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Allograft failure remains a major barrier in the field of lung transplantation and

results primarily from acute and chronic rejection. To date, standard-of-care

immunosuppressive regimens have proven unsuccessful in achieving

acceptable long-term graft and patient survival. Recent insights into the

unique immunologic properties of lung allografts provide an opportunity to

develop more effective immunosuppressive strategies. Here we describe

advances in our understanding of the mechanisms driving lung allograft

rejection and highlight recent progress in the development of novel, lung-

specific strategies aimed at promoting long-term allograft survival,

including tolerance.
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Introduction

Lung transplantation has evolved significantly since its introduction in 1963 and is

now commonly performed for a variety of end-stage lung diseases. Despite this, survival

after lung transplant remains poor and has not significantly improved over the past

several decades. Standard-of-care immunosuppressive regimens utilized in lung

transplantation have failed to achieve acceptable long-term graft and patient survival.

The median 6.7-year post-transplant survival represents one of the lowest among solid

organs and is limited primarily by allograft failure due to acute and chronic rejection

(1, 2). Recent insights into the unique immunologic properties of lung allografts

have provided a framework to better understand the limitations of conventional

immunosuppression in lung transplantation and provide an opportunity to develop

novel strategies that take advantage of these properties (3).

In this review, we describe recent advances in our understanding of the mechanisms

driving lung allograft rejection, particularly in the context of limitations related to
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conventional immunosuppression. We then highlight existing

and emerging lung-specific strategies aimed at promoting long-

term allograft survival. Specifically, we describe novel

preservation methods, cellular therapies, anti-inflammatory

agents, strategies targeting memory T-cells, and tolerance

induction (Figure 1).
Mechanisms of lung allograft failure

Acute inflammation

Beginning immediately after transplantation, lung allografts

are at risk of primary graft dysfunction (PGD), a form of acute

lung injury that can result in severe intra-graft inflammation. It

is widely accepted that PGD, which occurs in up to 25% of lung

transplants (4), is mediated by ischemia reperfusion injury (IRI)

and represents an independent risk factor for the subsequent

development of chronic allograft lung dysfunction (CLAD)

(5–7).
Adaptive immunity

Adaptive immune activation resulting in acute cellular and

antibody-mediated rejection contribute significantly to early

graft failure, with acute cellular rejection (ACR) occurring in

30-50% of recipients in the first year after transplantation (8, 9).
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Numerous studies have supported a role for ACR in subsequent

development of CLAD, with increased risk associated with

greater frequency and histologic severity of ACR (10–15).

Antibody-mediated rejection (AMR) has emerged as one of

the most vexing challenges in lung transplantation and is

characterized by allograft dysfunction, the presence of

circulating donor-specific antibodies (DSA), capillary

endothelial C4d deposition and pathological findings

characteristic of acute lung injury (16). This condition often

leads to acute graft failure and can also predispose to the

development of CLAD (17).
Chronic lung allograft dysfunction

CLAD occurs in up to half of recipients within five years of

transplantation and represents the principal life-limiting factor

for lung transplant patients (18). The development of CLAD is

likely multifactorial and related to the complex interaction of

immune and non-immune factors, including but not limited to

acute rejection, pre-transplant allosensitization, bacterial

infection and colonization, acute viral infection, and

gastroesophageal reflux disease; in a subset of patients, no

clear risk factors for CLAD are identified and it is presumed to

result from chronic rejection (19–22). CLAD is marked by

fibrotic remodeling within the pulmonary allograft, with

described phenotypes include bronchiolitis obliterans

syndrome (BOS), restrictive allograft syndrome (RAS), and a
FIGURE 1

Novel approaches to achieve long-term lung transplant survival.
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mixed BOS-RAS phenotype (23). Histologic changes of BOS

include dense submucosal fibrosis in membranous and

respiratory bronchioles resulting in luminal occlusion and

vasculopathy, whereas RAS is characterized by fibrosis of the

alveolar interstitium, visceral pleura, and interlobular septa

(14, 24).
Unique immunobiology of lung allografts

Lung allografts possess a number of distinctive features that

contribute to poor outcomes including 1) a large total surface

area of vascular endothelium, 2) constant exposure to

environmental antigens, and 3) an abundance of lymphoid

tissue patrolled by a robust innate immune system. The

expansive vascular endothelium of lung allografts results in

increased susceptibility to ischemia reperfusion and

complement-mediated injury, leading to an influx of

neutrophils/macrophages into the graft with early T-cell

activation and consequent rejection (25, 26). Due its role as a

barrier organ, the lung is continually exposed to environmental

antigens resulting in stimulation of toll-like receptors (TLRs)

which activate proinflammatory innate and adaptive immune

responses, thereby promoting rejection (27). Moreover, there

exists abundant intragraft lymphoid tissue containing resident

monocytes that can interact with and prime T-cells within the

lung itself (28). Other important properties of lung allografts

include the existence of immunomodulatory tissue-resident

memory T-cells (TRMs) and CD8+ memory T-cells shown to

promote allograft tolerance (29–33).

Similar to lung allografts, the skin harbors tissue-resident

immune cells (including T-effector memory cells) and is

continually exposed to the environment. As with the lung, the

presence of local T-effector memory cells enables a more potent

response to alloantigen than would occur following activation of

naïve T cells. When compared to solid organ transplantation,

recipients of vascularized composite allografts experience a

much higher incidence of acute rejection (85% during the first

year after transplantation) (34).

