
Modelling in infectious diseases: between haphazard and hazard

A. Neuberger1,2, M. Paul1,3, A. Nizar2 and D. Raoult4

1) Unit of Infectious Diseases, Rambam Health Care Campus, Haifa, 2) Department of Medicine B, Rambam Health Care Campus, Haifa, 3) Sackler Faculty

of Medicine, Tel-Aviv University, Ramat-Aviv, Israel and 4) Unit�e de Recherche en Maladies Infectieuses et Tropicales �Emergentes, CNRS-IRD UMR 6236, Facult�e

de M�edecine, Universit�e de la M�editerran�ee, Marseille, France

Abstract

Modelling of infectious diseases is difficult, if not impossible. No epidemic has ever been truly predicted, rather than being merely noticed

when it was already ongoing. Modelling the future course of an epidemic is similarly tenuous, as exemplified by ominous predictions

during the last influenza pandemic leading to exaggerated national responses. The continuous evolution of microorganisms, the

introduction of new pathogens into the human population and the interactions of a specific pathogen with the environment, vectors,

intermediate hosts, reservoir animals and other microorganisms are far too complex to be predictable. Our environment is changing at

an unprecedented rate, and human-related factors, which are essential components of any epidemic prediction model, are difficult to

foresee in our increasingly dynamic societies. Any epidemiological model is, by definition, an abstraction of the real world, and

fundamental assumptions and simplifications are therefore required. Indicator-based surveillance methods and, more recently, Internet

biosurveillance systems can detect and monitor outbreaks of infections more rapidly and accurately than ever before. As the interactions

between microorganisms, humans and the environment are too numerous and unexpected to be accurately represented in a

mathematical model, we argue that prediction and model-based management of epidemics in their early phase are quite unlikely to

become the norm.
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Introduction

Prophecy is a good line of business, but it is full of risks.

Mark Twain in Following the Equator

Epidemics have played a role in human history since ancient

times, and will continue to do so in the foreseeable future,

despite overoptimistic assurances to the contrary. When the

Black Death pandemic was ravaging Europe during the Middle

Ages, the only sound advice given to the citizens was “flee

early, flee far, return late”. As reflected in the Introduction of

Boccaccio’s Decameron, the citizens of Florence “decided that

the only remedy for the pestilence was to avoid it … [that]

none ought to stay in a place thus doomed to destruction”.

Modern medicine does not have to resort to such extreme

measures of public health, and nor does it ascribe the

occurrence of epidemics to a certain alignment of the stars,

the will of God, harmful vapours, or the poisoning of wells by

non-believers. Surveillance systems make the early detection

of disease outbreaks possible through data supplied by sentinel

clinics, or by the use of syndromic surveillance (e.g. Web

queries, other forms of Internet biosurveillance, over-the-

counter drug sales, or school absence records) [1]. We would
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argue, however, that timely prediction of epidemics before

they occur, and accurate forecasts of their course in their early

phase, remain, by and large, unreliable.

Pathogen–pathogen Interactions and other

Unknowns

The Division of Tuberculosis Control shares the belief of the

symposium participants that tuberculosis will virtually disap-

pear in the United States in the next 50 years. The control and

eradication of tuberculosis, New England Journal of Medicine,

1980.

Since the early 1950s, tuberculosis (TB) rates in high--

income countries have decreased rapidly. In 1980, treatment

was available and effective, and it seemed reasonable to include

TB in the list of “disappearing and declining diseases” in Britain

[2]. The authors were naturally unaware of the fact that the

AIDS pandemic was already making hundreds of thousands of

people worldwide susceptible to a disease previously consid-

ered to be a remnant of the 19th century [3]. The surge in the

incidence of TB and the appearance of multidrug-resistant and

extensively drug-resistant TB in eastern Europe in recent

decades is causally linked to a wide variety of actors: the AIDS

pandemic, the collapse of the Soviet Union, and the increase in

intravenous drug abuse there. Predicting the occurrence of

these epidemiological and political phenomena was not

possible in 1980. Beijing genotype strains of Mycobacterium

tuberculosis now account for approximately 50% of TB cases in

China, and are spreading worldwide [4]. This genotype has

been observed to spread more successfully in the population

than other M. tuberculosis strains. The reasons for this are

incompletely understood [4]. Will this genotype change the

epidemiology of TB? Will vaccination and treatment trigger the

appearance of other successful genotypes? Nearly 20 years

after the first description of the M. tuberculosis Beijing geno-

type, and more than 30 years after the recurrence of the TB

pandemic, we still lack elementary biological and epidemiolog-

ical data to help with TB control.

