
An integrated metagenomics pipeline for strain
profiling reveals novel patterns of bacterial
transmission and biogeography

Stephen Nayfach,1,2 Beltran Rodriguez-Mueller,2 Nandita Garud,2

and Katherine S. Pollard1,2,3

1Integrative Program in Quantitative Biology, University of California, San Francisco, San Francisco, California 94158, USA;
2Gladstone Institutes, San Francisco, California 94158, USA; 3Institute for Human Genetics, Institute for Computational
Health Sciences, and Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco,
California 94158, USA

We present the Metagenomic Intra-species Diversity Analysis System (MIDAS), which is an integrated computational pipe-

line for quantifying bacterial species abundance and strain-level genomic variation, including gene content and single-nu-

cleotide polymorphisms (SNPs), from shotgun metagenomes. Our method leverages a database of more than 30,000

bacterial reference genomes that we clustered into species groups. These cover the majority of abundant species in the hu-

man microbiome but only a small proportion of microbes in other environments, including soil and seawater. We applied

MIDAS to stool metagenomes from 98 Swedish mothers and their infants over one year and used rare SNPs to track strains

between hosts. Using this approach, we found that although species compositions of mothers and infants converged over

time, strain-level similarity diverged. Specifically, early colonizing bacteria were often transmitted from an infant’s mother,

while late colonizing bacteria were often transmitted from other sources in the environment and were enriched for spore-

formation genes. We also applied MIDAS to 198 globally distributed marine metagenomes and used gene content to show

that many prevalent bacterial species have population structure that correlates with geographic location. Strain-level genetic

variants present in metagenomes clearly reveal extensive structure and dynamics that are obscured when data are analyzed

at a coarser taxonomic resolution.

[Supplemental material is available for this article.]

Microbial species play important roles in the different environ-
ments that they inhabit. However, different strains of the same
species can differ significantly in their gene content (Greenblum
et al. 2015; Zhu et al. 2015) and single-nucleotide polymorphisms
(SNPs) (Schloissnig et al. 2013; Kashtan et al. 2014; Lieberman
et al. 2014). These strain-level differences are important for under-
standing microbial evolution, adaptation, pathogenicity, and
transmission. For example, strain-level differences have shed light
on ecological differentiation of closely related bacteria (Shapiro
et al. 2012), uncovered the presence of ancient subpopulations
ofmarine bacteria (Kashtan et al. 2014), and highlighted extensive
intra-species recombination (Snitkin et al. 2011; Rosen et al. 2015).
Strain-level variation is also important for understandingmicrobi-
al pathogenicity. Differences at the nucleotide level can lead to
within-host adaptation of pathogens (Lieberman et al. 2014),
and differences in gene content can confer drug resistance, convert
a commensal bacterium into a pathogen (Snitkin et al. 2011), or
lead to outbreaks of highly virulent strains (Rasko et al. 2011).

Metagenomic shotgun sequencing has the potential to shed
light onto strain-level heterogeneity among bacterial genomes
within and between microbial communities, yielding a genomic
resolution not achievable by sequencing the 16S ribosomal RNA
gene alone (Sunagawa et al. 2013) and circumventing the need

for culture-based approaches. However, limitations of existing
computational methods and reference databases have prevented
most researchers fromobtaining this level of resolution frommeta-
genomic data. Assembly-free methods that map reads to reference
genomes to estimate the relative abundance of known strains
(Francis et al. 2013; Tu et al. 2014) are effective for well-character-
ized pathogens like E. coli that have thousands of sequenced
genomes. However, such methods cannot detect strain-level vari-
ation for the vast majority of known species that currently have
only a single sequenced representative. Other assembly-free ap-
proaches have been developed that use reads mapped to one
or more reference genomes to identify SNPs (Schloissnig et al.
2013; Lieberman et al. 2014) and gene copy number variants
(Greenblum et al. 2015; Zhu et al. 2015; Scholz et al. 2016) of mi-
crobial populations. These approaches have not been integrated
together and/or made available as software. Recently, several soft-
ware tools have been developed (Luo et al. 2015; Sahl et al. 2015)
that use SNP patterns to phylogenetically type strains, but these
methods do not capture the gene content of these organisms
and may not be able to resolve strains in communities with high
population heterogeneity. Additionally, existing methods do not
provide comprehensive up-to-date genomic databases of bacterial
species, thus limiting their utility across different environments.
Assembly-based methods (Nielsen et al. 2014; Cleary et al. 2015)
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that seek to reconstruct microbial genomes without using refer-
ence genomes are a powerful alternative to assembly-freemethods.
However, these often require many samples, struggle to decon-
volve closely related strains, or require manual inspection.

To address these issues, we developed theMetagenomic Intra-
species Diversity Analysis System (MIDAS), which is a computa-
tional pipeline that quantifies bacterial species abundance and in-
tra-species genomic variation from shotgun metagenomes. Our
method integrates many features and leverages a comprehensive
database of more than 30,000 reference genomes (for a compari-
son to existingmethods, see Supplemental Table S1). Given a shot-
gun metagenome, MIDAS rapidly and automatically quantifies
gene content and identifies SNPs in bacterial species, which is ac-
curate for populations with a minimum of 1 and 10× sequencing
coverage, respectively. These statistics enable quantitative analysis
of bacterial populations within and between metagenomic
samples.

To demonstrate the utility of this approach, we used MIDAS
to conduct novel strain-level analyses on two data sets. First, we ap-
plied MIDAS to stool metagenomes from 98 Swedish mothers and
their infants and used rare SNPs to track vertical transmission and
temporal stability of strains in infants over the first year of life.
Second, we used MIDAS to quantify gene content of prevalent
bacterial species in 198 globally distributed marine metagenomes
and identified significant intra-species population structure associ-
ated with geographic location and environmental variables. These

analyses reveal striking microbial dynamics and structure that are
missed when metagenomes are analyzed at a coarser taxonomic
resolution.

Results

Identification of bacterial species with a consistent

definition and efficient algorithm

To quantify strain-level genomic variation broadly and accurately,
we built a comprehensive database of 31,007high-quality bacterial
reference genomes obtained from the Pathosystems Resource
Integration Center (PATRIC) (Wattam et al. 2014). We accurately
clustered these genomes into species groups to avoid inconsistent,
erroneous, and incomplete annotations that afflict some micro-
bial taxonomies (Mende et al. 2013) and to expand and improve
upon previous efforts to systematically delineate bacterial species
(Mende et al. 2013; Schloissnig et al. 2013; Varghese et al. 2015).
Toward this goal, we hierarchically clustered reference genomes
using the average pairwise percent identity across a panel of 30
universal genes (Fig. 1A) that we selected from a panel of 112 can-
didates (Supplemental Fig. S1; Supplemental Table S2; Wu et al.
2013). We found that the best gene families for identifying bacte-
rial species were less conserved and more widely distributed across
the tree of life relative to other genes we tested (Supplemental
Fig. S2). For example, many ribosomal gene families were too

