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CD8þ T cells stimulate Na-Cl co-transporter NCC
in distal convoluted tubules leading to salt-sensitive
hypertension
Yunmeng Liu1, Tonya M. Rafferty1,w, Sung W. Rhee1, Jessica S. Webber2, Li Song1,w, Benjamin Ko3,

Robert S. Hoover4,5, Beixiang He1,2 & Shengyu Mu1

Recent studies suggest a role for T lymphocytes in hypertension. However, whether T cells

contribute to renal sodium retention and salt-sensitive hypertension is unknown. Here we

demonstrate that T cells infiltrate into the kidney of salt-sensitive hypertensive animals. In

particular, CD8þ T cells directly contact the distal convoluted tubule (DCT) in the kidneys of

DOCA-salt mice and CD8þ T cell-injected mice, leading to up-regulation of the Na-Cl

co-transporter NCC, p-NCC and the development of salt-sensitive hypertension. Co-culture

with CD8þ T cells upregulates NCC in mouse DCT cells via ROS-induced activation of

Src kinase, up-regulation of the Kþ channel Kir4.1, and stimulation of the Cl� channel ClC-K.

The last event increases chloride efflux, leading to compensatory chloride influx via

NCC activation at the cost of increasing sodium retention. Collectively, these findings provide

a mechanism for adaptive immunity involvement in the kidney defect in sodium handling and

the pathogenesis of salt-sensitive hypertension.
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H
ypertension is a major public health problem worldwide
with a high prevalence in populations with high dietary
salt intake1,2. It is well established that the kidney plays

a key role in the pathogenesis of essential hypertension3–6.
A breakthrough in our understanding linking salt intake
and kidney function to the pathogenesis of salt-sensitive
hypertension was provided by Guyton and other investigators,
who proposed that a physiologic defect in the kidney impairs
blood pressure-induced sodium excretion, thus leading to salt-
sensitive hypertension7–9. The thiazide-sensitive sodium-
chloride-co-transporter (NCC), which is mainly expressed
in distal convoluted tubules (DCT), plays a major role in
sodium handling in the distal nephron10–12. Genetic mutations of
NCC or its regulatory factors lead to salt wasting or salt-sensitive
effects on blood pressure regulation13–16. Inactivating mutations
of NCC lead to Gitelman’s syndrome with hypotension13,14,
whereas over-activation of NCC by mutations of its with-no-
lysine (WNK) regulators results in Gordon syndrome, exhibiting
hypertension15,16. Recent studies demonstrate that intracellular
chloride importantly regulates NCC and the sodium-potassium-
chloride co-transporter (NKCC) by affecting their regulatory
pathways, including auto-phosphorylation of WNKs and
their interaction with Ste20-related proline–alanine-rich kinase
(SPAK)17–19. However, which chloride channel or transporter
in DCT cells is responsible for alterations in intracellular chloride
remains unclear.

The renal tubular chloride channel ClC-K, which is expressed
throughout the distal nephron and located on the basolateral
membrane, plays a pivotal role in chloride reabsorption20,21.
There are two known homologues of this channel, ClC-K1
and ClC-K2. The distribution pattern of each ClC-K variant in
the distal nephron is uncertain because of the lack of specific
antibodies, but they both require association with their
beta subunit-barttin (Bsnd) to be functional22. Loss-of-function
mutations of ClC-K or Bsnd in the thick ascending limb of
the loop of Henle are responsible for classic Bartter syndrome
(type III & IV) accompanied by salt wasting, hypokalemic
alkalosis, and hypercalciuria23,24. Although direct evidence of
ClC-K regulating NCC is missing, patients carrying ClC-K
mutations demonstrate Gitelman’s syndrome25,26 leading us to
speculate that the NCC in DCT segments is affected by the
function of ClC-K. Recent studies suggest that changes in plasma
Kþ concentration and the basolateral Kþ channel Kir4.1, a
known downstream target of Src kinases, may play important
roles in regulating ClC-K, consequently affecting NCC expression
and activation27–30. However, direct evidence linking the
regulation of Kir4.1 and the pathogenesis of salt-sensitive
hypertension is missing.

A role for the immune system in hypertension was proposed
in the 1960s (refs 31,32) and is supported by the following
observations: Immuno-compromised nude mice are less
able to maintain hypertension in response to DOCA-salt
treatment compared with immuno-competent mice33;
thymus transplantation from WKY rats to SHR lowers blood
pressure in SHR34; and dysfunction of immune cells caused
by Rag-1 knockout/mutation or the immunosuppressant
mycophenolate-mofetil blunts the elevated blood pressure
in DOCA-salt treated animals or Dahl salt-sensitive rats35–37.
More recently, landmark studies by Harrison and colleagues35

provide evidence for a pathophysiological role of T cells in
the development of hypertension. Adoptive transfer of T cells
to Rag1 knockout mice restored elevation of blood pressure
caused by Angiotensin II (AngII) infusion35. These investigators
also demonstrated the relative importance of T cell sub-types in
the development of hypertension: adoptive transfer of CD8þ

T cells, but not CD4þ T cells, promoted the development of

hypertension38. Further confirmation included the observation
that knockout of CD8 prevented hypertension in AngII
or DOCA-salt treated mice39. Although growing evidence
supports a role for T cells in the pathogenesis of hypertension,
whether T cells contribute to the kidney defect in sodium
handling in salt-sensitive hypertension is unclear. Interestingly,
recent studies demonstrate that IFNg and IL17a are involved
in AngII-induced NCC up-regulation and activation in
kidney40,41. However, whether inflammatory cytokines play
a bridging role between T cells and sodium retention remains
to be tested.

In this study, we hypothesized a novel pathophysiologic
mechanism of salt retention in hypertension: that T cells in
the kidney stimulate NCC in DCTs, leading to sodium retention
and salt-sensitive hypertension. We found that CD8þ T cells
stimulate NCC in mouse DCTs by upregulating the potassium
channel Kir4.1 and subsequently the chloride channel ClC-K
on the plasma membrane, thereby decreasing intracellular
chloride. The last event leads to NCC activation, sodium
retention and the development of salt-sensitive hypertension.
Furthermore, we found that CD8þ T cell-mediated NCC up-
regulation in DCT cells requires direct cell-cell interaction-
induced ROS-Src activation.

