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Abstract: Crop residue burning is one of the major sources of particulate matter (PM) in the air. The
burning behaviors and PM emissions of the three typical crop residues (rice straw, wheat straw, corn
straw) in China were characterized by a cone calorimeter (CONE) coupled with a laser dust meter.
The water-soluble compounds, carbonaceous content, and morphology of PM were measured by ion
chromatography, elemental analyzer, transmission electron microscopy (TEM) and energy-dispersive
X-ray spectrometer (EDS). The results showed that thermal stability of corn straw was the worst
among the three crop straws. The heat release rate (HRR) curves of the three crop straws were the
typical curves of thermally thick charring (residue forming) samples. Wheat straw had the highest
smoke yield, which was 2.9 times that of rice straw. The PM emission factor of wheat straw was
180.91 µg/g, which was about three times that of rice straw. The contents of K+, Na+, and Cl− in
PM were significantly higher than those of the other six water-soluble inorganic ions. The ratio
of organic carbon and elemental carbon (OC/EC) ranged from 14.82 to 30.82, which was similar
to the results of open burning. There were mainly three kinds of aggregates in the PM of crop
straws: network, chain-like, and soot. Individual particles were mixtures of KCl and organic matters.
Core-shell structures were found in PM of rice straw and corn straw. The results in this study were
provided based on CONE, an ISO-standard apparatus, which could avoid data conflicts caused
by the difference of combustion devices. The relationship between the burning behavior and PM
emission characteristics of crop straws was established, which is helpful to understand emissions of
crop straws and to find a novel way to solve the problems from the burning of crop residues.

Keywords: crop residue; burning behavior; particulate matter; cone calorimeter; emission characteristics

1. Introduction

The open burning of crop residue occurs frequently after harvesting in China. Crop
residue is also widely used for domestic cooking and heating as renewable energy. It was
estimated that 600 Tg crop residue is produced every year in China, and approximately
140 Tg is burned [1]. Crop residue burning is one of the major sources of fine particles
which play an important role in regional and global climate and human health [2]. Recent
studies of crop residue burning have focused on the calculation of emission inventories
and chemical composition of particulate matter (PM). Qiu and co-workers [3] developed
a high-resolution emission inventory from open biomass burning in China. Li and co-
workers [4] analyzed the morphology, composition, and mixing state of individual particles
emitted from crop residue burning. However, these results are not always consistent and
comparable. For example, the results of the size distributions and chemical compositions
of wheat straw PM based on the online dilution system [4] differ from the results based on
the residential stove [5]. Fine and co-workers [6] compared the emission characteristics of
particulate matter produced by wood burning in fireplaces and wood stoves. Compared
with burning in fireplaces, the yield of PM in wood stoves was smaller. The variability in
particulate emissions reported in the literature depends not only on the sampling procedure
but also arises from the use of different fuels, combustion technologies and operating
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conditions. At present, most of the devices used for simulating biomass burning are non-
standard equipment and self-designed. It is necessary to find a standard combustion device
to more accurately acquire the emission characteristics of particulate matter.

As an ISO-standard device, the cone calorimeter (CONE) is widely used to characterize
the burning behaviors of various materials. The CONE can monitor burning behavior in
real time and obtain some parameters on heat and smoke, which have a good correlation
with real fire [7]. Fateh and co-workers [8] measured the combustion characteristics of two
types of plywood based on CONE. Reisen and co-workers [9] characterized the emission of
VOC and PM under different radiation intensities of 10 common materials for construction
and furniture based on CONE. This indicates that CONE is a useful experimental device
for the measurement of the gaseous and particulate emissions during combustion.

A large proportion of particles generated from biomass burning are composed pri-
marily of PM [10]. The chemical composition of PM has an important impact on the
atmospheric environment and ecosystem. In order to understand the emission charac-
teristics of fine particles more comprehensively, various kinds of methods [11,12] (e.g.,
aerosol mass spectrometer (AMS), ion chromatograph (IC)) can be used to acquire the mass
concentration and chemical composition of particles emitted from different sources. In
addition, individual particle methods can further provide detailed information about their
morphology and composition [13]. However, the relationship between biomass burning
behavior and emission characteristics of PM have been not well established.