Figure 1. Construction of bacterial species database and its coverage of microbial communities across different environments. (A) In total, 31,007 ge-
nomes were hierarchically clustered based on the pairwise identity across a panel of 30 universal gene families. We identified 5952 species groups by ap-
plying a 96.5% nucleotide identity cutoff across universal genes, which is equivalent to 95% identity genome-wide. (B) Concordance of genome-cluster
names and annotated species names. Of the 31,007 genomes assigned to a genome cluster, 5701 (18%) disagreed with the consensus PATRIC taxonomic
label of the genome cluster. Most disagreements are due to genomes lacking annotation at the species level (47%). Other disagreements are because a
genomewas split from a larger cluster with the same name (29%) or assigned to a genome cluster with a different name (24%). (C ) Coverage of the species
database across metagenomes from host-associated, marine, and terrestrial environments. Coverage is defined as the percentage (0%–100%) of genomes
from cellular organisms in a community that have a sequenced representative at the species level in the reference database. The inset shows the distribution
of database coverage across human stool metagenomes from six countries and two host lifestyles.
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conserved to differentiate closely related species (Supplemental
Table S2). We applied a 96.5% nucleotide identity cutoff, which
produced genome clusters that were highly concordant with a
gold standard definition of prokaryotic species based on 95% ge-
nome-wide average nucleotide identity (Supplemental Table S3;
Konstantinidis et al. 2006; Richter and Rossello-Mora 2009). Our
procedure clustered the 31,007 bacterial genomes into 5952
genome clusters, representing distinct bacterial species (Supple-
mental Tables S4, S5). We inferred the phylogenetic relationships
of these species using a concatenated alignment of the 30 marker
genes (Supplemental Fig. S3). Because our algorithm uses a small
set of highly informative marker genes, rather than genome-
wide sequence comparisons, it will be efficient to update these ge-
nome clusters as additional genomes are sequenced.

The genome clusters we identified often differed from the
PATRIC taxonomic labels (Fig. 1B). Our procedure clustered
2666 genomes (8.6% of total) that had not been previously anno-
tated at the species level and reassigned species labels for 3035
genomes (9.8% of total) to either (1) group them with genomes
that were not labeled as the same species in the reference taxono-
my (N = 1380), or (2) split them from genomes with the same label
in the reference taxonomy (N = 1655). Supporting our species
definitions, we found that the bacterial species we identified tend-
ed to have distinct functional repertoires, with only 0.05% of
FIGfam protein families (Meyer et al. 2009) shared between ge-
nomes from different species on average compared to >80% for
pairs of genomes from the same species. In previous work, Mende
et al. (2013) conducted a similar procedure to cluster genomes into
species groups and found that the majority of disagreements with
the NCBI taxonomy were supported by the literature.

Current reference genomes cover the majority of human-

associated bacterial species and highlight novel diversity

in other environments

We evaluated how comprehensively our reference database covers
the abundance of species present in different environments, as this
is a requirement for conducting reference-based strain-level analy-
ses. Previous work has shown large gaps in diversity between se-
quenced reference genomes and environmental microorganisms
(Wu et al. 2009). To explore how well current genome sequences
cover diversity present in metagenomes from various environ-
ments, we developed a novel approach that estimates the propor-
tion of microbial genomes (including archaea and eukaryotes, but
excluding viruses) in a metagenome that contain a sequenced rep-
resentative at the species level in a reference database (Methods).
This proportion, which we call “database coverage,” indicates the
degree to which species in a sample are known versus novel.

We applied this method to stool metagenomes from the
Human Microbiome Project (HMP) and four other studies of the
human gut (Supplemental Table S6). We found that our reference
database of 5952 bacterial species had high coverage of micro-
bial communities from the human body (Fig. 1C). This included
high database coverage of samples from the skin (mean = 83%), na-
sal cavity (mean = 63%), urogenital tract (mean = 62%), mouth
(mean = 55%), and gastrointestinal tract (mean = 49%). The hu-
man gut communities with highest database coverage came from
individuals in the United States, Europe, andChina that live urban
lifestyles, which is consistent with a previous report (Sunagawa
et al. 2013). In contrast, gut microbiomes of individuals from
Tanzania and Peru that live hunter-gatherer and agricultural life-
styles had much higher levels of novel species with no sequenced

representative in our database. This finding extends the previous
discoveries of elevated levels of novel genera (Schnorr et al.
2014) and functions (Rampelli et al. 2015) in the gut microbiome
of African hunter-gatherers. Our analysis points to specific phylo-
genetic gaps in the set of currently sequenced bacterial genomes.
Gut communities with lower database coverage tended to have
higher levels of several genera including Coprococcus, Subdoligranu-
lum, Dorea, and Blautia, whereas communities with higher data-
base coverage tended to have higher levels of the genus
Bacteroides (Supplemental Fig. S4).We conclude that there is a clear
bias of genome sequencing to date toward species associated with
hosts from industrialized countries.

In contrast to the human microbiome, a relatively small pro-
portion of microbes present in other environments were captured
byour reference database (Fig. 1C; Supplemental Table S6). This in-
cluded very low coverage for stool metagenomes from laboratory
mice (mean = 4.3%), which was surprising because mice are often
used as a model system for studying the human microbiome.
Coverage was also strikingly low in marine (means: surface water
= 8.2%, deep chlorophyll maximum layer = 6.9%, subsurface epi-
pelagic mixed layer = 1.0%, mesopelagic zone = 4.0%) and soil
(means: desert = 1.0%, forest = 1.0%, grassland = 1.3%, tundra =
1.1%) environments. These estimates emphasize the massive gap
that remains between the microbial diversity found in nonhuman
environments and that represented by sequenced bacterial refer-
ence genomes. Strain-level analyses can still be performed for envi-
ronments with low database coverage, but only for those species
with sequenced representatives.

An integrated pipeline for quantifying intra-species genomic

variation from shotgun metagenomes

We next developedMIDAS, which is a software tool that processes
shotgun metagenomes to sensitively and automatically quantify
species abundance and strain-level genomic variation for any of
the bacterial species in our database (Methods; Fig. 2A). MIDAS
was designed to be fast, memory efficient, and to scale with the
rapid increase in sequenced reference genomes (Supplemental
Fig. S5). Using a single CPU, MIDAS processes approximately
5000 reads per second and requires ∼3 gigabytes of RAM.

MIDAS first estimates the coverage and relative abundance of
bacterial species by mapping reads to a database of universal sin-
gle-copy gene families (Supplemental Table S7). Species are auto-
matically identified with sufficient coverage for gene content
and SNP analyses directly from the shotgunmetagenome. This en-
ables population-genetic analysis of metagenomes without any
prior knowledge about a community’s composition. Additionally,
this step prevents unnecessary, time-consuming alignments to
genes and genomes from sequenced organisms that are not pre-
sent in a community.

To quantify the gene content of individual species in each
metagenome, MIDAS maps reads to a pan-genome database. This
database contains the set of nonredundant genes across all se-
quenced genomes from each species. It is generated on the fly to
include only the subset of species with high sequencing coverage
at universal single-copy genes in themetagenome being analyzed.
The coverages of genes in the pan-genome database are normal-
ized by the coverage of the universal single-copy gene families,
yielding an estimated copynumber of a gene per cell of a given spe-
cies in each sample. Additionally, copynumbers are thresholded to
predict gene presence–absence per sample.
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To identify SNPs of individual species,MIDASmaps reads to a
genome database. This database contains one representative ge-
nome sequence per species, and it only includes species with
high sequencing coverage at universal single-copy genes in the
metagenome being analyzed. Representative genomes are selected
to maximize their sequence identity to all other genomes within
the species. The core genome of each species is identified directly
from the data using nucleotide positions in the representative ge-
nome that are at high coverage across multiple metagenomic sam-
ples (Supplemental Fig. S6). SNPs are quantified along the entire
core genome, including at sites that are variable between samples,
but fixed within individual samples. Core-genome SNPs are useful
because they occur in all strains of a species and facilitate compar-
ative analyses.