Results
CD8þ T cells upregulate NCC in salt-sensitive hypertension.
DOCA-salt treated hypertensive mice (DOCA mice) and
Dahl salt-sensitive rats are two classic animal models of
salt-sensitive hypertension42. We verified their elevated blood
pressure via direct measurement (Supplementary Fig. 1). Staining
their kidneys with the T cell specific marker CD3 confirmed
the earlier finding39,43 that massive T cell infiltration occurs in
salt-sensitive hypertensive animals compared with control
animals (Fig. 1a upper panel; Supplementary Fig. 2).
Up-regulation of NCC in the kidney of DOCA mice was shown
by immunofluorescent staining with a specific NCC antibody
(Fig. 1a, lower panel). To determine whether T cells are involved
in the up-regulation of NCC in DCT cells, we extracted pan
T cells (CD3þ , Fig. 1b left) from spleens of C57B6 mice and
co-cultured them with mDCT15 cells (mDCTs), an established
cell model of mouse DCT44. After removal of the T cells,
mDCTs (Fig. 1b right) analysed by immunoblot showed higher
NCC expression in T cell-treated mDCTs compared with
untreated control cells (Fig. 1c), suggesting that T cells trigger
increased NCC expression in mDCTs.

Next, we compared treatment of mDCTs with T cells obtained
from spleens of Sham mice or DOCA mice. T cells from
DOCA mice stimulated more NCC expression than those from
Sham mice (Fig. 2a). T cell subtype analysis by flow cytometry
identified a higher proportion of CD8þ T cells and a lower
proportion of CD4þ cells in the T lymphocytes (CD3þ ) isolated
from DOCA mice compared with Sham mice (Fig. 2b;
Supplementary Fig. 3). This observation led us to speculate
that the CD8þ subtype of T cell is more important in stimulating
NCC in mDCTs. To test this hypothesis, we evaluated
the expression of the CD4/CD8-specific antigen ligand
MHC-II/MHC-I on the surface of mDCT cells. Flow cytometry
revealed abundant expression of CD8-specific antigen MHC-I
on the mDCT cell surface with minor expression of CD4 specific
antigen MHC-II (Fig. 2c). We then co-cultured mDCTs
with mouse CD4þ T cells and CD8þ T cells isolated from
spleens using negative selection (Supplementary Fig. 4) to
test their effects on regulating NCC. Co-culture with CD8þ

T cells greatly upregulated NCC expression in mDCT
cells, whereas the effect from CD4þ T cells was modest (Fig. 2d).
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To verify our in vitro result, mouse CD8þ T cells were
infused into mice via tail vein injection. Tracking these exogenous
CD8þ T cells using fluorescent dye revealed their infiltration
into the kidneys and spleens but not the hearts of the recipient
mice (Supplementary Fig. 5). Five days after adoptive transfer
of CD8þ T cells, massive T cell infiltration and up-regulation
of the NCC were detected in the mouse kidneys by immuno-
(fluorescent)-staining (Fig. 3a), similar to the result we observed
in DOCA mice (Fig. 1a). Moreover, phosphorylated NCC
(p-NCC), an activated form of NCC, also was up-regulated in
the kidneys of mice infused with CD8þ T cells (Fig. 3b).
Next, blood pressure was measured by radio-biotelemetry
to evaluate whether CD8þ T cell-induced up-regulation of
the NCC in kidney is associated with salt-sensitive hyper-
tension. The mice receiving adoptive transfer of CD8þ

T cells (Fig. 3c, red) showed slightly higher blood pressure
(119±2.4/132±2.1 mmHg, sys-BP day/night) compared
with their baseline (113±1.9/122±1.3 mmHg). However,
remarkably elevated blood pressure was observed in these

mice after their diet was switched from regular chow
to 8% high-salt diet (128±2.8/152±2.6 mmHg). Furthermore,
the NCC blocker hydrochlorothiazide (HCTZ) effectively lowered
blood pressure in these mice (111±2.8/125±1.8 mmHg),
suggesting a critical role for NCC in the development of salt-
sensitive hypertension in mice that received adoptive transfer of
CD8þ T cells. In contrast, blood pressure in sham mice was
unaffected by injection of saline, high-salt diet, or ±HCTZ
treatment (Fig. 3c, black). It is noteworthy that, because T cell
infiltration in the kidney was not diminished by treatment
with HCTZ (Fig. 3d), removal of HCTZ regenerated hypertension
in mice receiving adoptive transfer of CD8þ T cells (Fig. 3c,
red, 129±4.0/155±3.3 mmHg), suggesting an upstream role for
renal CD8þ T cells in NCC-blood pressure regulation. Our
in vitro and in vivo data suggest that CD8þ T cells play
a major role in up-regulation and activation of NCC in
DCTs and that upregulated NCC in kidneys contributes to the
development of salt-sensitive hypertension in CD8þ T cell-
infused mice.
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Figure 1 | T cells accumulate in the kidney of DOCA mice and are associated with NCC up-regulation. (a) Immunostaining of pan T cell marker

CD3 (brown, upper panels, scale 50mm) or NCC (green, lower panels, scale 100mm) on Sham or DOCA-salt treated mouse kidney sections. Nuclei were

stained by hematoxyline (upper panels) or DAPI (lower panels). Data are representative of n¼8 images in each group. (b) Left panel, isolated mouse

splenic pan T cells were stained by CD3 antibody. Flow cytometry confirmed all cells were CD3þ T cells. Cells in grey closed area are T cells without

CD3 staining as negative control; cells in red dashed line open area are T cells stained by CD3 antibody, indicating CD3þ T cells. Right panel, effects of

using magnetic beads to remove T cells from the mDCT-T cell co-culture. Control mDCTs (before co-culture, blue closed area) and after co-culture mDCTs