The association between influenza virus infection and

subsequent susceptibility to Streptococcus pneumoniae infec-

tions was already well known nearly 100 years ago during the

Spanish influenza pandemic. However, the virus itself has the

capacity to mutate, and human society changes continuously,

so that predictions cannot be based on such historical

associations. If predictions were to rely on past observations,

one would expect adults aged ≥65 years, who are known to be

susceptible to both severe influenza and pneumococcal

infections, to have extremely high mortality rates during

influenza pandemics. Hygienic conditions today, however, are

different from those of 1919, pneumococcal sepsis being the

exception among patients with influenza. During the 2009 A/

H1N1 influenza virus pandemic, patients aged ≥65 years were

found to have death rates 81% lower than expected in a

regular influenza season [5]. In fact, obesity, not ageing, was

found to be a significant risk factor for severe disease [5,6].

Not only was the influenza virus itself different, but it also

interacted with other viruses in important ways. In France, for

instance, a rhinovirus epidemic was found to delay the onset of

the influenza pandemic, which in itself delayed the onset of the

respiratory syncytial virus bronchiolitis season [6–8]. To

complicate things further, increasing evidence suggests that

some bacterial infections can also increase the susceptibility of

patients to viral infections [9].

Pathogen–environment Interactions

Not only the pathogens themselves, but also the complex

ecosystems, which include vectors and/or reservoir animals,

are crucial to understanding the dynamics of many infectious

diseases with an epidemic potential. The interaction between

the Anopheles mosquito vector, the Plasmodium falciparum

parasite and humans is a good example of such complexity. In

recent years, long-lasting insecticide-treated bed-nets have

been distributed in many sub-Saharan African countries,

following evidence from randomized controlled trials that

these reduce P. falciparum malaria prevalence, morbidity, and

mortality [10]. Although it was reasonable to assume that the

continuation of such efforts would lead to a gradual and

predictable decrease in malaria morbidity, the results of a

recent longitudinal study performed in Senegal highlight the

problematic nature of such simplistic forecasts. In this study,

the average incidence density of malaria attacks, which was

5.45 per 100 person-months before the distribution of treated

bed-nets, decreased to 0.41 immediately afterwards, only to

increase again to 4.57 per 100 person-months 27–20 months

after the initial intervention, despite continued use of the

bed-nets. The prevalence of knockdown resistance mutation,

which confers reduced sensitivity of the Anopheles vector to

pyrethroid insecticides, increased from 8% in 2007 to 48% in

2010. The mosquitoes were shown to become somewhat

more aggressive during the early evening, thereby avoiding the

need to ‘confront’ bed-nets [11]. Unpredictable events such as

these undermine the various attempts to model and predict

trends in malaria control and eradication [12,13].

There has been no cholera epidemic in the Caribbean island

of Hispaniola for more than a century, although cholera has

been present in Latin America since 1991. The Vibrio cholerae

strain that spread to all Haitian provinces after the 2010

ª2013 The Authors

Clinical Microbiology and Infection ª2013 European Society of Clinical Microbiology and Infectious Diseases, CMI, 19, 993–998

994 Clinical Microbiology and Infection, Volume 19 Number 11, November 2013 CMI



earthquake originated in Asia, and not from the neighbouring

countries in the Americas [14]. It has been suggested that the

bacteria were introduced into Haiti by United Nations soldiers

sent to Haiti after the earthquake. If this was indeed the case,

prediction of a cholera epidemic in Haiti in 2010 would also

have required, in addition to all other factors, an accurate

earthquake forecast.

The Ever-changing Variables

Contrariwise, continued Tweedledee, if it was so, it might be;

and if it were so, it would be; but as it isn’t, it ain’t. That’s logic.

Lewis Carroll in Through the Looking Glass

The list of factors that need to be included in an ‘ideal’ model

of epidemic prediction seems never-ending. We choose to

include certain variables in a model, but deliberately or

inadvertently ignore others.

Human-related variables include population density, nutri-

tional status, the number of susceptible hosts within the

population, infection control measures taken by individuals

within the population, healthcare infrastructure and available

resources, domestic and international travel, the use and

impact of quarantine, the use of (or refusal to use) antimicro-

bials and vaccines, and the public reaction to the epidemic (e.g.

population migration and closure of schools). Human African

trypanosomiasis (HAT), for example, was considered to be a

candidate for eradication in most African countries in the

1960s. The disease re-emerged later on, despite the availability

of effective, if somewhat toxic, treatment options. The reasons

for the increase in HAT incidence included factors such as

political instability in some African countries, such as the

Democratic Republic of Congo and the Central African

Republic, failing healthcare systems, neglect of existing HAT

diagnosis and vector control programmes, lack of investment

in new drug development by pharmaceutical companies, and

the consideration of withdrawal of existing drugs on economic

grounds [15]. It is doubtful whether any of the above factors

could be reliably represented in a mathematical model.