MIDAS was validated using 20 mock metagenomes that we
created by pooling Illumina reads from completed genome se-
quencing projects (Methods; Supplemental Tables S8, S9). These li-
braries are expected to contain sequencing errors and other
experimental artifacts found in real short-read sequencing data
that might prevent accurate estimation of species abundance
and strain-level genomic variation. Using these data, we found
that MIDAS accurately estimated the relative abundance of bacte-
rial species (r2= 0.95), but slightly underestimated sequencing cov-
erage (Fig. 2B). MIDAS accurately predicted the presence or
absence of genes in species present with at least 1–3× sequencing
coverage (Fig. 2C). Prediction accuracy was maximized at 0.96
for strains with greater than 3× coverage when using a threshold
equal to 0.35× the coverage of universal single-copy genes—lower

Figure 2. An integrated pipeline for profiling species abundance and strain-level genomic variation frommetagenomes. (A) TheMIDAS analysis pipeline.
Reads are first aligned to a database of universal-single-copy genes to estimate species coverage and relative abundance per sample. For species with suf-
ficient coverage, reads are next aligned to a pan-genome database of genes to estimate gene coverage, copy number, and presence–absence. Finally, reads
are aligned to a representative genome database to detect SNPs in the core genome. The core genome is defined directly from the data by identifying high-
coverage regions across multiple metagenomic samples. (B–D) To evaluate performance for each component of MIDAS, we analyzed 20 mock metage-
nomes composed of 100-bp Illumina reads from microbial genome-sequencing projects. Each community contained 20 organisms with exponentially
decreasing relative abundance. We tested the ability of MIDAS to estimate species coverage and to predict genes and SNPs present in the strains of the
mock communities compared to the reference gene and genome databases. (B) Species coverage is accurately estimated. Each boxplot indicates the dis-
tribution of estimated genome coverages across 20 mock communities for the top eight most abundant species out of 20 analyzed. (C) Gene presence–
absence is accurately predictedwhen genome coverage is above 1×, and a gene copy number cutoff of 0.35 is used. Accuracy = (Sensitivity + Specificity)/2;
Sensitivity = (number of genes correctly predicted as present)/(number of total genes present); Specificity = (number of genes correctly predicted as ab-
sent)/(number of total genes absent). (D) SNPs are detected with a low false-discovery rate and good sensitivity when genome coverage is above 10×.
Sensitivity = (number of correctly called SNPs)/(number of total SNPs); False Discovery Rate = (number of incorrectly called SNPs)/(number of called SNPs).
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thresholds resulted in lower specificity, and higher thresholds re-
sulted in lower sensitivity. MIDAS also called SNPs at a low false-
discovery rate, but required between 5× and 10× coverage to iden-
tify the majority of SNPs present (Fig. 2D).

Species and strain-resolved analyses shed light on vertical

transmission of human gut microbiota

We hypothesized that the large numbers of SNPs that MIDAS can
identify from individual metagenomes could be leveraged to
detect bacterial strains unique to a host and transmission of strains
between hosts. More specifically, we believed this approach could
be used to shed light on the extent and timing ofmother-to-infant
(i.e., vertical) transmission of gut bacteria. An understanding
of vertical transmission is critical for determining the extent to
which the microbiome—and by extension microbiome-mediated
phenotypes—are inherited. Recent studies have found significant
overlap in species between mothers and their infants over the
first year of life (Backhed et al. 2015; Bokulich et al. 2016), and
many microbial taxa that are heritable (Goodrich et al. 2016).
These studies did not examine whether strains are vertically trans-
mitted, and recent work has shown that species-level analyses
alone can be insufficient to resolve transmission events (Li et al.
2016). Mother-to-infant transmission of specific taxa has been re-
solved using culture-based techniques (Tannock et al. 1990;
Martín et al. 2012; Makino et al. 2013; Milani et al. 2015), but it
is not clear whether these results are generalizable across micro-
biome species. Other studies have examined the development of
the infant gut microbiome (Koenig et al. 2011), including at the
strain level (Luo et al. 2015; Yassour et al. 2016), but did not assess
vertical transmission. Thus, the extent and timescale of vertical
transmission and the stability of transmitted stains are currently
not well established.

To quantify strain transmission frommother to infant, we ap-
plied MIDAS to the Backhed and colleagues stool metagenomes
from 98 mothers and their infants at 4 d, 4 mo, and 12 mo after
birth (Backhed et al. 2015). We found that bacterial species alpha
diversity was lowest in newborns and increased over time, species
beta diversity was highest in newborns and decreased over time,
and samples clustered by host age based on Bray-Curtis dissimilar-
ity between species relative abundance profiles (Fig. 3A;
Supplemental Fig. S7). Compared to infants, mothers had more
diverse microbiomes that tended to harbor more unshared (i.e.,
unique to host) species (77% versus 48%, t-test P < 2.2 × 10−16).
Despite this, we found a large number of shared species between
infants and their mothers, which increased over time as diversity
increased in the infants (Fig. 3B). These species-level trends agree
with the results of the original study that used different methods
to identify species (Backhed et al. 2015). Surprisingly, we found
nearly as many shared species between permuted mother–infant
pairs in which vertical transmission did not occur (Fig. 3C), sug-
gesting that increased similarity of species in a mother and her in-
fant over its first year is unlikely the result of direct transmission.

To detect transmission of gut microbiota from mother to in-
fant with high specificity and sensitivity, we developed a novel ap-
proach that uses SNPs output by MIDAS (Methods). First we
identified species shared between mothers and their infants with
greater than 10× sequencing coverage, which is required for sensi-
tive detection of SNPs (Fig. 2D). Next, we identified rare SNPs with-
in these species that were private to strains found in a mother and
her infant. We refer to these SNPs as “marker alleles” because they
serve as a marker for individual strains. To detect whether a trans-

mission has occurred for a species, we quantified the percent of
marker alleles found in a mother that were shared with her infant.

To validate that marker alleles could be used to track strains
between hosts, we applied our method to stool metagenomes of
healthy adults from the HMP (Methods). As a positive control,
we compared marker alleles of species between metagenomes
from the same individual at the same time point (technical re-
plicates); as a negative control, we compared marker alleles of spe-
cies between metagenomes from different unrelated individuals
(nonreplicates). As expected, we found high allele sharing (mean
= 79.5%) among technical replicates and low allele sharing among
nonreplicates (mean = 1.01%) (Supplemental Fig. S8). The fact
that allele sharing was <100% in the technical replicates and
>0% in the nonreplicates likely results from a combination of fac-
tors, including read sampling variation, small sample sizes, and se-
quencing errors. For example,marker allelesmaybe found in other
individuals when sample sizes are increased. To define a transmis-
sion event, we selected a marker allele sharing cutoff of 5%, which
clearly separated the positive and negative controls (sensitivity =
99.8%; specificity = 96.6%). High sensitivity and specificity was
consistently observed across species we tested (Supplemental
Table S10).