(after removal of T cells by using magnetic beads, red dashed line open area) were stained with CD3 antibody and analysed by flow cytometer. Data are

representative of three independent tests. (c) Western blot analysis of NCC expression in mDCT cells with (þT cell) or without (Con) mouse splenic

T cell-treatment. Two bands were detected for NCC, reflective of mature (upper) and immature (lower) forms (see methods). Quantitative western blot

data were normalized using GAPDH as a loading control. n¼4–5 in each group. Data are means±s.e. Po0.01 (t-test).
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CD8þ T-DCT direct contact is required for upregulating NCC.
Using double fluorescent staining of NCC and CD8 to
localize NCC-positive DCTs and CD8þ T cells, we found
numerous DCT segments with high NCC expression surrounded
by CD8þ T cells in kidneys of both DOCA mice and
mice receiving CD8þ T cells (Supplementary Fig. 6). This finding
led us to consider the possibility that direct cell–cell contact may
be involved in the interaction between CD8þ T cells and
DCT cells. To test this hypothesis, the basolateral membrane
of DCTs was stained for Na-K-ATPase-a, and super-resolution
3D-SIM (three dimension structured illumination microscopy)
was used to examine whether CD8þ T cells directly touch
the basolateral side of NCC-positive DCT cells in vivo (Fig. 4).
Raw images (Fig. 4a,d) spanning B4.5 mm Z-stacks were
processed to yield 3D-SIM images (Fig. 4b,e) and orthogonal
sections (Fig. 4c), linear intensity profiles (Fig. 4f) and
3D-surface-rendering images (Fig. 4g) were examined. Within
the resolution limit45 of 3D-SIM, protrusions from CD8þ T cells
(red) appear to make contact with NCC (green)-positive DCTs
on the basolateral membrane (cyan) in kidneys from both
DOCA mice (Fig. 4a–c) and mice receiving CD8þ T cell adoptive
transfer (Fig. 4d–g).

To determine whether this direct cell-cell contact is critical
for the interaction between CD8þ T cells and DCTs, and further
elucidate the mechanism of CD8þ T cell-induced up-regulation
of NCC in mDCTs, we co-cultured the mouse CD8þ

T lymphocyte line TK-1 cells (TKs) (Supplementary Fig. 7) with
mDCTs. Consistent with our in vivo observation, many
TKs adhered to mDCTs (Fig. 5a) and individual cell-cell contacts

were detected by super-resolution-microscopy (Fig. 5b;
Supplementary Fig. 8). After co-culture, mDCT-adherent
TKs were removed by CD8 specific magnetic beads and
TK-free mDCTs were further analysed (Supplementary Fig. 9a).
Western blots showed that the abundance of total NCC
and p-NCC increased in TK-treated mDCTs compared with
control (Fig. 5c), although the corresponding mRNA change
was minor (Supplementary Fig. 9b). TK-mediated up-regulation
of NCC and p-NCC on the cell membrane of mDCTs
was confirmed by western blot of isolated cell membrane proteins
(Supplementary Fig. 9c).

To determine whether TK-induced up-regulation of NCC is
because of direct cell-cell contact or cytokines or chemokines
released from the T cells, transwell co-culture inserts
with different membrane pore size (0.4 and 8mm) were used
to separate TKs and mDCTs. The 0.4 mm transwell should
allow exchange of secreted, soluble cytokines/chemokines but
prevent direct cell-cell contact, whereas the 8 mm transwell allows
free trans-membrane movement of both soluble factors and
TK cells, since the TKs are only B7–9 mm in diameter
(Supplementary Fig. 10a,b). Western blots revealed that
TKs increase membrane abundance of NCC and p-NCC only
in mDCTs without transwell or with 8 mm-transwell that allows
TKs to directly touch mDCTs, but not in the groups of control
cells or with the 0.4 mm-transwell that prohibits direct contact
between the two cell types (Fig. 5d upper panels). In total protein
lysates, NCC and its major regulator SPAK (refs 46,47) only
up-regulated consistently in the mDCTs that directly contacted
TKs. Indirect co-culture did not stimulate the expression of
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Figure 2 | CD8 subtype T cells are involved in the up-regulation of NCC. (a) Expression of NCC in mDCT cells treated with T cells from spleens of Sham

(Sham Tþ ) or DOCA (DOCA Tþ ) mice. After removal of all T cells, whole cell lysates were used for western blot. GAPDH was used as loading control.

n¼4 in each group. Data are means±s.e. Po0.05 (t-test). (b) Pan T cells isolated from spleens of Sham or DOCA mice were analysed for the proportion

(%, red numbers) of CD4 and CD8 subtype by flow cytometry. Data are representative of three independent experiments. (c) mDCT cells with (red) or

without (grey, negative control for auto-fluorescence) double staining using MHC-I (Y axis) & MHC-II (X axis) antibodies were analysed by flow cytometry.

Data are representative of four independent experiments. (d) Western blot analysis of NCC expression in mDCT cells without or with CD4þ or CD8þ

mouse splenic T cell-treatment. Quantitative western blot data were normalized using GAPDH as a loading control. n¼4–5 in each group. Data are

means±s.e. P¼0.46 Con versus þCD4T; Po0.01 Con versus þCD8T (ANOVA).
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NCC or SPAK (Fig. 5d lower panels). Moreover, specific blocking
antibodies used to neutralize cytokines IL17a and IFNg in the
co-culture failed to prevent TK-induced up-regulation of
SPAK and NCC in mDCTs (Supplementary Fig. 11), which
further confirmed these cytokines do not direct mediate
TK-induced NCC up-regulation in mDCTs. These results
indicate that CD8þ T cell-mediated NCC up-regulation and
activation in DCTs relies on direct cell-cell interaction and not on
soluble factors.