Pathogen-related variables include, but are not limited to,

the duration of an incubation period, the period of pathogen

infectivity, the rate of disease transmission, the average age at

which a disease is typically contracted in a given population,

virulence, the susceptibility of the organism to antimicrobials,

and the availability of a vaccine. Most emerging infectious

diseases and nearly all pandemics were caused by ‘classic’

zoonotic pathogens (e.g. the plague), or by pathogens that

were initially confined to animals or had limited potential for

causing human infections, but then mutated, crossed the

species barrier, and disseminated globally (e.g. SARS corona-

virus, and human immunodeficiency virus) [16]. A list contain-

ing animal pathogens that could potentially trigger a new

pandemic can be compiled; surveillance aimed at detecting an

outbreak of a disease caused by one of these pathogens should

hence be continuous. However, although making predictions

even about an organism as extensively researched as the

influenza virus seems to be difficult, accurately predicting the

course of a pandemic caused by a pathogen newly introduced

into a human population is, in all likelihood, nearly impossible.

Finally, climate and environmental changes and their effects

on humans, intermediate hosts, reservoir animals and vectors

are all instrumental in the understanding of many infectious

diseases [17]. They are, however, still poorly understood,

immensely complex, and difficult to predict with any accuracy

—as are, for instance, the changing seasonality of influenza

epidemics, the accelerated transmission of certain West Nile

virus genotypes with increasing temperatures, and the pre-

dicted extension northwards of freshwater snail-mediated

schistosomiasis in China [6,18,19]. Until several years ago,

malaria was considered to be in the pre-elimination phase in

Malaysia. The zoonotic Plasmodium knowlesi, a parasite that

mainly infects monkeys, has emerged as the dominant malaria

species in Malaysian Borneo, and is increasingly being reported

in other countries. Despite the fact that deforestation,

increased human activity at the forest fringes, rapid growth

in the population of Malaysian Borneo and closer contact

between humans and macaques were quite predictable, the

emergence of P. knowlesi as major human malaria parasite was

noted only in retrospect [20].

All of these factors are not only constantly changing, but are

also interacting with each other in an infinite number of ways.

Thus, it is no wonder that no new epidemic has ever been truly

predicted, rather than being merely noticed when it was

already ongoing.

Models

As far as the laws of mathematics refer to reality, they are not

certain; andas far as they arecertain, theydonot refer toreality.

Albert Einstein

The construction of a model aimed at predicting the course of

an epidemic necessitates assumptions and simplifications [21].

For example, it is common to assume a rectangular age

distribution, with most individuals in a population reaching old

age, a typical observation in high-income countries with low
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infant mortality rates. The poor and the displaced, however,

are the populations most affected by epidemics such as AIDS,

TB, epidemic typhus, or cholera, and the age distribution of

these populations is vastly different. Another simplification

often used in the construction of deterministic models rests

on the assumption of homogeneous mixing of the population,

i.e. on the premise that all individuals in a certain population

associate randomly with each other. A recent mumps epidemic

in New York and New Jersey affected 3502 patients, 89% of

whom were fully immunized. The assumption of homogeneous

mixing of the population seems absurd, as 97% of cases

occurred in the orthodox Jewish population group; 78% of

them were male, and adolescents attending religious schools

were disproportionately affected [22]. More complex stochas-

tic models, which take variability and chance into account,

contain less epidemiologically improbable assumptions, but are

best applied to smaller populations, and require the inclusion

of more variables, greatly complicating their use.

Many policy-makers, journalists and doctors lack an

in-depth understanding of a model’s structure or limitations,

and may choose to accept or reject a certain prediction on the

basis of non-rational causality. The 2003 SARS epidemic

provides a good example. Early models suggested that isolation

of contacts before symptom onset would be beneficial in

controlling the spread of the disease [23]. Contact tracing and

quarantine of asymptomatic people is, however, a daunting

task for any public health system, and only approximately 5% of

contacts who eventually became ill were in fact isolated before

becoming symptomatic [24]. An analysis of the real-life impact

of contact tracing and quarantine during the SARS crisis will, in

all likelihood, show that timely isolation of symptomatic

patients would have achieved nearly identical results, with

much greater efficiency. Quarantine of asymptomatic contacts

contributed little to SARS control, but probably led to excess

costs, increased psychological stress among those quarantined,

and a lingering misunderstanding of how the epidemic was

actually contained [24].