Strikingly, we found that marker alleles were commonly
shared between mothers and infants 4 d after birth (Fig. 3D). On
average, 72% of marker alleles present in mother strains were
found in newborns, which was only slightly less than the level
of allele sharing observed from our positive control. Furthermore,
of the 111 high-coverage species present in mothers and new-
borns, 101 (91%) had >5%marker allele sharing, indicating exten-
sive vertical transmission of gut microbiota shortly after birth.
Commonly transmitted species included Bacteroides vulgatus (25/
28 mother–infant pairs with >5% marker allele sharing), Para-
bacteroides distasonis (10/11), Bifidobacterium adolescentis (8/10),
and Escherichia coli (10/10) (Fig. 4A). There were no species pre-
sent with greater than 10× coverage in 15 C-section-born infants
and their mothers to assess transmission in these individuals.
This likely reflects lower vertical transmission of the mother’s
gut microbes, but we cannot directly test that hypothesis with
the available data.

Although we detected high strain similarity 4 d after birth,
mother and infant strains significantly differed over time. Com-
paring strain-level SNPs in 4-mo and 12-mo infants to their moth-
ers, we observed a sharp decrease in marker allele sharing and
transmission rates (Figs. 3D, 4A). Across all species, transmission
rates decreased from 91% at 4 d (101/111 shared species with
>5% marker allele sharing), to 80% at 4 mo (131/163), and to
55% at 12 mo (172/313). C-section-born infants tended to have
fewer vertically transmitted strains compared to vaginally born in-
fants at 4 mo (χ2 P = 5 × 10−8, 3/14 versus 128/149 shared species
with >5% marker allele sharing) and to a lesser extent at 12 mo
(χ2 P = 0.06, 13/34 versus 159/279). This trendwas in stark contrast
to what we observed at the species level, in which there was an in-
crease in the number of shared species over time and an increase in
species-level compositional similarity. Thus, although the species-
level composition ofmothers and infants converged over time, the
strain-level composition actually diverged.

We hypothesized that transmission rates decreased over time
due to late colonization of the infant gut by new strains from the
environment. If this were the case, then we would expect that
(1) infant strains that were distinct from the mother at 12 mo
had low abundance in the infant at earlier stages, and (2) strains
transmitted from the mother at 4 d persisted in the infant gut
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over one year. Supporting our hypothesis, we found that the abun-
dance of a species at 4 dwas predictive of whether the strain of that
species was transmitted from the mother (Fig. 3E,F; Supplemental
Fig. S9). Specifically, strains of species with low abundance at 4 d
but high abundance at 12 mo, like Blautia wexlerae, tended to be
distinct from strains found in the mother. In contrast, strains of
species with high abundance at 4 d and high abundance at
12 mo, like Bacteroides vulgatus, were similar to strains found in
the mother (Fig. 4A,B). Also supporting our hypothesis, we found
that the vast majority of strains that were transmitted from the
mother at 4 d persisted in the infants at 4 mo (49/54 mother–in-
fant pairs with >5% marker allele sharing) and at 12 mo (47/51).

Because the mother’s stool was only sequenced at 4 d after
birth, we cannot rule out the possibility that late colonizing strains
came from the mother’s gut but were not detected at the time of

initial sampling. To address this issue, we quantified the temporal
stability of strains in 157 healthy adults from the HMP over a
time period of 300–400 d (Supplemental Fig. S10). We found
high marker allele sharing (mean = 77.0%) and “transmission
rates” (96.2%), which suggest that maternal strains may be quite
stable over time, in agreement with previous work (Faith et al.
2013; Schloissnig et al. 2013). Together, our results suggest that
bacteria are transmitted from mother to infant at birth, but bacte-
ria from the environment increasingly colonize the infant gut
over time.

If 12-mo-old infants were colonized by strains transmitted
from the environment, then we would expect these bacteria to
have the ability to form spores to protect them from ambient
oxygen and survive outside of the host. To investigate this, we ob-
tained a genomic signature of sporulation formanyof the bacterial

Figure 3. An increase in shared species but a decrease in shared strains over time between stool metagenomes from mothers and their infants. (A)
Principal coordinate analysis of Bray-Curtis dissimilarity between species relative abundance profiles of stool samples from mothers and infants at 4 d, 4
mo, and 12mo following birth. Species composition of infant microbiomes is most similar to mothers at 12mo. (B) The number of shared species increases
over time between mothers and their own infants. (C ) This pattern for biological mother–infant pairs is similar to that of unrelated mothers and infants
(permuted pairs). (D) In contrast, marker allele sharing decreases over time between mothers and their infants for shared species with greater than 10×
sequencing coverage, indicating highest strain similarity at 4 d. Allele sharing is defined as the percentage of marker alleles in the mother that are found
in the infant. The horizontal red dotted line indicates the 5% marker allele threshold used for defining vertical transmission events. (E) Early colonizing
species are transmitted vertically, whereas late colonizing species are not. The horizontal axis indicates the relative abundance of bacterial species at 4
d. The vertical axis indicates whether a strain of the species was transmitted from themother (y = 1) or not (y = 0) at 12mo. The curve is a logistic regression
fitted to data points. (F) Histograms indicate the distribution of relative abundance at 4 d for strains that were transmitted and not transmitted from an
infant’s mother.
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species found in mother–infant pairs from a recent study (Browne
et al. 2016). The sporulation score was based on 66 genes in which
values greater than 0.4 indicate true spore-formers. Strikingly, we
found that species with low vertical transmission rates tended to
have high sporulation scores, which supports the hypothesis
that these bacteria are transmitted to the infants from the environ-
ment (P = 0.0013) (Fig. 4C). In contrast, bacterial species with high
vertical transmission rates had low sporulation scores, suggesting
that these species may be transmitted via direct physical contact.
One of the exceptions to this pattern was the facultative anaerobe
Escherichia coli, which was vertically transmitted early but trans-
mitted from a different source later (Fig. 4A). To broadly character-
ize these patterns, we found the class Bacteroidia was enriched in
vertical transmission events (χ2 P = 2.6 × 10−18), whereas the class
Clostridia was depleted (χ2 P = 1.4 × 10−22) (Supplemental Table
S11). These results highlight differences in the inheritance of gut
microbiota that may be linked to distinct modes and timing of
transmission between hosts.

Global strain-level geography of prevalent marine bacteria

Many bacterial species are distributed widely across the world’s
oceans (Sunagawa et al. 2015). Yet genomes of a given species sam-
pled near each other can differ significantly in their gene content
(Kashtan et al. 2014). To explore the extent of population structure
across different marine bacterial species on a global scale, we used
MIDAS to quantify pan-genome gene content for prevalent species
in 198 marine metagenomes from 66 stations along the Tara
Oceans expedition (Supplemental Table S12; Sunagawa et al.
2015). Because we found that our database had relatively low cov-
erage of the cellular organisms present in ocean samples (Fig. 1C),
we first estimated relative abundance and coverage of bacterial spe-
cies in eachmetagenome to identify marine species in which gene
content could be reliably estimated (i.e., coverage greater than 3×
across a high percentage of samples) (Fig. 5). Among these species
were several members of the genera Pelagibacter, Alteromonas,
Synechococcus, and Marinobacter, a large group of closely related
Prochlorococcus species, and several unnamed Alphproteobacteria

Figure 4. Distinct timing and vertical transmission patterns for microbiome species. (A) Vertical transmissions for bacterial species across mother–infant
pairs at three time points. The 20 species with the greatest number of high-coverage mother–infant pairs are shown. A vertical transmission is defined as
>5%marker allele sharing betweenmother and infant. The phylogenetic tree is constructed based on a concatenated DNA alignment of 30 universal genes
(Supplemental Fig. S3) and shows that phylogenetically related species have similar transmission patterns. (B) Bacteroides vulgatus is an early colonizing
species that is frequently transmitted vertically, whereas Blautia wexlerae is a late colonizing species that is rarely transmitted vertically. Gray points indicate
therewas insufficient sequencing coverage to quantify SNPs and determine transmission. (C ) Species with low vertical transmission rates are predicted to be
spore-formers with the ability to survive in the environment. Sporulation scores are genomic signatures of sporulation based on 66 genes (Browne et al.
2016). Error bars indicate one standard error in each direction. Only species with sporulation scores computed by Browne et al. (2016) and with three or
more mother–infant pairs at 12 mo are shown.
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species. Reference pan-genome sizes for these species ranged from
1047 to 1311 genes in the streamlined genomes of SAR406 and
SAR86 (each with one genome) to 6427 genes in the largest
Prochlorococcus genome cluster (N = 26 genomes) and 7819 genes
for Alteromonas macleodii (N = 4 genomes).