In this study, the three typical crop residues (rice straw, wheat straw, and corn straw)
in China were burned by CONE. The concentration of PM was measured during com-
bustion by a laser dust meter. The water-soluble compounds, carbonaceous content, and
morphology of PM were analyzed with transmission electron microscopy (TEM) and
energy-dispersive X-ray spectrometer (EDS). The main objectives of this study are to: (1)
explore the burning behaviors and emission characteristics of PM from biomass combustion
based on CONE, which can establish a standard method to avoid the conflicts between
different studies; and (2) establish the relationship between crop residue burning behavior
and PM emission characteristics, which can provide a novel way to reduce the risk of PM.

2. Materials and Methods
2.1. Materials

Three typical crop straws of rice (Oryza sativa L.), wheat (Triticum aestivum L.), and
corn (Triticum aestivum L.) were collected from Lianyungang regions in the Jiangsu province.
All samples were stored in the same room (20 ◦C, RH = 65) for two weeks before the tests.
The results of industrial analysis and elemental analysis are shown in Tables 1 and 2.

Table 1. Results of the industrial analysis and the major element analysis of the three crop straws.

Crop
Straws Mad

a (%) Ad
b (%) Vd

b (%) FCd
b (%) C (%) H (%) O (%) N (%) Qnet, ar

a

(MJ/kg)

Rice 7.53 11.07 65.44 15.96 38.15 5.46 55.67 0.72 13.82
Wheat 6.09 6.62 70.81 16.48 40.56 5.64 53.42 0.38 15.48
Corn 8.15 5.87 67.64 18.34 42.47 6.22 50.63 0.68 15.16

a Qnet, ar and Mad represent the net calorific value and moisture content of the crop straws in dry air, respectively. b Ad, Vd, and FCd
represent the dry ash, volatile matter, and fixed carbon of the crop straws, respectively.
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Table 2. Results of the minor element analysis of the three crop straws.

Elements Rice Straw (mg/kg) Wheat Straw (mg/kg) Corn Straw (mg/kg)

K 21,827.14 25,064.22 21,730.90
Ca 302.96 265.44 155.44
Na 2872.63 2125.44 2465.44
Mg 264.67 164.74 110.18
Al 42.83 42.83 13.02
Fe 64.39 51.55 33.22
Mn 84.38 104.59 82.06
Zn 1.97 0.05 1.32
S 21.00 52.01 45.00
Cl 3538.00 2350.48 2124.68
Si 2532.98 1686.24 1346.88
P 1567.10 1001.83 1645.41

2.2. Thermal and BurningTests
2.2.1. The Thermal Test

Thermogravimetric analysis (TGA) of crop straws was performed by using the
SDT Q600 thermal analyzer (TA Instruments, New Castle, DE, USA). The samples with
a 3 ± 1 mg weight were placed in an alumina crucible and at a heating rate of 10 ◦C/min
under an air atmosphere from 30 to 600 ◦C.

2.2.2. Burning Test and PM Collection

The crop straws were burned by CONE (C3, TOYO SEIKI, Tokyo, Japan) under well
ventilated conditions. The heat source radiation intensity was 50 kW/m2 with a spark as
the igniter, which is described in ISO 5660 [14]. Tests were carried out under atmospheric
air and the flow rate in the CONE exhaust was equal to 24 L/s. In Scheme 1, a laser
dust instrument (LD-5H, Jiuzhoupengyue Technological Co., Ltd., Beijing, China) was
connected with the CONE to monitor the concentration of PM during combustion. During
the experiment, the following parameters were determined: time to ignition (TTI), heat
release rate (HRR), peak heat release rate (PHRR), total heat release (THR), extinction
coefficient, and total smoke production (TSP).
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Scheme 1. The combustion and sampling system: (a) schematic; (b) photographs and sizes of sample
holders.