It is increasingly recognized that immune pathways driving

lung allograft rejection and tolerance differ from those of other

solid organs, likely due to the unique immunobiology of lung

allografts (3, 28–31). One primary difference is regulation of

alloimmune responses at the level of the lung allograft, which is

in contrast with other transplanted organs that depend on cell

trafficking to secondary lymphoid organs for activation of

allorecognition pathways (28–30, 35–37). Early graft injury

resulting from IRI and infection has been shown to activate

innate immune pathways within the lung allograft, which in turn

trigger alloantigen-specific T-cell expansion (19, 25, 38). During

IRI, resident donor monocytes in the lung elaborate chemotactic

and proinflammatory cytokines that facilitate neutrophil entry

into lungs grafts, enhancing CD4+ T-cell responses to donor
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antigens and resulting in PGD (39–41). Additionally, lung

monocytes can interact with Th17 cells and contribute to the

development of CLAD (42).

The design of conventional immunosuppression has focused

on controlling T-cell mediated responses. However, it is

increasingly clear that inflammation, along with humoral and

innate immunity, also play critical roles in lung allograft survival.

As such, it is not surprising that current immunosuppressive

regimens are unsuccessful in achieving acceptable long-term graft

and patient survival. Moreover, conventional immunosuppression

fails to account for the unique properties of lung allografts and as a

result may negatively impact tolerogenic cell populations while

allowing for the propagation of immune pathways leading to

rejection. Taken together, these findings highlight the need for

novel, lung-specific therapies that promote long-term allograft

and patient survival.
Novel preservation methods

Ischemia reperfusion injury is a critical mediator of PGD,

which affects up to 25% of lung transplant recipients and is

associated with the development of CLAD and late mortality (4,

43–45). Novel perseveration strategies aimed at reducing the

incidence of IRI and subsequent PGD are critical to promoting

long-term graft and patient survival. Moreover, the shortage of

acceptable lung allografts calls for innovative methods that

enable expansion of the donor organ pool.
Ex-vivo lung perfusion

Conventional cold static preservation is performed by

flushing donor lungs with a specialized preservation solution

followed by hypothermic storage on ice (~4°C). The goal of

hypothermic storage is to sustain cellular viability by reducing

cellular metabolism, with maximum accepted preservation times

limited to <8 hours with cold static preservation (46). During

this process, a lack of arterial blood supply results in anaerobic

metabolism, failure of ion-exchange channels, cell swelling, and

impaired enzymatic activity (47). Upon donor lung reperfusion,

oxidative stress from mitochondrial damage and electrolyte

imbalance promotes local inflammation and results in release

of reactive oxygen species, pro-inflammatory cytokines,

proteases, and expression of damage-associated molecular

patterns (DAMPs) (48–52). Consequent activation of the

innate immune system further contributes to the inflammatory

cascade and promotes harmful adaptive immune responses

driven by alloreactive T-cells (53, 54). The culmination of

these events results in the tissue damage that characterizes IRI.

EVLP involves machine preservation of donor lungs in a

perfused, ventilated, normothermic condition, thereby reducing

tissue injury resulting from anaerobic metabolism and
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hypothermia (55). EVLP represents a novel method for the

assessment and treatment of donor lungs, with the ultimate goal

of expanding the donor organ pool and improving long-term

outcomes. Since first used clinically in 1991 (56), EVLP has

undergone system modifications primarily relating to technical

parameters of the platform (static vs. portable) and composition

of the perfusate (cellular vs. acellular). Other proposed

modifications involve donor lung positioning (supine vs.

prone) (57), mode of ventilation (positive vs. negative-

pressure) (58), and perfusate temperature (normothermic vs.

subnormothermic) (59, 60). Currently, three EVLP platforms

are approved for clinical use and include the Organ Care System

Lung (OCS, Transmedics, Andover, MA), Vivoline LS1

(Vivoline Medical, Lund, Sweden), and the XPS XVIVO

Perfusion AB system (XVIVO Perfusion, Gothenburg,

Sweden). The major difference between these platforms is that

they are either mobile, enabling donor lungs to be placed on

EVLP immediately after procurement, or fixed, requiring

transport of donor lungs to a specialized perfusion center.

EVLP offers several advantages over cold static preservation,

including 1) the opportunity for evaluation of marginal donor

lungs prior to transplantation, 2) safe extension of preservation

time, and 3) the potential to improve both marginal and

standard grafts through targeted administration of therapeutics

(61). EVLP provides insight into the function of a marginal

donor organ by enabling assessment of physiological parameters

including pulmonary vascular pressures, perfusate oxygen

content (PaO2), lung edema, and PaO2:FiO2 ratios, as well as

novel parameters such as interstitial fluid metabolite

composition (62). Extended duration of donor lung

preservation through use of EVLP offers the advantage of

greater flexibility in timing of graft implantation, reduction in

the physical limitations related to organ allocation, and enables

performance of advanced diagnostics and therapeutics that

require longer periods of perfusion (63). EVLP using the

Toronto Protocol has been shown to safely maintain lungs for

>12 hours (46), with extended preservation to 24 hours using

perfusate modifications that reduce metabolite accumulation

and electrolyte imbalances known to occur during prolonged

EVLP (64).

Perhaps the most significant advantage of EVLP relates to its

use as a therapeutic platform for administration of localized,

targeted lung-specific therapies (61, 65, 66). Even without

modifications, EVLP is associated with alterations in the donor

lung environment from diminished release of inflammatory

mediators and augmentation of anti-inflammatory signaling

pathways (67–70). EVLP has been shown to alter the

inflammatory signaling profile of the donor lung, with a global

profile of cellular survival and anti-apoptotic signature (67).