We discovered extensive variability of gene content for these
prevalent species across the ocean metagenomes (Supplemental
Table S13). Across all species, we found an average of 318 genes
that differed between samples, ranging from 144 genes in SAR86
to 700 in Alteromonas marina. We next quantified the percentage
of genes that were different between samples using the Jaccard in-
dex and found that on average 19%of genes differed between sam-
ples. This level of genomic variability was higher than the 13%
recently reported for human gut communities (Zhu et al. 2015), al-
though this may be due tomethodological differences. Regardless,
our estimate of 19% is almost certainly an underestimate of the
true level of gene content variation between populations, because
MIDAS cannot measure the variation of genes that are present in
strains but absent from sequenced reference genomes.

To explore how this variation correlated with geography and
sampling depth, we conducted a principal component analysis
(PCA) of gene content for each bacterial species, as has been
done to study the geographic structure of human populations us-
ing polymorphism data (Novembre et al. 2008). Strikingly, we
found that the populations of many species clustered together
by ocean region based on the first two principal components of
gene content, regardless of sampling depth (Fig. 6A). For example,
populations of one Pelagibacter species formed three discrete

clusters corresponding to the Mediterranean Sea, South Atlantic
Ocean, and South Pacific Ocean, and each cluster contained sam-
ples from multiple water layers. Similar results were obtained for
many other species (Supplemental Fig. S11). Furthermore, we
found that the population structure of the marine bacteria exam-
ined was highly consistent, regardless of the percent identity
threshold used for defining pan-genome gene families (75%–

99% identity) (Supplemental Figs. S12, S13).
To evaluate the extent of gene content biogeography across

species, we computed the correlation between PCA distances and
geographic distances (Methods) and found significant distance-de-
cay in gene content for the majority of species tested (Fig. 6B).
Furthermore, this pattern was observed both in samples from the
surface water layer and the deep chlorophyll maximum layer—
the majority of species we examined were not found in the meso-
pelagic water layer. A previous study found season to be a major
driver of biodiversity patterns in the global ocean (Ladau et al.
2013). To explore whether season or other environmental vari-
ables were associated with strain-level population structure, we
compared correlations of the first principal component of gene

Figure 5. Prevalent bacterial species surveyed by the TaraOceans expe-
dition. Prevalence of 50 bacterial species across 198 ocean metagenomes.
Latin names of species are indicated on the vertical axis. In cases in which
multiple species had the same Latin name, the full name of the represen-
tative genome is shown. Many marine species have sufficient sequencing
depth and prevalence for population-genetic analyses.

Figure 6. Gene content and geography are correlated for many marine
bacteria. (A) Principal component analysis (PCA) of gene content for two
bacterial species. Each point indicates a bacterial population from a differ-
ent seawater sample. Point color and shape indicate themarine region and
water layer, respectively. Candidatus Pelagibacter populations tend to clus-
ter together based on ocean region, not ocean depth. In contrast, Alpha
proteobacterium populations tend to cluster together based on ocean
depth, not ocean region. (B) Gene content PCA and geographic distance
are significantly correlated formost prevalent marine species. PCAdistance
was calculated using the Euclidian distance between PC1 and PC2 of the
gene presence–absence matrix. Geographic distance was calculated using
the great-circle distance between sampling locations. For each species, the
correlation of these two distances (horizontal axis) and associated P-value
(vertical axis) were computed using the Mantel test with 1 million permu-
tations. Only one metagenome per location was included in the tests. The
population structure of marine bacteria, based on the first two principal
components of gene content, is correlated with geography for many spe-
cies of bacteria.

Strain transmission and biogeography

Genome Research 1619
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.201863.115/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.201863.115/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.201863.115/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.201863.115/-/DC1


content (PC1) with geography and environmental variables
(Supplemental Fig. S14). For 20/30 species tested, longitude (17/
30) or latitude (3/30) was the strongest predictor of gene content,
and each explained a significant proportion of gene content vari-
ation (22% and 8% on average). In contrast, day length (an indi-
cator of season) explained less variation (4% on average) and was
the most predictive covariate for only one Prochlorococcus species.

A few species showed relatively little geographic structure.
Instead they had gene content variation that correlatedwith depth
or marine layer. The most striking example of this was an un-
named Alphproteobacteria species which contained two genomes
in our database obtained via single-cell sequencing (Stepanauskas
2012). This species was predominantly found in the mesopelagic
layer (below 200 m) and increased in relative abundance with
decreasing depth (Supplemental Fig. S15). Looking only at meso-
pelagic samples, we found that the first principal component
of gene content (PC1) was strongly correlated with depth (R2 =
0.59), suggesting littlemixing of strains across depth.Whenwe in-
cluded samples from allmarine layers, we found that samples from
the mesopelagic and epipelagic zone formed separate clusters
based on gene content, and there was still a strong correlation
between PC1 and depth (R2 = 0.57) (Supplemental Fig. S15). Our
results could indicate that the populations at different depths
contain genes for adaptation to the range of temperatures and nu-
trients across which this species is found. Supporting this hypoth-
esis, we found hundreds of functions and pathways with gene
copy numbers that were significantly correlated with depth (Sup-
plemental Table S14).

Together, our results expand upon and even contradict pat-
terns of marine bacterial biogeography observed at the species
level. In particular, gene content analysis reveals that abundant
and prevalent species are not ubiquitous at the strain level.
Instead they show significant structure across geographic regions.

Discussion

We developed MIDAS, an integrated computational pipeline
that quantifies bacterial strain-level gene content and SNPs, as
well as species abundance, from shotgun metagenomes. By cou-
pling fast taxonomic profiling via a panel of universal-single-
copy genes with sensitive pan-genome and whole-genome align-
ment,MIDAS can efficiently and automatically compare hundreds
of metagenomes to more than 30,000 reference genomes to iden-
tify genetic variants present in the strains of each sample. Our pub-
licly available software anddata resourceswill enable researchers to
conduct large-scale population-genetic analysis of metagenomes.

This first version of MIDAS has several limitations. Because it
currently relies on bacterial reference genomes, MIDAS cannot
quantify variation for novel species, novel genes, or known species
fromother groups ofmicrobes (e.g., archaea, eukaryotes, and virus-
es). To accurately quantify strain-level gene content and SNPs,
MIDAS requires greater than 1× and 10× sequencing coverage, re-
spectively. This biases analyses toward the most abundant and
prevalent species in an environment. MIDAS was nonetheless
able to capture the majority of microbial species abundance across
humanbody sites,making it well suited for uncovering strain-level
variation of human-associated bacteria. In contrast, other environ-
ments appeared to be dominated by microbes missing from our
reference database. For this reason, it will be important to update
the database as the number (Land et al. 2015) and diversity (Wu
et al. 2009) of microbial reference genomes continues to rapidly
grow, as new experimental (Rinke et al. 2013) and computational

(Nielsen et al. 2014) approaches uncover genome sequences of un-
cultured microbes. It will also be useful to incorporate genomes
from other domains of life. Based on the design of our database
and algorithm, MIDAS should scale with this growth of reference
data.