The sampling port was located 0.8 m into the chimney flue. Straw samples (60 g per
sample) were cut into 100 mm sections and placed in the 100 × 100 × 35 mm3 stainless
steel holders, clamped with stainless steel mesh. The photographs of sample holders are
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shown in Figure 1b. The sampling interval and a total collection of LD-5H were 10 s and
900 s, respectively. The sampling flow rate was equal to 2 L/min. PM from the burning
tests was collected on the quartz fiber filter (Ø 47 mm, Whatman, Little Chalfont, UK). In
order to eliminate volatiles and impurities, the quartz filter was baked at 550 ◦C for 2 h
before each test. In addition, before and after sampling, the filter was weighted, placed in
a desiccator with a constant temperature and relative humidity (RH = 65, 20 ◦C) for 24 h,
and stored in a −4 ◦C refrigerator for analysis. Three replications were performed for each
crop straw.
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2.3. Measurements of PM
2.3.1. Water-Soluble Inorganic Compounds

The water-soluble inorganic compounds (WSIC) of PM were measured by using ion
chromatography (LC-20ADsp, SHIMADZU, Kyoto, Japan). One quarter of quartz filter
was extracted with deionized water (10 mL) for 20 min, and the extractant was used for
analysis. The cation and anion columns were Ion Pac CS12A and AS14A, respectively.
An eluent solution mixture, Na2CO3 (8 mol/L) and NaHCO3 (1 mol/L), was used for
anion separation (flow rate of 1 mL/min), and methane sulfonic acid (20 mol/L) was used
for cation separation (flow rate of 1 mL/min). The detected WSIC mainly includes Na+,
NH4

+, K+, Ca2+, Mg2+, F−, Cl−, NO3−, and SO4
2−. The extractants were filtered using

microporous membranes (0.22 mm pore size) to remove any insoluble materials [15].

2.3.2. Carbonaceous Components

The carbonaceous components of PM were analyzed by using another quarter of
quartz filter which was made of high-purity quartz fiber (SiO2). This material is suitable
for analyzing the organic carbon (OC) and elemental carbon (EC) content of PM, because
of high temperatures, its excellent structural stability (900–1000 ◦C), high purity and low
background value. The mass concentrations of total carbon (TC) and OC in the sample
were determined by the elemental analyzer (vario EL cube, Elementar, Heraeus, Germany).
TC and OC were measured based on different temperature gradients. The quartz filter
was heated to 450 ◦C with oxygen for 10 min to measure the OC, and heated to 1000 ◦C to
measure TC wrapped in aluminum paper [16]. EC could be calculated as the difference TC
and OC [17].

2.3.3. Morphological and Elemental Analysis

The morphologies of PM samples were analyzed by a transmission electron mi-
croscope (TEM) at 300 kV (Tecnai G2-F30, FEI, Hillsboro, OR, USA) equipped with an
energy-dispersive X-ray spectrometer (EDS). As for the sample preparation, the copper
mesh was placed in the front of the filter during combustion. The elemental composition of
PM was semi-quantitatively analyzed by EDS. Due to the interference of the copper TEM
grid substrate, the Cu peak in the EDS spectrum was not analyzed.
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3. Results and Discussion
3.1. Thermal Properties of Crop Straws

The TGA curves of the crop straws under the air atmosphere are shown in Figure 2a.
The curves of rice straw and wheat straw have similar trends while the curve of corn straw
is always below them. This indicates that the thermal stability of corn straw is the worst
among the crop straws. At 500 ◦C, the straws are decomposed completely. The residue
ratios are 18.87% of rice straw, 17.02% of wheat straw, and 9.75% of corn straw. Rice straw
has the highest residue ratio, which is consistent with the results of ash content in Table 1.
Figure 1b shows the differential thermogravimetric (DTG) profiles for all samples. The
DTG profile shows two distinct decomposition regions which are thought to exist due to
the initial volatile combustion and char burnout. The maximum rate of weight loss is found
to fall between 250 and 350 ◦C in the first step. The thermal decomposition of cellulose
is primarily thought to occur between these temperatures. The shoulder-like peaks at
about 200 ◦C are considered to be partly related to hemicellulose within the samples. The
thermal decomposition of hemicellulose took place at lower temperatures in comparison
to cellulose [18]. Corn straw appears to have the largest second step at 420 ◦C with a
maximum rate of decomposition. This reflects the lignin content of the samples. Ghetti and
co-workers [19] determined a correlation between lignin content and extent of the second
thermal decomposition region on the DTG profile.
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3.2. Burning Behavior of Crop Straws