The upregulated NCC mediates more sodium uptake in DCTs.
We next performed functional studies using a memb-
rane-permeable fluorescent intracellular sodium indicator
CoroNa Green AM (CoroNa) to evaluate NCC-mediated
sodium retention in mDCTs. After overnight treatment
with or without TKs, mDCTs were incubated in PBS containing
the Na-K-ATPase inhibitor ouabain, NKCC blocker bume-
tanide and ENaC inhibitor amiloride, followed by loading
CoroNa in the presence of the same blockers. Compared with
the negative-control cells without sodium indicator
loading, CoroNa-loaded mDCTs demonstrated two major
populations: lower sodium-containing and higher sodium-
containing mDCTs (Fig. 6a). Notably, TK-treated mDCTs
exhibited a higher proportion of cells with high sodium
retention compared with control cells (Fig. 6a,b), suggesting
TKs stimulate more mDCTs to exhibit elevated sodium-
reabsorbing ability, conceivably via enhanced NCC activation.

To confirm the role of NCC in TK-mediated sodium retention
in mDCTs, we used siRNA to knockdown NCC in mDCTs
before treatment with TKs (Supplementary Fig. 12a).
NCC knockdown by siRNA decreased the proportion of
high sodium-containing mDCTs induced by TKs (Fig. 6c
& Supplementary Fig. 12b). Moreover, knockdown of NCC in
mDCTs shifted the entire fluorescence curve to the left (Fig. 6c),
indicating decreased sodium retention in the whole
cell population.

To semi-quantitatively assess the sodium absorbed
into mDCTs by activated NCC, the NCC-specific inhibitor
HCTZ was added to the other sodium transporter blockers
mentioned above. An additional 40 mM NaCl was added
to the incubation PBS to mimic the high-salt environment
found in the renal interstitium after high-salt-intake48.
CoroNa-loaded mDCTs were lysed in sodium free buffer and
fluorescence was measured by fluorometry. In normal
salt condition, mDCTs treated with TKs demonstrated
higher sodium content than control cells (Fig. 6d), consistent
with the flow cytometry result (Fig. 6a). The additional high-salt
induced a rise in sodium content in mDCTs that was minimal
in control cells, but dramatic in TK-treated mDCTs (Fig. 6d).
Moreover, this effect was abolished by inhibiting NCC with
HCTZ. After HCTZ administration, the sodium content in
TK-treated mDCTs was diminished to a level similar to control
cells (Fig. 6d). These results suggest that TK-induced
up-regulation and activation of NCC contribute to the sodium
retention in mDCTs.
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Chloride efflux contributes to NCC up-regulation in DCTs.
Recent reports have shown intracellular chloride concentration
is an important factor affecting NCC/NKCC regulatory
pathways including SPAK (refs 17–19), which led us to
investigate whether TK-induced NCC up-regulation is mediated
by the intracellular chloride-SPAK pathway. Indeed, knockdown
of SPAK using siRNA (Supplementary Fig. 13a) prevented
TK-induced NCC/p-NCC up-regulation in mDCTs (Fig. 7a).
To measure intracellular chloride, the membrane-permeable
fluorescent chloride indicator MQAE was loaded into chloride-
depleted mDCTs, followed by incubation in PBS with or without
NCC/NKCC blockers. Without blockers, the treatment with
TKs only slightly decreased intracellular chloride concentration
in mDCTs (Supplementary Fig. 13b). Although TKs did not
significantly upregulate NKCC in mDCTs (Supplementary
Fig. 13c), blocking NCC- or NKCC-mediated chloride influx
with specific inhibitors HCTZ or bumetanide (Bume) each
mildly decreased intracellular chloride in TK-treated mDCTs
(Supplementary Fig. 13b). As expected, combined blockade
with both HCTZ and Bume remarkably decreased intracellular
chloride in TK-treated mDCTs compared with control
cells (Supplementary Fig. 13b), indicating a much higher chloride
efflux in the mDCTs with TK treatment than control. In
the absence of blockers, this chloride efflux was largely
compensated by NCC/NKCC-mediated chloride influx.

A previous patch-clamp study identified ClC-K as a major
basolateral membrane chloride channel in DCTs (ref. 49).
To clarify whether it is responsible for the chloride efflux in
TK-treated mDCTs, we performed membrane extraction and
observed more ClC-K expressed on the cell membrane in
TK-treated cells in western blots (Fig. 7b). Moreover,
using immunoprecipitation, we detected more Barttin-ClC-K
association on the plasma membrane of TK-treated mDCTs

(Fig. 7b; Supplementary Fig. 14a), indicating activation of
the increased surface ClC-K. These results suggested that
TK-treatment induces higher mDCT membrane expression and
activation of ClC-K, which may be responsible for the higher
chloride efflux from mDCTs.

To confirm the role of ClC-K in TK-mediated chloride
efflux from mDCTs and its relation to TK-NCC-mediated
sodium retention, we used both ClC-K1 and ClC-K2 siRNAs to
knock down ClC-K (Supplementary Fig. 14b,c). ClC-K knock-
down by siRNAs prevented the reduction in intracellular chloride
in both control and TK-treated mDCTs with HCTZ/Bume
blockade. Importantly, the effect was greater in TK-treated
mDCTs than in control cells (Fig. 7c). Notably, after
ClC-K knockdown, the slope of the (HCTZþBume)-induced
sharp decrease of intracellular chloride in TK-treated mDCTs was
similar to control cells (Fig. 7c), which confirmed that
ClC-K critically modulates chloride efflux from mDCTs.
NCC-mediated sodium retention in mDCTs was measured by
flow cytometry using CoroNa Green as described earlier. Without
knockdown of ClC-K, TK-treatment resulted in a greater
proportion of high sodium containing mDCTs compared
with control cells (Fig. 7d,e, Sham-si), consistent with our finding
in Fig. 6. However, this effect was diminished in the mDCTs
after knockdown of ClC-K (Fig. 7d,e, siClC-K). These results
suggest that TK-treatment increases mDCT membrane expres-
sion and activation of ClC-K, and moreover, it decreases
intracellular chloride, thereby controlling SPAK-NCC-mediated
sodium reabsorption in TK-treated mDCTs.