To illustrate the utility of MIDAS, we analyzed stool metage-
nomes from a recently published study of 98mothers and their in-
fants over one year (Backhed et al. 2015) and used rare SNPs to
track transmission of strains between hosts. Based on this analysis,
we found extensive vertical transmission of early colonizing bacte-
ria, which largely persisted in the infant for one year. Although sig-
nificant attention has been paid to transmission of Bifidobacterium
spp. (Martín et al. 2012; Makino et al. 2013; Milani et al. 2015),
we found high transmission rates for many Bacteroides spp. We
also found that late colonizing bacteria, including Blautia, Rumino-
coccus, Eubacterium, and Facelibacerium, were rarely transmitted
from the mother. Instead the mother was colonized by a different
strain of these species. Comparing these species to a recent study of
sporulation in the human gut (Browne et al. 2016), we found that
late colonizers tended to be spore-formers capable of surviving
in the environment, whereas early colonizers were non-spore-
formers. Together, these results suggest that only certain taxonom-
ic groups of bacteriamay be vertically inherited, whereas others are
acquired from the environment. Our results build upon previous
infant microbiome studies (Koenig et al. 2011; Backhed et al.
2015; Bokulich et al. 2016; Yassour et al. 2016) by showing that
early and late colonizing species likely derive from different sourc-
es, which may be linked with their ability to form spores and sur-
vive in the environment. When the same metagenomes were
analyzed at the species level, these patterns of transmission were
missed, and a false signal of increasing transmission over time
was detected due to convergence of the infant microbiome toward
amore diverse and adult-like species profile.We conclude that spe-
cies sharing frequently does not reflect direct transmission.

The bacterial taxa that tended to be transmitted vertically in
our analysis differ from the taxa whose abundances were found
to be heritable in a previous study of UK twins (Goodrich et al.
2016). For example, we estimated low vertical transmission for
strains of Blautia, but Goodrich et al. (2016) found that the abun-
dance of Blautia is highly heritable. Conversely, we estimated high
vertical transmission for strains of Bacteroides, but this was one
of the generawhose abundancewas least heritable in theUK twins.
Heritability does not require vertical transmission if related
individuals are colonized by similar taxa that they acquire from
the environment. On the other hand, the abundance of vertically
transmitted taxa may not be heritable for extremely common taxa
such as Bacteroides. Alternatively, strains vertically transmitted at
birth could be lost as the infant ages, although we found them
to be mostly retained over the first year of life.

Our analysis of mother–infant strain sharing leaves a few
questions unanswered. One intriguing issue is the source of the
strains that colonize the infant but are not present in the mother’s
stool microbiome at 4 d after birth. It is possible that some strains
colonize the mother’s gut later in the year and are then passed
along to the infant, although this is unlikely based on the temporal
stability of strains in the adult microbiome. The new strains could
also derive from other sites on themother’s body, such as skin and
breast milk, other people, food, or the environment. One caveat of
our analysis is that we did not distinguishwhich strains were trans-
mitted to the infant from the mother in cases in which mothers
harbored multiple strains. Instead, we treated the transmission
events as binary, whereby a transmission was defined as at least
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one strain being transmitted. It would be interesting to explore
transmission as a quantitative variable in future work, including
elucidating how the strain composition and genetic diversity of
bacterial populations change as they are passed from mother to
offspring and potentially undergo bottlenecks and selection.

To explore bacterial population structure using gene content,
we applied MIDAS to metagenomes from the TaraOceans expedi-
tion.We found a number of prevalent and abundant bacterial spe-
cies, which shows that our method can be applied to different
environments, despite low database coverage. Based on these re-
sults, we found that the gene content ofmany species in the epipe-
lagic water layer (0–200 m) was structured geographically. This
contrasts with previous work at the species level, which found
that depth and temperature were the strongest predictors of com-
munity structure (Sunagawa et al. 2015). However, the gene con-
tent of other species found in the mesopelagic layer (200–1000
m) was structured by depth. As more genomes are sequenced
from marine ecosystems, it should be possible to determine
how generalizable these patterns are. Additionally, future work is
needed to understand the extent to which these gene-level pat-
terns are driven by adaptation to different environments in the
ocean or are attributable to neutral processes, like genetic drift
and/or migration.

Microbiome research is in an era in which metagenome-wide
analyses can now pinpoint individual strains and genes that differ
in presence or abundance between samples. Importantly, this level
of resolution is not only revealing associations that are missed by
analyses conducted at coarser taxonomic levels, but also patterns
that oppose those inferred from species abundance distributions.
A striking example is our discovery that infants sharemore gut bac-
terial strains with theirmothers at birth than later in their first year
of life, despite the fact that the species composition of their micro-
biomes becomesmore similar as the infant ages.Without conduct-
ing a strain-level genomic analysis, one might incorrectly infer
that vertical transmission of the gut microbiome is constant or in-
creasing during the first year of life. Similarly, the high level of
gene content variation that we observe in Tara Oceans bacteria
and its strong correlationwith geography in surfacewaters empha-
sizes functionally important differences in strains across global
oceans that aremissedwhenmetagenomes are analyzed at the spe-
cies level. It is clear that additional genome sequencing of environ-
mental microbes is critical to advance these types of strain-level
analyses in the future. Our analysis of database coverage points
to specific environments and phylogenetic groups that are highest
priority these efforts.

Methods

Sequence-based identification of bacterial species

Wedeveloped a procedure to cluster bacterial genomes into species
groups based on the pairwise percent identity across a set of univer-
sal gene families, which was inspired by previous work (Mende
et al. 2013). We began with 33,252 prokaryotic genomes down-
loaded from PATRIC (Wattam et al. 2014) in March 2015. Next,
we used HMMER3 (Eddy 2011) with an E-value threshold ≤1 ×
10−5 to identify protein homologs of 112 bacterial universal
gene families (Wu et al. 2013) across the genomes. The HMMER3
search took too long for two gene families (B000042, B000044),
which were dropped. When there were multiple homologs of a
gene family identified in a genome, we took the homolog with
the lowest E-value.We filtered out low quality genomes with fewer
than 100 universal genes identified (N = 1837) or with more than

1000 contigs (N = 618), which left 31,007 high-quality genomes
(Supplemental Table S5).

Next, we used BLASTN (Altschul et al. 1990) to perform se-
quence alignment of each gene family among all high-quality ge-
nomes. We filtered out local alignments in which either the query
or target was covered by <70% of its length. We converted percent
identities to distances using the formula Dab = (100− Pab)/100, in
which Pab was the percent identity of a gene between genomes a
and b. This resulted in an undirected graph for each marker gene
family in which nodes were genomes and edges were distances.
We performed average-linkage hierarchical clustering for each
graph using the program MC-UPGMA (Loewenstein et al. 2008).
The output of MC-UPGMA is a tree, which we cut at different dis-
tance thresholds (0.01–0.10). Each cut of the tree yielded a set of
genome clusters.