Experimental studies have investigated administration of agents

aimed at augmenting the anti-inflammatory properties of EVLP,

many of which have shown promise in preventing inflammatory

cytokine release and reactive oxygen species (ROS) generation
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during IRI. Such agents include alpha1-anti-trypsin (71),

adenosine A1A-receptor agonists (72, 73) and A2B-receptor

antagonists (74), K (ATP) channel modulators (75), ROS

scavengers and PARP inhibitors (76–79). By removing donor

leukocytes prior to transplantation, EVLP alters immunogenicity

of the graft resulting in reduced allorecognition, T-cell priming,

and T-cell infiltration in the recipient (68). EVLP has been used

for targeted delivery of immunosuppressive agents including

perfusate-based methylprednisolone (80), intrabronchial

adenoviral human IL-10 (81), and drugs targeting leukocyte

activation and function (82, 83). Further applications of EVLP

involve modification of lung properties (84), anti-microbial

treatment (85), and administration of cellular-based therapies

(86–91).

Clinical trials have evaluated the impact of EVLP on

outcomes in standard and extended criteria donors, as well as

conversion rates for grafts initially deemed unsuitable for

transplant. To date, EVLP has failed to demonstrate superior

survival in clinical studies of standard criteria donor lungs (92,

93). The randomized INSPIRE trial evaluated EVLP outcomes

with the OCS platform compared to traditional cold storage in

standard criteria lungs, demonstrating a 50% reduction in rate of

grade 3 PGD (PGD3) with EVLP but no statistically significant

difference in short- and long-term survival (92). Similarly, a

randomized trial using the XVIVO platform for standard criteria

donors demonstrated no significant difference in 30-day survival

compared to standard donor lung preservation, and similar

short-term clinical outcomes between groups (duration of

intubation, length of intensive care unit (ICU) and hospital

stay) (93).

Remarkably, trials using EVLP for extended criteria donors

have shown equivalent survival compared to standard criteria

donors without EVLP (94, 95). The EXPAND trial applied the

OCS system in extended criteria donors (donation after

circulatory death (DCD), >age 55, PaO2:FiO2 ≤300, expected

ischemic time >6 hours), with a 99% 30-day survival but a 44%

rate of PGD3 at 72 hours (94). Additional studies of extended

criteria donors using EVLP have shown similar clinical

outcomes compared to standard criteria donors regarding

rates of PGD3, duration of ICU and hospital stay, and 30-day

or 1-year survival (95). Other prospective multicenter studies

using the Vivoline perfusion system for extended criteria lungs

initially declined for transplantation showed similar 1-year

survival despite inferior short-term parameters (higher rate of

extracorporeal membrane oxygenation (ECMO) support,

duration of ICU stay/time to extubation) when compared to

conventional donor lungs (96, 97). Importantly, in the

prospective, multi-center NOVEL trial, lungs initially deemed

unacceptable for transplant were screened using EVLP, resulting

in a 50.9% conversion rate and equivalent short- and long-term

outcomes compared to standard criteria lungs (98).

In sum, EVLP has been shown to reduce tissue inflammation

and downregulate harmful immune responses, thereby
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improving the function of donor lungs. Current evidence from

clinical trials supports the use of EVLP in extended criteria

donors and as a mechanism to screen for viable grafts among the

unused donor pool, enabling equivalent short- and long-term

outcomes compared to standard criteria donor lungs. To date,

there is a lack of demonstrated superiority using EVLP in clinical

trials of standard criteria lungs. However, there exists great

potential for further modifications to EVLP to enhance

outcomes of both standard and marginal/extended criteria

lungs with the overall effect of improved graft and

patient survival.
Xenogenic cross-circulation

Cross-circulation represents an advanced method of ex vivo

lung preservation which, unlike machine perfusion, provides full

physiologic support to donor lungs. In a porcine lung model,

allogeneic cross-circulation with a host swine has been shown to

successfully regenerate severely injured lungs and support lungs

ex vivo for up to four days (99–101). Based on these results, the

concept of xenogeneic cross-circulation of injured human lungs

with living swine has been proposed with successful functional

and histologic recovery of severely injured human lungs after 24

hours of xenogeneic cross-circulation (102). Cross-circulation

with xenogeneic support may result in superior outcomes

compared to isolated machine perfusion by providing systemic

physiologic regulation in the ex vivo setting (103). However, the

clinical applicability of xenogeneic cross-circulation as an

approach for lung preservation and rehabilitation is limited by

immunologic and ethical barriers as well as feasibility.
Modifications to cold static preservation

Despite the advantages of ex vivo perfusion, considerable

limitations exist including complexity and cost; as such, cold

static storage remains the clinical standard of donor lung

preservation. There have been few major changes in the

technique of cold static preservation in the past decades, but

several modifications have been proposed. One such

modification involves use of a temperature-controlled

preservation device, the Paragonix LUNGguard™ Donor Lung

Preservation System (Paragonix, Braintree, Mass). This device

enables continual monitoring of storage temperature and

maintenance in the range of 4-8°C for prevention of freeze

injury or inadvertent warming during donor lung transport and

storage. Use of increased storage temperature of 10°C rather

than 4°C during static preservation has also been proposed, with

a recent study demonstrating improved mitochondrial health

after prolonged preservation at 10°C compared to the standard

4°C (104). While the optimal lung preservation solution has yet
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to be established, Perfadex (XVIVO Perfusion AB, Gothenburg,

Sweden) is a commonly used, low-potassium dextran solution.

Recently, the use of a hydrogen-rich preservation solution

comprised of dissolved hydrogen in Perfadex has been

proposed as a mechanism to mitigate lung IRI by reducing

levels of inflammatory cytokines, oxidative stress markers, and

vascular endothelial dysfunction (105, 106).
Cellular therapies

The use of cellular-based therapies in solid organ

transplantation continues to evolve, with emerging roles for

regulatory T-cells, B-cells, macrophages, dendritic cells, and

genetically-modified CAR T-cells in prevention/treatment of

IRI and rejection. The majority of such therapies have been

explored in kidney and liver transplantation, however,

mesenchymal stromal cells (MSCs), as well as epithelial

progenitor cells (EPCs) and regulatory T-cells (Tregs) have

shown promise in lung transplantation.
Mesenchymal stromal cells

Mesenchymal stromal cells (MSCs, also seen as

mesenchymal stem cells) are multipotent cells with a

fibroblast-like morphology that were first isolated from bone

marrow and spleen in 1970 (107). MSCs are a heterogenous

population, but according to the International Society for

Cellular Therapy Standards they must: 1) adhere to plastic, 2)

be CD105+CD90+CD73+ and CD45-CD34-CD14-CD11b-

CD79a-CD19-HLA-DR-, and 3) have the capacity to

differentiate into the mesenchymal lineages (either bone,

cartilage, or fat) (108). MSCs have been predominantly

isolated from bone marrow, but umbilical cord MSCs and

adipose-derived MSCs are also widely used.

