaddition of azide and nitrile to form biologi-
cally demanding and pharmaceutically important 5-substituted 1H-tetrazole scaffolds. The catalytic protocol 
adhered to the key goals of sustainable chemistry by fundamentally relying on the use of ethanol as the solvent 
that has been demarcated as “green." Some of the other salient features of this methodology included wider 
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Figure 9.   Plausible mechanism for the cycloaddition reaction catalyzed by h-BN@APTES@BP@Cu 
nanocatalyst.

Figure 10.   Recycling experiment for the cycloaddition of benzonitrile and sodium azide [reaction conditions: 
benzonitrile (1 mmol), sodium azide (2 mmol), h-BN@APTES@BP@Cu (20 mg) in ethanol (1 mL), 80 °C, 6 h].
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functional group tolerance, high turnover number, shorter reaction time and low temperature conditions, no 
use of additives, good recoverability and recyclability (up to 5 consecutive cycles). Additionally, the catalyst 
design approach principally relied on a covalent grafting approach that debarred any possibility of leaching as 
evidenced through the leaching test; supporting and signifying the durability of the engineered h-BN material, 
unlike many of the previously utilized catalysts for the tetrazole synthesis. We anticipate that this work will 
enthuse the scientific community, providing them the wisdom required for the design of efficient h-BN based 
catalytic materials through rational surface engineering in order to further increase their adaptability towards 
key industrial reactions.

Experimental
Materials and reagents.  Boron nitride micropowder (Alfa Aesar), 3-aminopropyltriethoxysilane 
(APTES, Sigma-Aldrich), and 2-hydroxy-4-methoxybenzophenone (Spectrochem Pvt. Ltd.) were commercially 
procured. All other starting materials and reagents required in the study were purchased from Alfa Aesar and 
Spectrochem Pvt. Ltd.

Instrumentation.  The information about the crystallographic structure of the nanocomposites was 
estimated by powder X-ray diffraction (XRD) using a Bruker, D8 Advance (Karlsruhe, Bundesland, Ger-
many) diffractometer equipped with Cu/Kα radiation at a scanning rate of 4° min−1 in the 2θ range of 15–70° 
(λ = 0.15405 nm, 40 kV, 40 mA). Fourier transform infrared (FT-IR) spectra were obtained using Bruker Alpha 
II in KBr mode. The spectra were operated in the transmission range of 4000 − 500  cm−1 under atmospheric 
conditions. The morphology and shape of nanosheets were determined by Jeol scanning electron microscope 
(SEM) spectroscopy, wherein preparative steps involved loading of small amount of sample on a carbon tap 
followed by coating with a thin layer of platinum using a sputter coater. The size of the developed nanocom-
posites was investigated through transmission electron microscopy (TEM), FEI TECHNAI G2 T20 at 200 kV. 
Energy-dispersive X-ray spectroscopic (EDS) analysis (equipped with the SEM instrument) was performed for 
the elemental mapping of the nanocomposites. Energy-dispersive X-ray fluorescence (ED-XRF) spectroscopy 
was also employed using a Fischerscope X-ray XAN-FAD BC. Laser Raman measurements were performed 
using RENISHAW, INVia. The amount of copper present in the catalyst was determined through a flame atomic 
absorption spectroscopy (model no. N3180021 PinAAcle 500) using acetylene flame. Temperature and pressure 
equipped instrument (Anton Paar Multiwave 3000) was used for the microwave-assisted digestion of the cata-
lyst. The derived products were analysed and confirmed through the gas chromatography-mass spectroscopy 
(GC–MS) hyphenated technique that was conducted using an Agilent gas chromatograph (6850 GC) with a 
HP-5MS 5% phenyl methyl siloxane caplillary column (30.0 m × 250 μm × 0.25 μm) and a quadrupole mass filter 
equipped with 5975 mass selective detector (MSD) using helium as a carrier gas.

Fabrication of boron nitride nanosheets (h‑BN@OH).  Hydroxyl functionalized boron nitride 
nanosheets were synthesized using ion-assisted liquid exfoliation method71. In a typical synthesis, NaOH (2.84 g) 
and KOH (2.16 g) were finely ground followed by addition of h-BN micropowder (1.0 g) to obtain a homogene-
ous mixture and then transferred to a teflon-lined stainless steel autoclave. The mixture was heated at 180 °C for 
2 h. Thereafter, the suspension collected from the autoclave was cooled down to room temperature and dispersed 
in deionized water (300 mL) under sonication for a time period of 30 min. The resultant nanosheets were then 
separated via centrifugation and washed with deionized water several times to remove excess hydroxides and 
other unreacted materials. After centrifugation, the product was dried well under vacuum overnight.

Synthesis of amine functionalized BN nanosheets (h‑BN@APTES).  Amine functionalized h-BN 
were synthesized using a previously reported method with slight modifications58. In particular, APTES (2 mmol) 
was added dropwise to a well-dispersed h-BN@OH (1 g) solution in ethanol (50 mL) and stirred under reflux 
condition for 5 h. The resulting h-BN@APTES solid was separated via centrifugation, washed thoroughly with 
ethanol to eliminate the unreacted silylating agent and finally dried under vacuum.

Synthesis of boron nitride nanosheets supported copper catalyst (h‑BN@APTES@BP@
Cu).  The final catalyst h-BN@APTES@BP@Cu was prepared in two steps beginning from the synthesis of 
ligand grafted boron nitride nanosheets followed by its metalation. Firstly, 2-hydroxy-4-methoxybenzophenone 
(BP, 10 mmol) was added to 50 mL ethanolic h-BN@APTES (0.5 g) solution and the mixture was refluxed for 
6 h. Thereafter, the solid product was separated by centrifugation and washed with ethanol50. In the next step, h-
BN@APTES@BP was added to the copper acetate solution in acetone with uniform stirring at room temperature 
for a period of about 24 h. Further, the resulting nanocatalyst (h-BN@APTES@BP@Cu) was centrifuged, washed 
thoroughly with acetone and dried under vacuum at 60 °C72.

General procedure for the synthesis of tetrazoles using boron nitride supported copper nano‑
catalyst (h‑BN@APTES@BP@Cu).  The synthesis of desired tetrazole moiety involves the reaction 
between benzonitrile and sodium azide. For this, benzonitrile (1 mmol) and sodium azide (2 mmol) were mixed 
under stirring in a 25 mL round bottom flask containing 1 mL of ethanol followed by the addition of h-BN@
APTES@BP@Cu (20 mg). The resulting mixture was refluxed for 6 h. After completion of reaction, the mixture 
was allowed to cool down to room temperature and the catalyst was retrieved by centrifugation. Consequently, 
HCl (5 N) was added to the resulting mixture and was extracted with ethyl acetate. Thereafter, combined organic 



11

Vol.:(0123456789)

Scientific Reports |        (2021) 11:24429  | https://doi.org/10.1038/s41598-021-03992-4

www.nature.com/scientificreports/

layers were separated and dried over anhydrous sodium sulphate. Finally, the product obtained was confirmed 
by gas chromatography mass spectroscopy (GC–MS).
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