For validation, we compared each set of genome clusters to
average nucleotide identity (ANI), which is considered to be a
gold standard for delineating prokaryotic species (Konstantinidis
et al. 2006; Richter and Rossello-Mora 2009), but was too compu-
tationally intensive to compute for all genome pairs. Specifically,
we used the procedure described by Richter and Rossello-Mora
(2009) to compute ANI for more than 18,000 genome pairs and la-
beled pairs of genomes with ANI ≥95% as members of the same
species and pairs of genomes with ANI <95% as members of differ-
ent species. We compared these labels to our genome clusters and
classified each genome pair into one of the following categories:
True positive: a clustered genome pair with ANI ≥95%; False posi-
tive: a clustered genome pair with ANI <95%; False negative: a split
genome pair with ANI ≥95%; True negative: a split genome pair
with ANI <95%. Using these classifications, we calculated the
true positive rate (TPR), precision (PPV), and F1-score for each set
of genome clusters corresponding to 90%–99% identity between
pairs of genomes for a givenmarker gene (Supplemental Table S2).

Based on this evaluation, we identified a subset of 30 gene
families that produced genome clusters that were in agreement
with ANI, all with maximum F1-score >0.93 across thresholds.
To increase clustering performance, we took the average pairwise
distances across these 30 gene families and used these newdistanc-
es to recluster genomes using MC-UPGMA (Supplemental Table
S3). We found that a distance cutoff of 0.035 (96.5% nucleotide
identity) maximized the F1-score at 0.98 and resulted in 5952 ge-
nome clusters (Supplemental Table S3). Each genome cluster was
annotated by the most common PATRIC Latin name within the
cluster (Supplemental Table S4).

Genomic database construction

The clusters of genomes that corresponded to bacterial species
were leveraged to compile a comprehensive genomic data resource
used by MIDAS. First, we identified a representative genome from
each species to use for detecting core-genome SNPs. Each represen-
tative genome was chosen to maximize its average nucleotide
identity at the 30 universal genes (Supplemental Table S2) to other
members of the species. Next, we built a database of 15 universal
single-copy gene families (Supplemental Table S7) to use for esti-
mating the abundance of the species from a shotgunmetagenome.
Gene families were selected based on their ability to accurately re-
cruitmetagenomic reads aswell as being universal and single copy.
The 30 gene families used for clustering genomes and the 15 gene
families used for quantifying species abundance were in some cas-
es different because of different selection criteria. Next, we used
USEARCH (Edgar 2010) to identify the set of unique genes at
99% identity across all genomes within each species, which are
used by MIDAS for metagenomic pan-genome profiling. This pro-
cedure clustered 116,978,184 genes from the 31,007 genomes into
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31,840,245 gene families. We further clustered these genes at dif-
ferent levels of sequence identity (75%–95% DNA identity) to
identity de novo gene families of varying size and diversity for
downstream analyses. Functional annotations for all genes were
obtained from PATRIC and include FIGfams (Meyer et al. 2009),
Gene Ontology (Ashburner et al. 2000), and KEGG Pathways
(Kanehisa and Goto 2000).

Species abundance estimation

MIDAS uses reads mapped to 15 universal single-copy gene fami-
lies to estimate the abundance of the 5952 bacterial species from
a shotgun metagenome. These 15 gene families were selected
from a set of 112 phylogenetically informative bacterial gene fam-
ilies (Wu et al. 2013) for their ability to accurately recruit metage-
nomic reads to the correct species. To evaluate how informative
different gene families are for estimation of abundance, we simu-
lated 100 100-bp reads from each of the 112 gene families in each
of the 5952 species and used HS-BLASTN (Chen et al. 2015) to
map these reads back to a database that contained the full-length
gene sequences. To simulate the presence of novel species and
strains, we discarded alignments between reads and reference se-
quences fromthe samegenome. Each readwas assigned to a species
based on its top hit. Recruitment performancewasmeasured using
the F1-score. Based on this experiment, we identified 15 universal
single-copy gene families that were best able to accurately assign
the species from which metagenomic reads derived. Additionally,
we identified the optimal percent identity cutoffs for mapping
reads to the database, which ranged from94.5% to 98.0% identity,
depending on the gene family (Supplemental Table S7).

To perform taxonomic profiling, MIDAS aligns reads to the
database of 15 universal gene families with HS-BLASTN, discards
local alignments that cover <70% of the read or alignments that
fail to satisfy the gene-specific species-level percent identity cut-
offs, and assigns each uniquelymapped read to a species according
to its best hit. MIDAS assigns nonuniquely mapped reads (i.e.,
identical alignment scores to genes from more than one species)
using probabilities estimated from uniquely mapped reads. These
mapped reads are used to estimate the coverage and relative abun-
dance of each species.

Gene content estimation

To estimate gene content, MIDAS first uses the species abundance
profile to identify bacterial species with sufficient coverage (e.g.,
greater than 1×). A pan-genome database is dynamically built,
which contains a set of nonredundant genes from these species.
We used a 99% sequence identity threshold to cluster similar genes
such that any two genes that are <99% similar were classified as dis-
tinct genes. Bowtie 2 (Langmead and Salzberg 2012) is used to lo-
cally map reads from the metagenome against the pan-genome
database. Each read is mapped a single time according to its best
hit, and reads with an insufficient mapping percent identity (de-
fault = 94%), alignment coverage (default = 70%),mapping quality
(default = 20), or sequence quality (default = 20) are discarded.

Mapped reads are used to compute the coverage of the genes
clustered at 99% identity. Because the 99% identity may result in
many very similar gene families, MIDAS gives the option of further
clustering the gene families at lower sequence identities ranging
from 75% to 95%. Aggregating enables quantification of gene fam-
ilies of varying size and diversity, while maintaining mapping
speed and sensitivity.

To estimate gene copy numbers in a bacterial population,
gene coverages are normalized by the median coverage across the
15 universal single-copy gene families (Supplemental Table S7).

Copy-number values are thresholded to produce gene presence–
absence calls. MIDAS merges these results across multiple metage-
nomic samples to produce gene content matrices for all species,
which facilitate comparative analyses across genes and metage-
nomic samples.

Identifying core-genome SNPs

To estimate core-genome SNPs, MIDAS first uses the species abun-
dance profile to identify species with sufficient coverage (e.g.,
greater than 10×). A representative genome database is dynami-
cally built, which contains a single genome per species that meets
the coverage requirement. The representative genome is a single
genome chosen that has the greatest nucleotide identity, on aver-
age, to othermembers of the species.Only a single genome is need-
ed for identifying the core genome, because this region should be
present in all strains of a species. Bowtie 2 is used to globally map
reads to the representative genome database. Each read is mapped
a single time according to its best hit, and reads with an insuffi-
cient mapping percent identity (default = 94%), alignment cover-
age (default = 70%), mapping quality (default = 20), or sequence
quality (default = 20) are discarded. Additionally, bases with low
sequence quality scores are discarded (default = 30). SAMtools (Li
et al. 2009) is used to generate a pileup of nucleotides at each geno-
mic position which is parsed to generate output files that report
nucleotide variation statistics at all genomic sites. To identify
the core genome of a species, MIDAS uses the output from multi-
ple metagenomic samples to identify regions at consistently
high coverage (e.g., greater than 10× coverage in 95% of samples)
(Supplemental Fig. S6). MIDAS then produces core-genome SNP
matrices for all species, which facilitate comparative analyses of
nucleotide variation across genomic sites and metagenomic sam-
ples.MIDAS also gives the option of outputting all SNPs, including
those that are not in the core genome.