Since their discovery, MSCs have also been found as resident

cells in many organs throughout the body, including the lungs

(109). In bone marrow, MSCs produce a host of trophic and

regulatory factors to create a niche to support stem cell

hematopoiesis (110), and it is thought that lung resident MSCs

serve to similarly support bronchoalveolar stem cell populations

and help direct the maintenance and repair of lung tissues (111).

MSCs also have several unique features that make them

particularly attractive candidates for cell therapy in lung

transplantation. First, they are either very long-lived or

capable of self-renewal; in gender-mismatched lung

transplantation, MSCs have been shown to retain a donor’s

gender even years post-transplant (112). Second, they express

little to no co-stimulation or MHC markers and are poorly

immunogenic, to the extent they have been successfully

transplanted across not only HLA barriers but also across
frontiersin.org

https://doi.org/10.3389/fimmu.2022.931251
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Miller et al. 10.3389/fimmu.2022.931251
species (113). This has led many groups to transition away from

bespoke cultured MSCs and toward more shelf-stable allogeneic

cell lines, often derived from neonatal stem cells, that do not

require de novo MSC isolation and GMP culture. Third, MSCs

have been found to be possess a potent immunomodulatory

capacity, which may differ based on their source (114). In vitro

studies show that they inhibit effector T-cell activation (115) and

may promote regulatory T-cells over pro-inflammatory Th17

cells (114, 116). In the presence of inflammation as occurs in the

setting of transplantation, MSCs may be primed to possess an

even greater capacity for immunosuppression via TNF-TNFR2

dependent signaling (114, 117). MSCs secrete a variety of

cytokines, chemokines, and inflammatory factors that regulate

the immune system and have anti-oxidative and anti-apoptotic

functions (118–122) (reviewed in (123, 124)). Fourth, because of

their large size after in vitro culture, MSCs may become

trapped in the lungs following intravenous infusion (125).

The effect of MSCs can be seen throughout the body due to

paracrine and secreted factors, but MSCs can also migrate to

sites of tissue injury, and it is possible that lungs derive

additional benefit from the presence of MSCs locally in the

graft. Finally, MSCs have already been tested in human studies

for a wide variety of indications including acute respiratory

distress syndrome (ARDS), with doses ranging up to 100 million

cells/kg without evidence of significant adverse effects

(126–129).
MSC-derived extracellular vesicles

Of note, some of the effects of MSCs do not require cell-cell

contact in vitro, and MSCs have been found to exert effects on

distant organs in vivo. It is thought that MSCs release not only

paracrine signaling molecules, but also extracellular vesicles

(EVs). EVs are small, membrane-bound, non-nucleated

particles actively assembled and released by cells including

MSCs. EVs can contain proteins, mRNA, and miRNA which

can be transmitted to another cell. As the field evolves, guidelines

have been proposed by the International Society for Extracellular

Vesicles to more formally categorize these EVs by origin

(whether plasma membrane or endosome), size, density, etc.

(130). EVs are also being investigated as a means of inducing the

beneficial effects of MSCs without the risk of alloreactivity to

cells or the entrapment of cells in the lungs.
Preclinical studies of MSCs in lung IRI

MSCs, MSC-derived EVs, and MSC-derived conditioned

media (which contain EVs) have been evaluated in dozens of

studies of lung IRI. Most studies used rodent models with IRI

induced by hyperoxia, ventilator damage, E. coli bacteria/LPS, or

chemicals such as bleomycin [reviewed in (123)]. Consistently,
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treatment with MSCs has been found to result in increased

survival and decreased lung injury and edema.

Nearly all studies found that MSC-treated subjects had more

favorable, anti-inflammatory cytokine and growth factor

profiles. Neutrophil infiltration was decreased with MSC

treatment (87, 131–135) while there was an increase in M2-

like macrophages and regulatory T-cells (121, 136). The p38

MAPK is inhibited and Bcl-2 is translocated to the nucleus,

preventing apoptosis (137). In other organ models, MSCs have

been found to transfer mitochondria and glycolytic enzymes,

ameliorating mitochondrial dysfunction that can lead to

excessive ROS generation and metabolic dysfunction (138).

After treatment with MSCs, autophagy was markedly

decreased (139). In rodents with elastase-induced emphysema

and bleomycin-induced fibrosis, both emphysema and fibrosis

were decreased as well (136, 140).
MSC delivery using EVLP

Most preclinical studies of MSC treatment for lung IRI use

intravenous or intraperitoneal infusion to deliver the cells,

however, studies in lung transplantation have the unique

opportunity to use EVLP for cell delivery. Combining MSC

treatment with EVLP may enable the targeting of IRI before it

occurs and reconditioning of lungs without the theoretical risks

of microvascular embolism from high dose intravenous infusion

of MSCs [reviewed in (141) and (142)].