The volatile substances in the crop straws consist mainly of low-molecular hydro-
carbons which are easier to ignite [20]. In Table 2, there are no significant differences
between the ignition times of the three straws (about 7–10 s). The HRR curves of crop
straws are shown in Figure 2a. HRR is a very important parameter for evaluating the
burning behaviors of biomass materials [21]. The shapes of the HRR curves of the three
crop straws are similar. They are the typical curves of thermally thick charring (residue
forming) samples [22]. At the beginning, HRR increases initially until an efficient char
layer forms. As the char layer thickens, HRR decreases. From Figure 2a and Table 3, the
PHRR of corn straw is 167 kW/m2 and occurred at 13 s, which is the highest and fastest
among the three crop straws. This indicates that corn straw is easier to burn and undergo
pyrolysis, which is consistent with TGA. This is attributed to the higher C and H contents
of corn straw. The HRR and THR of rice straw is lowest because of its highest ash content
and its lowest net calorific value. The high ash content leads to aggregation and limits heat
and mass transfer, resulting in incomplete combustion [23].
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Table 3. Results of the cone calorimeter test.

Parameters Rice Straw Wheat Straw Corn Straw

TTI (s) 8 ± 1 7 ± 1 10 ± 1
PHRR (kW/m2) 104 ± 3 114 ± 1 167 ± 2

PHRR To Time (s) 21 ± 2 17 ± 3 13 ± 2
THR900s (MJ/m2) 46 ± 2 55 ± 4 57 ± 3

The curves of extinction coefficient with time (K curve) reflect the concentration of
smoke during combustion, as shown in Figure 3a. At the beginning of combustion, there is
a strong smoking process for the three crop straws, because of the burning of flammable
volatiles. In the subsequent combustion, there are still multiple strong smoking processes
for wheat straw and corn straw while there is no more smoking process for rice straw.
Organic matter, carbon suspended particles and vapors are the main substances in the
formation of smoke. The difference in smoke production of crop straws may be related
to the difference of composition [24]. TSP of rice straw, wheat straw, and corn straw at
900 s are 0.28 m2, 0.81 m2, and 0.75 m2, respectively. Wheat straw has the highest smoke
production which is 2.9 times that of rice straw. In addition, the later increase of smoke
production is mainly due to the smoldering combustion [25].
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3.3. PM Emission Characteristics
3.3.1. PM Mass Concentration and Emission Factor

The PM mass concentrations of three crop straws were monitored in real time by
the LD-5H laser dust meter during the burning process, as shown in Figure 4a. There
are multiple peaks in the curves of PM mass concentrations of wheat and corn straw
while there is only one main peak in the curve of rice straw. The shapes of curves of PM
mass concentrations are similar with that of the extinction coefficient, indicating that PM
mass concentration changes with the smoke production. After the ignition, the smoke
temperature increased due to the heat release. With oxygen consumed rapidly, more PAHs,
aliphatic compounds, carbonyl compounds, terpenoids, and other organic volatiles were
produced. They were more prone to undergo surface reactions and to aggregate under the
conditions of the saturated vapor pressure to form particulate matters [26]. There are some
peaks in the curves of PM mass concentration in the smoldering stage, which is attributed
to the nucleation and condensation of volatiles under incomplete combustion [27,28]. The
emission factor is calculated through the PM mass and the sample mass loss. In Figure 4b,
the PM emission factor of wheat straw is 180.91 µg/g, which is about three times that of
rice straw. The results of PM emission factor are consistent with TSP. Thus, methods used
to reduce smoke production can also reduce PM emissions.
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3.3.2. Water-Soluble Inorganic Compounds (WSIC) of PM