During the SARS epidemic, several estimates of the basic

reproduction number (i.e. R0, which is defined as the average

number of people infected by one patient during an epidemic)

were published, and were generally in the range of 2–5 [24,25].

If an R0 of 2.6–3.2 had been used, one would have expected

30 000–10 000 000 SARS cases in China alone. Eventually,

only 782 cases were reported, suggesting a much lower R0

[26]. At the beginning of the SARS epidemic, during the course

of a ‘super-spreading event’, one person infected as many as

300 people [25]. Eventually, the reproduction number

dropped dramatically. Such a wide variation in R0 values

demonstrates how prone models are to errors when they use

limited data available during the initial phases of an outbreak,

based mostly on case reports. Why did SARS disappear? Was

it a huge success of international health regulations or a poorly

understood phenomenon? Retrospectively, we lack the under-

standing to model this epidemic’s course.

Doomsday predictions are more frequently discussed in the

popular media, and are probably also more likely to be

accepted for publication in scientific journals. The inadvertent

promotion of fear is likely to attract public funds, and will, in

retrospect, be applauded for any correct predictions, but

forgotten when found to be incorrect. In 1966, the economist

Paul A. Samuelson famously noted that “Wall Street indexes

predicted nine out of the last five recessions”. This observa-

tion is also relevant to yearly threats of a new pandemic, only a

minority of which actually materialize. In 2009, the French

emergency plan during the 2009 influenza pandemic was based

on an estimation of 91 000–210 000 deaths, and led to the

opening of 700 new hospital beds exclusively for influenza

patients in Marseille. In reality, <300 patients were hospital-

ized, and no more than 50 beds were used at the same time,

even at the pandemic’s peak [6].

When epidemiological predictions are made, the data used

are based on past observations, which may be irrelevant or

inaccurate. In 1990, the Journal of the American Medical

Association published an article describing the projected size

of the AIDS epidemic based on Farr’s law, which states that the

rise and fall of an epidemic curve is roughly symmetrical and

can be approximated by a normal bell-shaped curve [27].

William Farr, a British doctor and epidemiologist, based this

model on his observations of smallpox and cholera epidemics

in 19th-century London. The use of the same assumptions for

AIDS, a disease that is different in nearly every epidemiological

aspect, has led the authors to grossly underestimate AIDS

incidence in the USA [28]. Several epidemiologists have

noticed the flawed use of Farr’s law, and a comment entitled

‘AIDS Projections: How Farr Out?’ was published in the same

journal soon after [29]. The flawed prediction was, however,

repeatedly cited by other authors.

Models’ predictions usually have wide CIs, too wide to

direct public health interventions. The estimated reproduction

number (defined as the average number of secondary cases

generated by a single infectious person) of the smallpox virus, a

potential bioterrorist weapon, was used in constructing a

model aimed at calculating the cumulative total number of

smallpox cases after deliberate exposure [30]. The authors

assumed that the transmission rate would be either 1.5 or 3.0

per person, that there would be an unlimited ‘supply’ of

smallpox-susceptible persons, that exactly ten persons would

initially be infected, and that no preventive intervention would

be implemented. When transmission rates of either 1.5 or 3.0

were used, the number of individuals presumed to
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become infected within 180 days fluctuated between 2190 and

2.2 million. After 365 days, the predicted number of infections

was 224 000 vs. a theoretical 774 billion. These gargantuan

differences illustrate the inability of models to provide accurate

estimates a priori, even if several simplifying assumptions are

made. Active surveillance of smallpox cases and the use of

real-time data for model calibration will provide more reliable

estimates. In the meantime, models describing bioterrorist

smallpox attacks will yield doomsday scenarios for pessimists,

and ‘merely’ unpleasant public health nuisance scenarios for

optimists.

In conclusion, we argue that the interactions between

microorganisms and humans are far too complex to be

predictable. Most models used in epidemiological research still

concentrate on one, known, pathogen, which causes a single

disease in a well-defined population. It seems, however, that

the reality at the microorganism level is much more complex,

as organisms not only mutate, but continuously interact with

the environment and with a large number of other organisms

[31,32]. Indicator-based surveillance methods and, more

recently, Internet biosurveillance systems can detect an

outbreak of an infection more rapidly than ever before.

Mathematical models play an important role in helping

healthcare systems to respond to ongoing epidemics or plan

the logistics of various theoretical scenarios, and were used in

Haiti during the cholera epidemic, with real-time surveillance

data [33]. Accurate predictions of epidemics before they occur

are, however, quite unlikely to become the norm. Forecasting

the course of epidemics is, to put it in Mark Twain’s words,

indeed “full of risks”.
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