CD8þ T cells activate the Kir4.1-ClC-K pathway in DCTs.
To further investigate the role of ClC-K in the pathway of
TK-induced NCC up-regulation, western blots were performed
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2 mm. Four colour channel images were overlaid: DAPI (blue), NCC (green), CD8 (red), and NKA (cyan). The yellow circle denotes the putative contact

point. (c) Orthogonal sections of the 3D image (XZ, XY, YZ) of the same cell. Yellow lines on each section correspond to the position of other orthogonal

sections centred around the contact point. (d) A wide-field image of a kidney section from a DOCA-salt mouse. Identically stained as in a. Scale 10mm.

(e) 3D-SIM processed image of (d). Scale 2 mm. Yellow arrow represents the location and direction of intensity profile. (f) Fluorescence intensity profile of

CD8 (red) and NKA (cyan) along the yellow arrow in e. (g) Three-dimensional surface rendering of the image shown in e. The yellow circle denotes the

putative contact point. Data are representative of 11 images from þCD8 T cell group and 13 images from DOCA group.
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using membrane protein and total protein from TK-treated/-
untreated mDCTs with or without ClC-K knockdown. Not
surprisingly, ClC-K knockdown prevented TK-induced
up-regulation of ClC-K on the cell membrane (Supplementary
Fig. 14d). Moreover, TK-induced increases of NCC and p-NCC in
the cell membrane and SPAK and NCC in whole cell lysate were
abolished by siClC-K (Fig. 8a). These data suggest that ClC-K is
an important upstream regulator of NCC activation and expres-
sion in mDCTs. Zhang et al.30 recently reported that the DCT
basolateral potassium channel Kir4.1 provides the driving force
for chloride efflux. Knockout of Kir4.1 decreased chloride
conductance and impaired NCC expression in mouse DCT1

(ref. 30). In agreement, our findings imply that TKs up-regulate
mDCT membrane expression of Kir4.1 and this response is not
impaired by ClC-K knockdown (Fig. 8a), suggesting that Kir4.1 is
an up-stream regulator of ClC-K in DCTs.

In further confirmation, knockdown of Kir4.1 by siRNA
(Supplementary Fig. 15a) prevented TK-induced up-regulation
of Kir4.1, ClC-K and p-NCC on mDCT cell membrane (Fig. 8b;
Supplementary Fig. 15b). In addition, the TK-induced increase
in total NCC abundance in mDCT total lysate also was abolished
by siKir4.1 (Fig. 8b). These data suggest that TK-induced
NCC up-regulation and activation occur via up-regulation of
the Kir4.1-ClC-K pathway. Recent reports from Terker et al.27

and Veiras et al.28 indicated that plasma potassium plays an
important role in regulating NCC in DCTs, with Kir4.1 possibly
involved27. However, we did not observe a decrease in potassium
level in plasma of mice receiving CD8þT cell-adoptive transfer
(Supplementary Fig. 16a, left panel) or in the mDCT-TK
co-culture media (Supplementary Fig. 16a, right panel).
Moreover, additional potassium in the co-culture environment
did not attenuate the TK-induced NCC up-regulation in mDCTs
(Supplementary Fig. 16b), confirming that CD8þ T cell-induced
NCC up-regulation in DCT occurs via a different mechanism
than extracellular potassium.

CD8þ T cells stimulate ROS-Src in DCTs to activate Kir4.1.
Src kinase (Src) has been reported as an up-stream regulator
of Kir4.1 in DCTs (ref. 29). It is well known that Src is activated
by intracellular reactive oxygen species (ROS)50,51. Therefore, we
explored whether ROS-induced Src activation is involved in
CD8þT-induced enhancement of the Kir4.1-NCC pathway
in mDCTs. To test this hypothesis, Src siRNA was used
to knockdown Src in mDCTs before co-culture with
TKs. Knockdown of Src inhibited the TK-induced increase of
Src active form p-SrcY419 in mDCTs (Supplementary Fig. 17).
Importantly, knockdown of Src also prevented the TK-induced
increase of Kir4.1 on the cell membrane, as well as the
downstream up-regulation of NCC in mDCTs (Fig. 9a). Similar
effects were observed in cells treated with the Src inhibitor
PP1 (Supplementary Fig. 18), confirming the up-stream role of
Src in TK-induced Kir4.1-NCC stimulation in mDCTs.
Furthermore, intracellular ROS in mDCTs was evaluated by
pre-loading cells with the fluorescent ROS indicator CM-DCF.
Co-culture with TK cells increased ROS accumulation in mDCTs
(Fig. 9b). It is noteworthy that most mDCTs with higher levels of
intracellular ROS were in contact with one or more TK cells
(Fig. 9b), consistent with our earlier finding that only directly
contacted mDCTs exhibited up-regulated NCC and sodium
retention. To confirm the role of intracellular ROS, co-cultured
cells were treated with the cell-permeable NADPH oxidase
inhibitor apocynin. Apocynin diminished TK-induced
Src activation and downstream up-regulation of SPAK-NCC in
mDCTs (Fig. 9c). These data suggest that during CD8þT-DCT
interaction the DCTs are signalled by ROS-induced Src activation
to stimulate the downstream Kir4.1-NCC pathway.

Taken together, we suggest that direct contact of CD8þ T cells
with DCTs increases ROS, activates Src and stimulates
Kir4.1-ClC-K pathway-mediated chloride efflux from DCTs,
which decreases intracellular chloride and leads to compensatory
activation of chloride influx by activating SPAK-NCC at the
cost of sodium retention, consequently resulting in salt-sensitive
hypertension (Fig. 10).