The relative contents of WSIC in PM are shown in Figure 5. The contribution of total
WSIC to PM is 16.07–31.65%, which is consistent with the results of previous studies [5,10].
The total content of WSIC of rice straw is the highest (31.65%), while that of corn straw
is the lowest (16.07%). This is mainly caused by the difference of composition of crop
straws [29]. Between PM emitted from the burning of crop straws, the relative contents of
the nine WSIC are slightly different. However, the contents of K+, Na+, and Cl− in PM are
significantly higher than those of the other six water-soluble inorganic ions. The sum of the
three ions account for 90.02%, 83.75% and 79.46% of the total WSIC of rice straw, wheat
straw, and corn straw, respectively. This may be due to the use of chemical fertilizers and
herbicides at the soil sampling site. Therefore, the three ions can be used as PM source
trackers for biomass combustion [30]. The order (from high to low) of relative contents of
K+ in PM, 12.25% of wheat straw, 10.04% of rice straw, and 9.76% of corn straw, is the same
with the order of the K content of the crop straws in Table 2. The same results are found on
Na+ and Cl−. This indicates that the chemical composition of PM is related closely with the
composition of the crop straws. Compared with coal combustion, the lower contribution
of SO4

2− in PM (0.98–1.35%) may be due to the relatively low sulfur content in the crop
straws [31].
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3.3.3. Carbonaceous Components of PM

The contents of OC, EC and TC in PM of crop straws and the OC/EC ratios are shown
in Table 4. The results show that TC content in PM is 45.08–56.37%. OC in PM is derived
from incomplete combustion reactions, while EC is mainly generated at higher temperature
under complete combustion [32]. The difference in carbonaceous components of PM (OC
and EC) is not related to only the chemical composition of the crop straws but also the
condition of combustion [24]. TC contents in PM of crop straws are close to that of the
residential bituminous coal combustion (ca. 45%) [33], while they are higher than that
of the residential anthracite combustion (ca. 17%) [34]. OC contents in PM are higher
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than that of samples collected from Chinese urban atmosphere (ca. 17–20%), while the EC
contents are close [35]. These results show that the OC/EC ratio in the aerosol of biomass
combustion is higher than that in atmospheric aerosol. The OC contents are 36.77% of
rice straw, 41.24% of wheat straw, and 44.68% of corn straw, which are less than that of
the three crop straws measured by the in-house designed online dilution system [5]. This
indicates that the time of flame combustion is longer and the smoldering time is shorter
under CONE at 50 kW/m2 compared to the in-house designed system. The OC/EC ratio
ranged from 14.82 to 30.82, which is close to the results of open burning [10]. The OC/EC
ratio is often used for source tracking, and it is believed that the OC/EC ratio of different
emission sources is different [36]. In this study, the OC/EC ratios are from 14.82 to 30.82,
which could be preliminarily used as an important indicator to determine the burning of
crop straws.

Table 4. Contents of TC, OC, EC and OC/EC ratios in PM of crop straws.

PM TC a (%) OC b (%) EC c (%) OC/EC

Rice straw 39.25 36.77 2.48 14.82
Wheat straw 42.58 41.24 1.34 30.78
Corn straw 44.68 42.97 1.71 25.13

a TC: total carbon. b OC: organic carbon. c EC: elemental carbon.

Moreover, total contents of WSIC and carbonaceous components in PM from the three
crop straws are 76.73%, 72.47%, and 72.44%, respectively. These results are close to that of
the experiment in open burning (68.9–78.9%) of Chuang and co-workers [10], but lower
than the results of Chen and co-workers [5] (more than 80%). This difference may be related
to the nature of the fuel and the combustion conditions. However, all the results indicate
that carbonaceous components and WSIC are the main components of PM emitted from
the crop straw combustion.