In one large animal transplant study, swine lungs were

perfused with human umbilical cord MSCs after 24 hours of

static cold storage and an additional 12 hours of EVLP. Once

transplanted and reperfused, lungs treated with MSCs had

significantly reduced acute lung injury scores, improved wet-

to-dry ratios, lower levels of inflammatory cytokines, and higher

levels of growth factors than the control group, suggesting an

amelioration of IRI associated with the transplantation process

(86). Previous studies from the same group confirmed that

intravascular perfusion led to better retention of cells in the

parenchyma than intrabronchial delivery of MSCs, and that

larger numbers of cells perfused offered little benefit over the

optimum dose of 5 million cells/kg (143, 144).

MSCs may also reduce the risk of pulmonary edema and

PGD by increasing alveolar fluid clearance (AFC) rates, which

can be negatively impacted by IRI-associated damage to the

alveolar epithelium. A handful of studies have been published

evaluating human lungs treated with MSCs or multipotent adult

progenitor cells (MAPCs) ex vivo. After 4-12 hours of EVLP, IL-

8, IL-10, TNFa, pulmonary vascular resistance (PVR), and

oxygenation were not demonstrably changed in most studies.

However, one study found that histologic lung injury scores were

decreased, and studies that evaluated AFC consistently found

that AFC was improved or restored to normal levels. Two

additional studies have also evaluated microvesicles derived
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from bone marrow MSCs and similarly found that AFC rates

were improved (Table 1).
MSC-based cellular therapy in human
lung transplantation

Based on the results from early studies demonstrating the

safety and feasibility of MSC administration in human lung

transplant recipients (128, 129), there are currently three clinical

trials of allogeneic MSC infusion for lung transplantation on

clinicaltrials.gov (Table 2). Two of the trials aim to evaluate the

effect of MSCs on lung transplant recipients with BOS or CLAD,

while one aims to evaluate the effects of MSCs on PGD in all lung

transplant recipients.

Unresolved questions remain about the subtle differences

between MSCs derived from different sources (i.e., bone marrow

vs. umbilical cord blood), their performance and viability

suspended in acellular perfusate compared to blood-based

perfusate (as is used in normothermic machine perfusion) or

culture media, and the possible toxic effects of dimethyl sulfoxide

used as a cryoprotectant for frozen MSCs. Additionally, MSCs

are a heterogeneous population and autologous cells can vary

significantly between patients. The development of standardized

allogeneic cell preparations can alleviate some of these concerns,

as can the use of EVs instead of cells.

In sum, there exists mounting evidence demonstrating the

beneficial effects of MSCs in treating lung injury in animal
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models and on ex vivo perfused human lungs. As a result,

there exists great potential for use of MSC-based therapies to

help expand the donor pool by reconditioning marginal lungs

and by limiting or treating lung injury after transplantation.
Endothelial progenitor cells

Endothelial injury represents a critical component in the

pathogenesis of lung IRI, wherein release of proinflammatory

cytokines from hypoxemia and reoxygenation results in

compromised endothelial integrity and increased alveoli-

capillary permeability. During reperfusion, overproduction of

ROS and activation of cell adhesion molecules causes endothelial

swelling and detachment from the basement membrane,

resulting in increased vascular permeability that enables

leukocyte entry into the tissues (151–153). Release of

proinflammatory mediators by activated macrophages causes

lung injury characterized by damage to pulmonary and alveolar

endothelial cells (154–156). Strategies aimed at protecting the

lung endothelium include inhibition of ROS, targeting of

endothelial adhesion molecules, and endothelial glycolax

stabilization (153).

More recently, the use of endothelial progenitor cells (EPCs)

has been explored as a mechanism by which to attenuate lung

injury and promote vascular regeneration. EPCs possess anti-

inflammatory properties and a capacity for re-endothelialization;

in models of acute lung injury, EPCs have been shown to preserve
TABLE 1 Studies of mesenchymal stromal cells (MSCs), multipotent adult progenitor cell (MAPCs), and MSC-derived extracellular vesicles (EVs) in
human lung ex vivo lung perfusion (EVLP).

Lead
Author

Year Cells Dose Lung injury model EVLP
time

Outcome

Lee (143) 2009 BM MSC from NIH
repository, Tulane
Center for Gene therapy

5 million <30h ischemic time plus E. coli
bacteria/endotoxin

4h AFC restored, IL-8, IL-10, TNFa unchanged

Lee (145) 2013 GMP BM MSC from
University of Minnesota

5 million <48h ischemic time plus endotoxin or
E. coli bacteria

6-10h AFC restored, IL-8 and TNFa decreased, IL-10
increased in vitro

McAuley
(146)

2014 GMP BM MSC from
University of Minnesota

5 million >30h cold ischemia 4h No change

La
Francesca
(147)

2014 MAPC 10 million 8h cold ischemia 4h Reduced lung injury score, reduced neutrophils and
eosinophils

Gennai
(148)

2015 BM MSC-derived EV MV from
10-20
million
MSCs

Lungs rejected for transplant (<48h
cold ischemia, no parenchymal lesions,
and AFC >0% but <10%/h)

8h Improved AFC, restored tracheal pressure, increased
compliance relative to baseline, reduced PAP or PVR.
No significant difference in oxygenation

Park
(149)

2019 BM MSC-derived MV MV from
20-40
million
MSCs

E. coli bacteria 6h Improved AFC, no change in PAP, PVR, compliance, or
oxygenation

Nykanen
(150)

2021 UC MSC modified to
produce IL-10

40 million <10 hours cold ischemia 12h No difference in PVR, oxygenation, compliance, airway
pressure
BM, Bone marrow; MSC, mesenchymal stromal cell; GMP, Good manufacturing process; AFC, Alveolar fluid clearance; MAPC, Multipotent adult progenitor cell; EV, Extracellular vesicle;
MV, Microvesicle; PAP, Pulmonary artery pressure; PVR, Pulmonary vascular resistance; UC, Umbilical cord.
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pulmonary endothelial function and prevent increased

permeability of the pulmonary alveolar-capillary barrier (157,

158). The potential for EPCs in attenuating lung IRI has been

demonstrated in animal models of lung transplantation, in which

administration of autologous EPCs improved lung allograft

survival and function in the setting of prolonged ischemia (159).