Discussion
In this study, our first novel finding is that CD8þ T cells
up-regulate and activate NCC in DCTs, which results in sodium
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retention and development of salt-sensitive hypertension.
Recent studies have shown that T lymphocytes play an important
role in hypertension, given evidence that genetic or pharmaco-
logic inhibition of T cells lowers blood pressure in multiple
animal models of experimental hypertension33,35–37. In this
study, we confirmed a previous finding that T cells accumulate in
the kidneys of salt-sensitive hypertensive animals35–37. Several
factors potentially may be involved in the mechanism of T cell-
infiltration in the hypertensive kidney. First, salt may directly
affect immune cells, including macrophages and T cells,
that participate in inflammation and immunoreactivity48,52.
As the major organ of sodium handling, the kidney has high
sodium content in its tissue, especially during high-salt intake,
which directly may trigger accumulation of immune cells. Second,
oxidative stress and its role in hypertension are well known
and may contribute to recruitment of T cells. The antioxidant
tempol prevents immune cell infiltration in kidney53, which
suggests a role for ROS in recruiting T cells. Third, exciting
findings regarding T cell adaptor gene SH2B3 indicate that
renal immune tolerance also determines the extent of T cell
infiltration in kidney54,55. Although renal T cells unquestionably
contribute to hypertension, whether T cells are involved in
sodium retention in the kidney has been a critical unanswered
question. Given Guyton’s hypothesis that hypertensive animals
and individuals exhibit impaired blood pressure-induced sodium
excretion because of a physiologic defect in the kidney7,8,
we hypothesized that T cells in the kidney are responsible
for its defect in sodium handling by maintaining high-salt
retention in the distal nephron. Co-culture with CD8þ T cells
up-regulated SPAK and increased NCC and p-NCC in mDCTs.
In addition, functional studies provided evidence that CD8þ

T cells induce high NCC-mediated sodium retention in
more mDCTs. Moreover, in vivo study of mice undergoing
CD8þ T cell adoptive transfer confirmed that these effects are
associated with the development of salt-sensitive hypertension.

The organ-specific homing mechanism of the CD8þ T cells
remains unclear to us. It is also uncertain whether all CD8þ

T cells or specific subtypes of T cells within the CD8þ phenotype
are responsible for causing these effects. A very interesting finding
is that in mice receiving CD8þ T cells and HS diet, although
HCTZ effectively lowered blood pressure via suppressing NCC, it
did not affect T cell infiltration in the kidneys. Thus discontinuing
HCTZ restored hypertension in these mice on a high-salt intake,
implying a possibly important role for kidney resident or memory
type of CD8þ T cells in salt-sensitive hypertension. A similar
idea also was suggested by other investigators56; however, further
explorations are needed to specify the role of memory type T cells
in regulating sodium retention in the kidney. Nevertheless,
CD8 represents a critical molecule, because CD8 knockout mice
are protected from AngII-induced salt-volume retention
and hypertension39, which is in accord with our observations in
this study.

Our second novel finding is that CD8þ T cell-induced
up-regulation and activation of NCC in mDCTs occur via direct
cell-cell contact. We observed that CD8þ T cells only induce
NCC up-regulation in mDCTs via direct cell-cell contact but not
in co-culture where direct cell–cell contact was prevented. Very
recent studies by Kamat et al.40 and Norlander et al.41

demonstrated that AngII-induced NCC up-regulation and
activation in kidney are abolished in IFNg or IL17a knockout
mice. However, in the present study, neutralizing these cytokines
did not inhibit CD8þ T cell-induced up-regulation of
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SPAK-NCC in mDCTs. Although cytokines may have various
effects on regulating cell signalling including ROS generation,
our results suggest that CD8þ T cell-induced increases
of NCC abundance and phosphorylation in DCTs are not
directly driven by soluble cytokines released from T cells but via
direct cell-cell contact. Unfortunately, T cell infiltration in the
kidneys of AngII-treated IFNg-KO or IL17a-KO mice was not
evaluated in the previous reports, and our findings do not rule out
possible roles of these cytokines in upstream pathways, such as
recruiting T cells into the kidney or activating either T cells or
DCTs to initiate their interaction. Our study using super-
resolution 3D-SIM suggested an immunological synapse
(IS)-like direct contact between CD8þ T cells and DCT cells
both in vivo and in vitro. Although a true IS is mainly triggered by
T cell receptors and their specific antigen ligand MHCs, other
molecules, such as co-stimulators, often are involved in the
communication between T cell and antigen-presenting cell. Our
findings do not definitively support the formation of a true
IS between these two cell types, since we have not identified the
responsible co-stimulators or determined that adhesion onto
mDCTs leads to activation of TKs. Whether there are other
molecules involved in the crosstalk between CD8þ T cells
and mDCTs and how this IS-like direct contact induces

ROS accumulation in DCTs are two important questions for
future investigation.

Our third novel finding is that CD8þ T cell-induced
up-regulation of NCC is mediated by ROS-Src activation, thereby
increasing chloride efflux via the regulation of potassium channel
Kir4.1 and subsequently the chloride channel ClC-K on
the basolateral cell membrane. It has been reported that
intracellular chloride concentrations modulate the regulatory
pathway of NCC and NKCC (refs 17–19). We detected higher
membrane expression of ClC-K and binding with its beta
sub-unit barttin in TK-treated mDCTs, suggestive of enhanced
efflux of intracellular chloride. Supportively, blocking
NCC/NKCC-mediated chloride influx unmasked the chloride
efflux mediated by ClC-K, resulting in a sharp decrease in
intracellular chloride in TK-treated mDCTs compared with
control cells. Considering our findings in light of previous
reports, we speculate that NKCC also is up-regulated by CD8þ

T cells. Although we only detected an insignificant increasing
trend of NKCC abundance in mDCTs, this could be because
NKCC is mainly expressed in an earlier nephron segment than
the DCT, or T cells stimulate NKCC activity rather than
expression. Cells from the thick ascending limb need to be
assessed to further address this question.
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Using siRNAs against both ClC-K1 and 2 gave a better
knockdown effect compared with either single siRNA, suggesting
that either both isoforms are expressed in mDCTs or a
compensatory effect exists between the two isoforms. Knockdown
of both ClC-Ks largely restored the intracellular chloride
concentration in TK-treated mDCTs and also abolished
TK-induced NCC up-regulation and activation. These results
suggest ClC-K plays a major role in TK-mediated chloride efflux
and NCC up-regulation. One might speculate that sodium
influx and chloride efflux must somehow be accompanied by
potassium efflux to preserve charge neutrality, prevent
cell depolarization and provide the driving force for chloride
exit via ClC-K. We detected an up-regulation of basolateral
potassium channel Kir4.1 on plasma membranes of TK-treated
mDCTs, knockdown of which prevented the effects of
TK-induced stimulation on ClC-K and NCC in DCTs. These
results are consistent with the findings by Zhang et al.30

using Kir4.1-knockout mice, however, in a reverse direction.
Our observations further strengthen the critical role suggested
by these authors for Kir4.1 in regulating chloride and sodium
handling in DCTs. Our observation is novel in its own
right, and it is relevant for far more individuals with
salt-sensitive hypertension than its earlier implication in salt-
wasting syndrome.