3.3.4. Morphological and Elemental Analysis of PM

The sizes of PM emitted from the combustion of crop straws were roughly counted
by TEM, as shown in Figure 6. It shows that PM is mainly ultra-fine particulate matter.
The particle size distributions are consistent with previous reports on biomass burning
(0–150 nm) [37]. Li and co-workers [5] found that the average geometric diameter of the
particles produced by the combustion of crop straws was 75–120 nm under open burning
experiments. There is 82.02% of the PM of wheat straw in the range of 1–40 nm, which is
2.38 times and 1.32 times that of rice straw and corn straw, respectively. However, most of
the PM of rice straw is mainly in the range of 40–80 nm (62.78%). The proportion of rice
straw PM in 80–120 nm is higher than that of wheat straw PM and corn straw PM. This
indicates that the combustion of rice straw prefers to produce relatively larger particles,
which might be related to the nucleation and aggregation of PM with the lower HRR and
C and H contents.
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The morphology and element compositions of PM from the crop straw burning were
measured by TEM-EDS. As shown in Figure 7, there are mainly three kinds of aggregates
in the PM of rice straw: network (Figure 7a), chain-like (Figure 7b), and soot (Figure 7c).
The individual particles are spherical or irregular (Figure 7d–f). These are consistent
with the results of PM from biomass combustion studied by Torvela and co-workers [38].
The individual particles aggregate and coalesce by colliding with each other, with the
arrangement being more orderly [27]. The soot aggregate is composed of ultra-fine particles
which are mainly organic matter, doped with KCl, according to the corresponding EDS
spectra. The formation of soot particles is due to the incomplete combustion of straw at
higher temperatures [4]. It can be observed that an individual particle contains one or
more cores, which are formed by chemical reactions and agglomeration of PAHs produced
during combustion [26]. From the EDS results of [2,3], the intensity of KCl in cores is higher
than the intensity of KCl in shells. Potassium salts and organic matter are the predominant
species in the PM.
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Figure 7. TEM images and EDS spectra of PM from the combustion of rice straw. (a) TEM images
of multi-particle network morphology, (b) TEM images of chain-like morphology, (c) TEM images
of soot morphology, (d,e) TEM images of individual particles, (f) TEM images of irregular particles.
The corresponding EDS spectra are indicated by the number in square brackets.

As shown in Figure 8, the network and soot aggregates were found in the PM of wheat
straw while there was no chain-like morphology. The soot is also composed of ultra-fine
particles. However, the KCl contents of particles in soot is different. According to EDS
spectra, the proportion of KCl is higher where it is darker in TEM images. The morphology
of individual particles is uniform spherical, without an obvious core. This indicates that
the individual particles are mixed by organic matters and KCl uniformly. However, there
is the difference of surface roughness between particles in Figure 8c. This might be due to
the adsorption of secondary particles on the surface of particles [39]. The intensity of Si in
rough surface particles is higher than that of smooth surface particles.
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Figure 8. TEM images and EDS spectra of PM from the combustion of wheat straw. (a) TEM images
of multi-particle network morphology, (b) TEM images of soot morphology, (c) TEM images of
individual particles. The corresponding EDS spectra are indicated by the number in square brackets.

The morphologies of PM from corn straw combustion are also mainly network and
soot, as are those of wheat straw. However, the soot of corn straw is almost entirely
composed of organic matter. This might be related to more volatiles and higher HRR
because of the hemicellulose pyrolysis in the beginning of combustion. The morphology
of individual particles is core-shell spherical, which is similar with that of rice straw PM.
There are multi-cores in one particle in Figure 9c, indicating that the aggregation of some
small particles occurred in the cooling process through the organic matter shell. There are
some darker euhedral particles in Figure 9a, which might be the KCl crystals [27].

Materials 2021, 14, x FOR PEER REVIEW 11 of 13 
 

 

 

Figure 9. TEM images and EDS spectra of PM from the combustion of corn straw. (a) TEM images 

of multi-particle network morphology, (b) TEM images of soot morphology, (c) TEM images of 

individual particles. The corresponding EDS spectra are indicated by the number in square brack-

ets. 

4. Conclusions 

Crop straws are widely used for cooking and heating in rural regions of China. After 

harvesting, the crop residues are commonly burned in open agricultural fields. This 

combustion is estimated to be one of the largest sources for emissions of OC and EC in all 

of China. In this study, the burning behaviors of rice straw, wheat straw and corn straw 

were explored based on a CONE calorimeter and the chemical composition and mor-

phology of PM emitted from the combustion of crop straws were characterized. 