Additional findings support the ability for EPCs to ameliorate

lung IRI through downregulation of inflammatory and

endothelial adhesion molecule expression via the endothelial

NOS (eNOS) pathway (160). Further research will help to

elucidate the role for administration of EPCs as a therapeutic

strategy to mitigate lung IRI.
Regulatory T-cells

Tregs are known to mediate alloimmunity are known

to mediate alloimmunity in solid organ transplantation

and play a distinct role in lung transplantation due to local

immunoregulation within the allograft. The formation of

bronchus-associated lymphoid tissue (BALT), a tertiary

lymphoid organ enriched in Tregs, is associated with the

development of lung transplant tolerance (30). Tregs not only

participate in local mechanisms of tolerance induction within

the lung allograft, but can also regulate peripheral immune

responses via lymphatic egress (161). Further support for the

tolerogenic role of graft resident Tregs is evidenced by

development of AMR after selective depletion of intragraft

Tregs from tolerant lung allografts (162). In human lung

transplant recipients, reduced percentage of Tregs in BAL fluid

correlates with rejection (163), and increased levels of circulating

Tregs are associated with improved graft survival (164, 165).

Only recently have Tregs been investigated as a cellular

therapy in lung transplantation. Pre-transplant administration

of in-vitro expanded recipient Tregs using EVLP was performed

in a porcine model of lung transplantation and discarded human

lungs (166); Tregs were shown to enter the lung parenchyma in

both models and retain suppressive function, and thereby

represent a promising strategy for local immune regulation

prior to transplantation. However, the administered Tregs only

remained in the graft for 3 days after transplantation with

no significant difference in acute rejection between the control
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allograft residency may be required for Tregs to exert their

tolerogenic effects.
Anti-inflammatory strategies

IL-6 signaling blockade

IL-6 is a pleiotropic, pro-inflammatory cytokine that has

been linked to lung allograft inflammation and immune

-mediated graft injury, with elevated IL-6 levels shown to be

predictive of PGD and 30-day mortality (167–169). Evidence

from multiple model systems mechanistically link IL-6 to the

inflammatory cascades inherent to IRI and downstream

dendritic cell and T-cell activation/infiltration that result in

graft rejection (28, 54, 170, 171). Moreover, studies of PGD in

lung transplantation support a role for IRI-induced

proinflammatory gene expression including IL-6 (167, 169).

Monocytes/macrophages including alveolar macrophages

express the IL-6 receptor (IL-6R) and generate pro-

inflammatory responses comprised of inflammasome

activation, production of toxic reactive oxygen and nitrogen

species, and release of cytokines including IL-6, culminating in

acute and chronic allograft immunopathology (172, 173). Thus,

initiation of agents aimed at IL-6 signaling inhibition prior to

reperfusion in lung transplantation offers the potential to limit

innate inflammation downstream of IRI and thereby reduce the

development of PGD.

The potential benefits of IL-6 signaling inhibitors in lung

transplantation surpass their anti-inflammatory effects, given the

role of IL-6 in the adaptive immune responses responsible for

development of acute and chronic lung transplant rejection (174–

178). Agents currently approved for clinical use or in development

include primarily those that target IL-6 (clazakizumab,

siltuximab) or the IL-6 receptor (tocilizumab, sarilumab) (179,

180). Our group previously achieved long-term lung allograft

survival in non-human primates (NHPs) by supplementing

conventional triple drug immunosuppression with anti-

thymocyte globulin induction therapy and a short post-

operative course of anti-IL6R therapy with tocilizumab (181).

Recent clinical trials in kidney transplantation have focused on the
TABLE 2 Currently registered clinical trials of mesenchymal stromal cells (MSCs) in lung transplant recipients.

Lead institution Type Phase Patients MSC source Intervention Primary outcome NCT Status

Rigshospitalet,
Denmark

Double
blind

1/2 All lung
transplant

Allogeneic
adipose

100 million vs 200 million vs
placebo

PGD NCT04714801 Recruiting

Mayo clinic, MN Non-
randomized

1 BOS+ Allogeneic bone
marrow

0.5 million vs 1 million +/- 1
million booster

Safety, changes in PFTs NCT02181712 Completed
2021

University of
Queensland, Australia

Randomized 2 CLAD+ Allogeneic bone
marrow

8 million/kg vs placebo Progression-free survival
from CLAD

NCT02709343 Recruiting
fron
PGD, Primary graft dysfunction; BOS, Bronchiolitis obliterans syndrome; PFT, Pulmonary function test; CLAD, Chronic lung allograft dysfunction.
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use of IL-6 signaling blockade for desensitization and for the

treatment of acute and chronic AMR, with promising initial

results (182–187). In addition, a multicenter phase II clinical

trial investigating the efficacy of tocilizumab in cardiac

transplantation has been initiated (NCT03644667), with clinical

trials in lung transplantation forthcoming.
JAK inhibitors

The JAK/STAT pathway is essential for cytokine signaling

involved in upregulation of acute inflammatory pathways,

including those associated with lung allograft rejection. JAK-

dependent cytokines including IFN gamma and IL-5 have been

shown to be upregulated in CLAD (188), and elevated levels of

CXCR3 chemokines downstream from JAK-dependent IFN

gamma signaling have been associated with worse outcomes in

lung transplant recipients (189). Use of systemic JAK inhibitors

for prevention of allograft rejection has shown efficacy in kidney

transplantation but was associated with increased rates of

infection and posttransplant lymphoproliferative disease (190).