In addition, extracellular potassium has been reported as
an important factor that modulates sodium balance via regulating
NCC in DCTs (refs 27,57,58). Hypokalemia is often seen in
salt-sensitive hypertensive animals with excess mineralocorticoid
or on a high-salt/low potassium diet27,59,60. On the other hand,
hypokalemia also is a common side-effect of treatment with the
NCC-inhibitor thiazide, which may be an indirect effect of
delivering sodium and volume to later segments in the nephron61.
In our study with mice receiving adoptive transfer of CD8þ

T cells, we did not observe hypokalemia ether in vitro or in vivo.
However, the pathogenesis of salt-sensitive hypertension
is heterogeneous. We cannot exclude the possibility that in
the progression of salt-sensitive hypertension, both CD8þ T cell-
stimulation and hypokalemia may have a combined effect
contributing to the up-regulation of NCC and further elevated
blood pressure, because of high-salt intake per se having the effect
of lowering plasma potassium62.

Collectively, our data suggest a novel role for CD8þ T cells
in maintaining sodium retention in the kidney during the
development of salt-sensitive hypertension, which may contribute
to the kidney defect responsible for impairing blood pressure-
induced sodium excretion. Moreover, we have determined
the mechanism for this effect: direct contact by CD8þ T cells
increases ROS, activates Src, stimulates Kir4.1 and upregulates
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ClC-K in the mDCT cell membrane, thereby increasing chloride
efflux. This event leads to compensatory chloride influx
via SPAK-mediated NCC-activation at the cost of increasing

sodium influx and sodium retention (Fig. 10). Hence, we suggest
that blocking this pathway may represent a potential
new therapeutic strategy for the treatment of salt-sensitive
hypertension. Moreover, our study suggests that adaptive
immunity is possibly involved in the kidney defect which impairs
renal electrolyte haemostasis, thereby providing novel insight
into the pathogenesis of salt-sensitive hypertension.

Methods
Animals. The animal use protocol was approved by the Institutional Animal
Care and Use Committee at University of Arkansas for Medical Sciences. In the
DOCA-salt mouse model, 10 week old male C57B6 mice were uninephrectomized
and randomly assigned to sham group or DOCA-salt group that received a
DOCA pellet (50 mg, M-121, IRA) subcutaneously together with 1% NaCl in
the drinking water for 3 weeks. In the Dahl rat model, 8 week old male Dahl
salt-sensitive/resistant rats were fed a normal diet (0.3% NaCl) or high-salt diet
(8% NaCl) for 4 weeks. Blood pressure in both animal models was measured
directly by blood pressure catheter. In the CD8þ T cell adoptive transfer mouse
model, uninephrectomized 12 weeks old male C57B6 mice were randomly assigned
to sham group with saline injection or adoptive transfer of CD8þ T cell group
that was injected with freshly isolated CD8þ T cells (from spleens of DOCA-salt
mice) via one shot tail vein injection at the dose of 3� 107 cells/100 ml saline
per mouse. High-salt diet (8% NaCl) or HCTZ drinking water (0.3 g l� 1) were
given to sham and mice receiving CD8þ T cells as indicated in Fig. 3c (also in
Supplementary Fig. 5). Blood pressure in this mouse model was measured directly
by radio-biotelemetry (DSI).

Splenic T cell isolation. Mouse spleens were dissociated using a GentleMACs
tissue dissociator. Dynabeads T cell isolation kits (pan, CD4þ , CD8þ ) were
used to isolate T cells from splenocytes. All procedures followed manufacturer’s
protocol. Subtypes of collected T cells were confirmed using flow cytometry.
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Cell tracker labelling CD8þ T cells. Freshly isolated mouse CD8þ T cells were
incubated with CellTracker Red CMTPX dye (Molecular Probe) at 25 mM for
40 min in 37 �C incubator with gentle rotating. After labelling, cells were washed
with PBS and injected into mice immediately.

Cell culture treatment & harvest. All cells were maintained at 37 �C and 5% CO2.
The mDCT15 cell line (they will be referred to in the text simply as mDCTs), a
recently established active and stable model of mouse distal convoluted tubule44,
was cultured in DMEM/F12 media with 5% FBS. Passages 11–25 were used in
this study. The TK cells were purchased from ATCC (CRL-2396) and maintained
in RPMI1640 medium with 10% FBS. Passages 4–16 were used in this study.
No contaminations were found in culture cells throughout all experiments. For
co-culture study, mouse splenic T cells (pan, CD4þ , CD8þ ) were directly added to
mDCTs at a concentration of 3� 106/ml; TKs were administrated to mDCTs at
2� 106 ml� 1 directly or indirectly (using transwell inserts with 0.4 or 8 mm pore
size). After overnight co-culture, cells were washed with PBS (most suspension
T cells can be removed at this step). Then, mDCTs from all groups were scraped
in cell isolation buffer (EDTA 2 mMþ 0.25%BSA in PBS) and were subjected to
specific magnetic dynabeads to deplete remaining T cells contaminating the
mDCTs. Pure mDCTs were confirmed by flow cytometry with no CD3 staining
and thereafter used for function study, extraction of total protein in RIPA buffer;
isolation of membrane protein using Mem-PER Membrane Protein Extraction
Kit (Pierce) following manufacturer’s protocol or extraction of mRNAs using
RNeasy plus kit (QIAGEN).