We summarized some rules based on our study: (1) The thermal stability of corn 

straw is the worst among the crop straws. The residue ratios are 18.87% of the rice straw, 

17.02% of the wheat straw, and 9.75% of the corn straw at 500 °C. (2) HRR curves of the 

three crop straws are the typical curves of thermally thick charring (residue forming) 

samples. The PHRR of corn straw is 167 kW/m2 and occurred at 13 s, which is the highest 

and fastest among the three crop straws. This is attributed to the higher C and H contents 

of corn straw. TSP of rice, wheat, and corn straw at 900 s are 0.28 m2, 0.81 m2, and 0.75 m2, 

respectively. Wheat straw has the highest smoke yield which is 2.9 times that of rice 

straw. (3) The trend of PM mass concentration and emission factor are similar to the ex-

tinction coefficient and THR of crop straws, respectively. The emission factor of wheat 

straw is 180.91 µg/g, which is about three times that of rice straw. (4) Total contents of 

WSIC and carbonaceous components in PM from the three crop straws are 76.73%, 

72.47%, and 72.44%, respectively. The total content of WSIC of rice straw is the highest 

(31.65%), while that of corn straw is the lowest (16.07%). The contents of K+, Na+, and Cl- 

in PM are significantly higher than those of the other six water-soluble inorganic ions. 

The OC/EC ratio ranged from 14.82 to 30.82, which are close to the results of open burn-

ing. (5) There are mainly three kinds of aggregates in PM of crop straws: network, 

chain-like, and soot. The chain-like aggregates are only found in PM emitted from the 

combustion of corn straw. Individual particles are mixture of KCl and organic matters. 

Core-shell structure is found in the PM of rice straw and corn straw. 

The results in this study are provided by CONE, an ISO-standard apparatus, which 

can avoid data conflicts caused by the difference of combustion devices. The results from 

different groups can be compared with each other. Meanwhile, the relationship between 

the burning behavior and PM emission characteristics of crop straws was established, 

which is helpful to understand emissions of crop straws. According to the relationship, 

the elemental transformation between the straws and PM could be changed, and a novel 

way to solve the PM issue might be invented. 
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4. Conclusions

Crop straws are widely used for cooking and heating in rural regions of China. After
harvesting, the crop residues are commonly burned in open agricultural fields. This
combustion is estimated to be one of the largest sources for emissions of OC and EC in all of
China. In this study, the burning behaviors of rice straw, wheat straw and corn straw were
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explored based on a CONE calorimeter and the chemical composition and morphology of
PM emitted from the combustion of crop straws were characterized.

We summarized some rules based on our study: (1) The thermal stability of corn straw
is the worst among the crop straws. The residue ratios are 18.87% of the rice straw, 17.02%
of the wheat straw, and 9.75% of the corn straw at 500 ◦C. (2) HRR curves of the three crop
straws are the typical curves of thermally thick charring (residue forming) samples. The
PHRR of corn straw is 167 kW/m2 and occurred at 13 s, which is the highest and fastest
among the three crop straws. This is attributed to the higher C and H contents of corn straw.
TSP of rice, wheat, and corn straw at 900 s are 0.28 m2, 0.81 m2, and 0.75 m2, respectively.
Wheat straw has the highest smoke yield which is 2.9 times that of rice straw. (3) The
trend of PM mass concentration and emission factor are similar to the extinction coefficient
and THR of crop straws, respectively. The emission factor of wheat straw is 180.91 µg/g,
which is about three times that of rice straw. (4) Total contents of WSIC and carbonaceous
components in PM from the three crop straws are 76.73%, 72.47%, and 72.44%, respectively.
The total content of WSIC of rice straw is the highest (31.65%), while that of corn straw is
the lowest (16.07%). The contents of K+, Na+, and Cl− in PM are significantly higher than
those of the other six water-soluble inorganic ions. The OC/EC ratio ranged from 14.82 to
30.82, which are close to the results of open burning. (5) There are mainly three kinds of
aggregates in PM of crop straws: network, chain-like, and soot. The chain-like aggregates
are only found in PM emitted from the combustion of corn straw. Individual particles are
mixture of KCl and organic matters. Core-shell structure is found in the PM of rice straw
and corn straw.

The results in this study are provided by CONE, an ISO-standard apparatus, which
can avoid data conflicts caused by the difference of combustion devices. The results from
different groups can be compared with each other. Meanwhile, the relationship between
the burning behavior and PM emission characteristics of crop straws was established,
which is helpful to understand emissions of crop straws. According to the relationship, the
elemental transformation between the straws and PM could be changed, and a novel way
to solve the PM issue might be invented.
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