Recently, lung-specific, inhaled (non-systemic) JAK

inhibitors have been developed and offer potential for use in

the prevention of acute and chronic lung allograft rejection. The

use of inhaled, lung-specific JAK inhibitors provides local drug

delivery with minimal systemic effects and has shown efficacy in

corticosteroid-resistant pulmonary inflammation (191). The

inhaled pan-JAK inhibitor nezulcitinib (TD-0903, Theravance

Biopharma) was used for treatment of COVID-19 associated

lung injury in a Phase II clinical trial (NCT04402866) but failed

to meet its primary endpoint; however, the drug was well-

tolerated and showed a trend towards decreased mortality and

duration of hospitalization (192).
Azithromycin

Azithromycin is a macrolide antibiotic with diverse

antibacterial, antiviral, and anti-inflammatory effects, and has

been shown to attenuate airway and systemic inflammation after

lung transplantation (193–195). A randomized-controlled trial

demonstrated that use of prophylactic azithromycin combined

with conventional immunosuppression improved post-

transplant outcomes including lung allograft function and risk

of CLAD; its efficacy was attributed to reduced airway and

systemic inflammation based on lower C-reactive protein

levels in patients receiving azithromycin (194). Although it has

been shown to decrease the rate of CLAD and improve long-

term survival after lung transplantation (196–198), post-

transplant azithromycin did not result in improved early

allograft function in a randomized-controlled trial (199).

However, this study confirmed the known anti-inflammatory
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properties of azithromycin with lower bronchoalveolar lavage

(BAL) neutrophilia and IL-8 levels at 30 and 90 days post-

transplant (199).
Perfusion-based strategies

The process of EVLP using normothermic machine

perfusion with an acellular perfusate has been shown in

experimental studies to mitigate lung allograft inflammation

by downregulating the release of pro-inflammatory mediators

and promoting anti-inflammatory pathways. Specifically, use of

EVLP is associated with diminished release of DAMPs including

mitochondrial DNA (mt-DNA) (67, 200) and decreased levels of

pro-inflammatory cytokines such as IL-6, IL-1 beta, IL-18, and

TNF-alpha (69, 70, 201). Correspondingly, EVLP induces the

expression of genes encoding for anti-inflammatory pathways,

including feedback inhibitors of TLRs and regulatory cytokines

(i.e., IL-10) (69, 200).

Beyond its intrinsic anti-inflammatory effects, EVLP enables

targeted delivery of anti-inflammatory agents as additives to the

perfusate. In an experimental model, reconditioning of lung

allografts with Cyclosporine A during EVLP attenuated

proinflammatory changes and mitigated mitochondrial

dysfunction, resulting in improved early graft function after

transplantation (202). Administration of anti-inflammatory

adenosine A2A-receptor agonists and pro-inflammatory A2B-

receptor antagonists was also shown to improve lung quality and

was associated with diminished expression of pro-inflammatory

cytokines including CXCL1, CCL2, TNF-alpha, IFN gamma,

and IL-12 (72–74, 203). Other perfusion-based therapeutics

aimed at diminishing cell death and inflammation include

ROS scavengers/PARP inhibitors and alpha1-anti-trypsin (71,

76, 79). Finally, implementation of a cytokine adsorber to the

EVLP system for cytokine removal has shown promise in

limiting the inflammatory response in experimental

models (204).
Tissue-resident and central memory
T-cells

Tissue-resident memory T-cells

Tissue-resident memory T-cells (TRMs) represent a unique

population of non-circulating T-cells with memory features that

serve a critical role in the defense against infectious pathogens at

barrier surfaces (205, 206). TRMs are defined by their

commitment to non-lymphoid peripheral tissues and lack of

recirculation and are distinct from circulating central memory

and effector memory T-cells (207–210). As a key immunological

barrier organ, the lung is highly enriched for TRMs that have the
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potential to mediate rapid, in-situ immune responses (211, 212).

TRMs therefore serve an important role in localized immunity

with significant implications regarding allogeneic responses

within lung allografts.

Donor-derived T-cells have been identified in lung allografts

as TRMs for >1 year after transplantation, and their long-term

persistence is associated with reduced incidence of PGD and

ACR (32). In contrast, lung TRMs derived from infiltrating

recipient T-cells gradually acquire TRM markers in the months

after transplant and may mediate allograft rejection (32, 213,

214). Longitudinal analysis of lung transplant recipient BAL has

demonstrated lower levels of donor CD4+ and CD8+ T-cell

chimerism in recipients who developed PGD compared to those

who did not (32). Similarly, BAL samples from recipients with

ACR demonstrated lower levels of donor T-cell chimerism,

indicating that infiltrating recipient T-cells may mediate

development of ACR. Taken together, these findings suggest

that future therapies aimed at maintaining donor-derived TRMs

and preventing their replacement by recipient TRMs may

improve post-transplant outcomes.

More recently, the existence of recirculating TRMs has been

identified, implying that TRMs may be capable of participating

in systemic recall responses (215–217). Furthermore, the

observation that graft-infiltrating recipient T-cells gradually

acquire TRM markers suggests that these cells may actually

represent repopulation of donor lung tissue by circulating

effector memory T-cells that then acquire TRM phenotypes or

by recirculating ex-TRMs (218). The ability of TRM cells to

influence the immune environment within lung allografts

through rapid in-situ and potentially also systemic immune

responses represents yet another avenue for targeted

interventions to prevent allograft injury and rejection.
CD8+ central memory T-cells

Memory T-cells are generally viewed as pathogenic in the

context of solid organ transplantation, with early infiltration of

CD8+ memory T-cells into allografts shown to result in

accelerated rejection (219–223). CD8+ alloreactive memory T-

cells generated through heterologous immunity are considered a

barrier to long-term graft survival due to a relative resistance to

traditional immunosuppression. As a result, lymphoablative

strategies to globally deplete T lymphocytes or specifically

eliminate memory T-cells have been developed.