Potassium measurement. Potassium concentration in mouse plasma and
cell culture media was measured using i-STAT blood analyser with EC8þ
cartridges following the manufacturer’s protocol.

Super-resolution 3D structured illumination microscopy. Raw images
were acquired on a Zeiss Axio Observer Z1 SR using ELYRA PS.1 structured
illumination microscopy with a � 100/1.46 Plan Apochromatic objective and a
PCO scientific CMOS camera. Four solid-state lasers (405, 488, 561 and 647 nm)
were used to take 40–60 Z-slices at 116 nm interval and five grid rotations.
Images were acquired and processed with Zeiss Zen Black 2.1 software. Channel
alignment for chromatic aberration was performed using multispectral beads.

Flow cytometry. For surface staining, cells were stained with antibodies
(CD3, CD4, CD8, MHC-I, MHC-II from BD Biosciences or Biolegend, dilution
1:200) for 30–45 min in cell isolation buffer in dark tubes before analysis. For
NCC function study using CoroNa Green (cell permeable, Molecular Probes),
mDCTs were treated with ouabain, bumetanide and amiloride for 30 min at
room temperature (RT) followed by loading CoroNa Green at a concentration
of 10 mM for 1 h at RT. Cells were washed and re-suspended in PBS containing
the same blockers mentioned above for 45 min and analysed in a BD Accuri
C6 flow cytometer immediately. Flow cytometry data were analysed using
FlowJo software.

Measurement of NCC-mediated sodium uptake using CoroNa Green. The
same procedures were used as in the CoroNa Green flow cytometry study,
except that ±HCTZ (200 mM) was added together with the other sodium
transporter blockers and ±40 mM additional NaCl was added to PBS after
CoroNa Green loading. After incubation, cells were lysed by sonication in
buffer containing 50 mM MOPS, 100 mM KCl and 1% NP40. Fluorescence
units were measured using a Glomax multi meter and normalized by the
protein concentration of each sample.

Intracellular chloride measurement using MQAE. Cell permeable MQAE
was purchased from Molecular Probes. Harvested mDCTs were incubated in
Cl� free PBS (Cl� was replaced by NO3

� ) with or without HCTZ/bumetanide for
30 min followed by loading MQAE at a 5 mM concentration for 1 h. Cells
were washed and re-suspended in Cl� free PBS (F0) or PBS (Ft) (with or without
HCTZ/bumetanide) for 45 min, then lysed by sonication in Cl� free PBSþ 1%
NP-40. Fluorescence units were measured immediately using a Glomax multi
meter and normalized by protein concentration of each sample. Ratio of
intracellular chloride concentration was calculated by equation (F0/Ft)� 1 as
in the manufacturer’s protocol.

Individual cell staining. mDCTs were scraped into culture media and mixed
with TKs. The cell mixture was incubated with rotating in 37 �C incubator for
4 h then seeded in to poly-D-lysine pre-coated imaging dish, followed by washing,
fixing and staining with fluorescent labelled antibodies. Images were taken using
super-resolution 3D-SIM microscopy.

Intracellular ROS detection using CM-DCF. mDCT cells were pre-loaded
with CM-DCF (Molecular Probe) at 10 mM in 37 �C incubator for 35 min. After

washing, cells were treated with TKs for 5 h and followed by washing with
PBS. During the time of imaging, cells were maintained in Live Cell Imaging
Solution (Molecular Probes).

Transfection of siRNAs. All siRNAs were purchased from ABI. Transfection
of siRNAs was performed using lipofectamine RNAimax following the manu-
facturer’s protocol.

Western blot. 4–12%, 4–20% or 8% Bis–tris gel (all from Genscript) were
selected according to the molecular weight of the target protein. After electro-
phoresis, gels were transferred to PVDF membranes on ice. All membranes
were blocked in 5% non-fatty milk. Information for primary and secondary
antibodies is provided in Supplementary Table 1. Western blot of NCC detected
two bands in the range of 100–140 KDa, indicating mature (glycosylated) and
immature (un-glycosylated) forms of NCC (refs 63,64). Western blot images
were obtained using a ChemiDoc XRSþ system and analysed using ImageLab
software (BIORAD). Full images of all blots are provided in supplementary Fig. 19.
Fold changes are relative to control/loading (defined as 1.0).

Immunostaining. Following antigen retrieval using antigen unmasking solution
(Vector), sections were washed and blocked in 5% non-fatty milk containing
4% goat serum at RT for 1 h. Antibodies are described in Supplementary Table 1.
After staining, sections were sealed with ProLong Gold mounting media
(Molecular Probes). Fluorescent immunostaining images were captured using an
Axio Imager microscope (Zeiss).

Realtime PCR. RNA reverse-transcription was performed using Oligo dT and
Superscript III system (Invitrogen) following the manufacturer’s protocol (except
incubation time was extended to 90 min). All Taqman realtime PCR primers were
purchased from ABI. Realtime PCR tests were performed using an Mx3005P
system (Agilent Tech) and data were analysed using the DDCt method.

Membrane protein immunoprecipitation (IP). In this study, IP was used to
detect binding between ClC-K and barttin on the mDCT cell membrane.
Membrane protein from each group was adjusted to 750mg in 500 ml solution.
30 and 5 mg protein from each group was utilized for western blot for ClC-K and
Na-K-ATPase, respectively; the remaining protein was incubated with mouse
monoclonal barttin antibody (Santa Cruz, 1:50) or rabbit polyclonal ClC-K anti-
body (Alomone, 1:50). After incubation, barttin-ClC-K complex was pulled
down using IgG magnetic beads and detected by immunoblot.

Statistical analysis. Data are presented as means±s.e. Unpaired Student’s t-test
was used for comparisons between two groups. For multiple comparisons, statis-
tical analysis was carried out by ANOVA followed by Tukey’s or Dunnett’s post
hoc tests. P valueso0.05 were considered to be significant. No sample size estimate
was performed, but sample size was selected based on previous experiments.
All assays were repeatable in independent experiments and displayed figures are
representative.

Data availability. All relevant data are available from the authors on request.
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