However, there exists emerging evidence that under certain

circumstances memory T-cells maintain a regulatory capacity

and suppress deleterious pro-inflammatory immune responses

(224). Recent findings in lung transplantation support a critical

role of CD8+ central memory T-cells (TCM) in the induction of

transplant tolerance (29, 31). In a murine model of lung

transplantation, it was shown that CCR7-expressing CD8+
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TCM cells promote costimulatory blockade-mediated lung

allograft acceptance via IFN gamma-dependent nitric oxide

production. The induction of tolerance by CD8+ TCM cells

was dependent on CCR7 expression, which enabled prolonged

and stable interaction with intragraft antigen-presenting cells

resulting in IFN gamma production, induction of nitric oxide,

and downregulation of immune responses (29). The tolerogenic

effect of CD8+ TCM cells was shown to be dependent on

expression of programmed cell death 1 (PD-1) by the CD8+

TCM cells; in the absence of PD-1, these cells instead

differentiated into an effector memory phenotype with

subsequent allograft rejection (31). These findings suggest that

indiscriminate T-cell depletion or targeting of pathways critical

to the function of tolerogenic CD8+ TCM cells may interfere with

lung allograft acceptance and promote rejection. As such, a

critical reevaluation of current immunosuppressive strategies is

warranted to ensure optimization of protective cell populations

in lung transplantation.
Tolerance induction

Induction of immune tolerance remains the ultimate goal in

the field of transplantation, as it would enable indefinite graft

survival in the absence of ongoing immunosuppression. In

contrast to kidney and liver allografts, lung allografts are

considered along with other “tolerance-resistant” organs due to

their unique immune characteristics (225). While tolerance to

kidney allografts has been achieved in human patients through

mixed chimerism with donor bone marrow transplantation (226),

such an approach has yet to reach the clinical realm for lung

transplant recipients. Our group was the first to demonstrate the

successful induction of lung allograft tolerance in a NHP model

using a mixed chimerism strategy with anti-IL6R therapy (181).

Four cynomolgus NHPs underwent MHC-mismatched lung

transplantation followed by 4-month delayed donor bone

marrow transplantation using a non-myeloablative mixed

chimerism conditioning regimen (including anti-IL6R therapy).

Three of the four NHP recipients achieved tolerance with long-

term lung allograft survival off immunosuppression (Table 3); the

tolerant NHPs had no evidence of acute or chronic allograft

rejection, exhibited donor T-cell unresponsiveness, and did not

develop donor-specific alloantibody (Figure 2). These findings

represent significant progress towards clinical lung transplant

tolerance, with tolerance induction representing yet another

promising approach for improved outcomes following

lung transplantation.

Moreover, long-term graft survival without the need

for immunosuppression in the setting of tolerance induction

would obviate the need for pat ient adherence to

immunosuppressive regimens. Patient adherence remains a

major barrier in achieving long-term survival following solid
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organ transplantation, including the lung (227–229). A recent

meta-analysis evaluating the efficacy of interventions aimed at

improving adherence identified the importance of a

multidisciplinary team, a comprehensive intervention
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approach, and mobile health monitoring (230). Indeed,

optimization of strategies that increase patient adherence

represents an important aspect for improved outcomes

following lung transplantation.
TABLE 3 Outcomes of four NHP lung transplant recipients that underwent delayed donor bone marrow transplantation for induction of lung
allograft tolerance. Adapted from (181).

NHP
Recipient

MHC
Mismatch

Mixed Chimerism ACR at last
biopsy

Chronic
rejection

Allo-anti-
body

Graft survival

MHC
I

MHC
II

M4012 2/4 2/4 Permanent ACR 0
Day 610
Post-LTx

None None 299 days post-BMT (euthanized with no
signs of rejection)

Haploidentical

M2411 2/4 2/4 Permanent ACR 0
Day 939
Post-LTx

None None 813 days post-BMT (euthanized with no
signs of rejection)

Haploidentical

M912 2/4 2/4 Transient until Day 75
post-BMT

ACR 0
Post-mortem

None None 464 days post-BMT (euthanized with no
signs of rejection)

M4711 4/4 4/4 None ACR 3
Post-mortem

Severe OB Developed post-
lung tx

176 days post-BMT
ACR, Acute cellular rejection; BMT, Bone marrow transplantation; LTx, lung transplant; OB, Obliterative bronchiolitis.
FIGURE 2

Pathology and chest radiographs from three tolerant NHP lung transplant recipients that underwent delayed donor bone marrow
transplantation. Shown are photomicrographs (hematoxylin and eosin (H&E) staining) of lung biopsies performed at the time of euthanasia and
chest radiographs obtained at indicated time points from each recipient. The chest radiographs of NHP recipients M2411, M912, M4012
displayed well-aerated lung allografts in the left thoracic space. No signs of rejection were seen in the lung graft biopsy of M2411, M912, and
M4012. Adapted from (181). BMT, Bone marrow transplantation.
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Summary and conclusion

Although the field of lung transplantation has evolved

significantly in the past several decades, there exists an urgent

need for the development of more effective strategies to improve

graft and patient outcomes. An improved understanding of the

unique immunologic properties of the lung has helped to elucidate

the mechanisms by which conventional immunosuppression fails

to achieve long-term lung transplant survival. Promising future

strategies include targeted delivery of lung-specific therapeutics

using ex vivo lung perfusion, novel anti-inflammatory approaches

(i.e., IL-6 signaling blockade), application of cell-based therapies

(i.e., MSCs), harnessing of the regulatory potential of lung-specific

memory T-cell populations, and tolerance induction. The ongoing

development of advanced therapies in lung transplantation

provides hope for a better future for lung transplant recipients.
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