Shotgun simulations and validation of MIDAS output

To validate MIDAS we designed a series of realistic metagenomic
simulations using reads from completed genome-sequencing pro-
jects deposited in theNCBI SequenceReadArchive (Leinonen et al.
2011) that we identified using the SRAdb tool (Zhu et al. 2013).We
used these data to construct 20 mock metagenomes, which each
contained 100-bp Illumina reads from20 randomly selected bacte-
rial genome projects (Supplemental Tables S8, S9). We only select-
ed genome projects that corresponded to one of the 31,007
genomes present in our reference database, and we used only
one genome project per species. We simulated libraries that con-
tained 100× total genome coverage. The relative abundances of
the 20 genomes were exponentially distributed in each simulation
(50%, 25%, 12%, 6.5%, etc.).

We compared the output of MIDAS to the known species
abundance, gene content, and SNPs in the simulated communi-
ties. To evaluate the accuracy of species abundance estimation,
we compared the expected relative abundance and coverage to
the simulated relative abundance and coverage. To evaluate the ac-
curacy of gene content estimation, we ran MIDAS to estimate the
copy number of genes in the pan-genome of each species in
each simulation. We applied a cutoff to these values to predict
gene presence–absence. True positives (TP) were present genes pre-
dicted as present, false positives (FPs) were absent genes predicted
as present, true negatives (TN) were absent genes predicted as ab-
sent, and false negatives (FNs) were present genes predicted as ab-
sent. Performance was measured across a range of copy-number
cutoffs using balanced accuracy: (TPR + TNR)/2, in which TPR =
TP/(TP + FN) and TNR = TN/(TN + FP). To evaluate the accuracy of
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core-genome SNPs, we ranMIDAS to estimate the frequency of nu-
cleotide variants in the representative genome of each species in
each simulation. We predicted SNPs using the consensus allele at
each genomic position. True SNPs were identified by comparing
genomes in the simulations to the representative genomes used
for read mapping with the program MUMmer (Kurtz et al. 2004),
which identified 3,971,528 total true SNPs. True positiveswere cor-
rectly called SNPs, false positives were incorrectly called SNPs, and
false negatives were SNPs that were not called owing to insufficient
coverage.We compared predicted SNPs to true SNPs andmeasured
performance using the true positive rate (TP/TP + FN) and preci-
sion (TP/TP + FP).

Assessing database coverage across different environments

We estimated the species-level coverage of the MIDAS database
across metagenomes from different environments. Database cov-
erage is defined as the percentage (0%–100%) of genomes from
cellular organisms in a community that have a sequenced repre-
sentative at the species level in the reference database.We estimat-
ed database coverage by (1) computing the total coverage across all
species in the MIDAS database by mapping metagenomic reads to
15 universal single-copy genes and applying species-levelmapping
thresholds, (2) computing the coverage across all microbial spe-
cies, including those absent from the MIDAS reference database
using the tool MicrobeCensus (Nayfach and Pollard 2015), and
(3) taking the ratio of these two quantities, multiplied by 100.
We applied this approach tometagenomes fromhuman body sites
(The HumanMicrobiome Project Consortium 2012), human stool
(Qin et al. 2012; Li et al. 2014; Obregon-Tito et al. 2015; Rampelli
et al. 2015), baboon stool (Tung et al. 2015), mouse stool (Xiao
et al. 2015), ocean water (Sunagawa et al. 2015), and soil from de-
serts, forests, grasslands, and tundra (Fierer et al. 2012). To identify
possible taxonomic groups that harbored novel species in the hu-
man gut, we performed Spearman correlations between database
coverage and the relative abundance of genera in HMP stool sam-
ples. Genus-level relative abundances were estimated usingmOTU
(Sunagawa et al. 2013).

Tracking transmission of strains between hosts

We used rare SNPs to track transmission of strains between hosts,
which we termed “marker alleles.” We defined a marker allele as
an allele at a genomic site that was present in only a single individ-
ual, or in the case of the mother–infant data set, a single mother–
infant pair. For simplicity, we only considered biallelic genomic
sites. An allele was determined to be present in a sample if it was
supported by three or more reads and ≥10% of the total reads
mapped at the genomic site. These parameters were chosen to
minimize the effect of sequencing errors and filter out low fre-
quency variants that might not be consistently detected between
samples. Marker allele sharing was computed as the percentage
of marker alleles in mother strains that were also found in her in-
fant. To minimize variation in marker allele sharing due to sam-
pling, we excluded individuals with fewer than 10 identified
marker alleles for a species.We applied this procedure to 66 species
found in stool metagenomes from 98 Swedish mothers and their
infants (Backhed et al. 2015) and 123 American individuals from
the HMP (The Human Microbiome Project Consortium 2012).
We included the HMP samples to increase sample sizes and there-
fore improve the specificity of marker alleles identified in mothers
and their infants. As a positive control (i.e., to assess the sensitiv-
ity), we quantified marker allele sharing for each species between
pairs of technical replicates from the HMP. As a negative control
(i.e., to assess specificity), we quantified marker allele sharing for

each species between pairs of unrelated individuals from the
HMP, which were not used to identify marker alleles. Based on
these results, we defined a transmission event as >5%marker allele
sharing between a pair of individuals.

Analysis of globally distributed marine metagenomes

To assess the global population structure of marine bacteria, we
analyzed 198 Illumina shotgun metagenomes collected from
the Tara Oceans expeditions that corresponded to prokaryotic
size fractions (SRA Study Accessions: ERP001736, ERP001737)
(Supplemental Table S12). We utilized up to 100 million reads
per metagenome and analyzed only one sequencing run per sam-
ple accession. In cases in which there were multiple sequencing
runs per sample accession, we used the sequencing run with the
greatest number of reads. We used MIDAS to quantify the relative
abundance of the 5952 reference species and, based on these re-
sults, identified 30 species that occurred at greater than 3× se-
quencing depth in the greatest number of metagenomes. The
least prevalent species was found in 23% of metagenomes. Next,
we used MIDAS to quantify the gene content of these species
across metagenomic samples. Reads were mapped to the pan-ge-
nome database, and reads with <94% alignment identity were dis-
carded. Mapped reads were used to compute the coverage of genes
clustered at 95% identity. Gene coverages were normalized by the
coverage of 15 universal-single-copy genes to estimate gene copy
numbers. We estimated gene presence–absence by thresholding
the gene copy numbers, whereby any gene with a copy number
less than 0.35 was considered to be absent.

To uncover population structure, we performed a principal
component analysis of the gene presence–absence matrix for
each species. To assess the relationship between gene content
and geography, we first quantified the PCA distance and geo-
graphic distance between metagenomic samples for each species
at each water layer. PCA distances were computed using the
Euclidian distance between samples based on the first two princi-
pal components. Geographic distances were computed using the
great-circle distance with the R package geosphere (https://cran.r-
project.org/web/packages/geosphere/index.html). Mantel tests
were computed using the R package vegan (https://cran.r-project.
org/web/packages/vegan/index.html) to correlate the PCA dis-
tances to the geographic distances. At each water layer, we only in-
cluded one metagenome per sampling location and only included
species observed atmore than five sampling locations. Up to 1mil-
lion permutations were performed to assess significance.

Software availability

MIDAS is implemented in Python and is freely available, along
with documentation, at https://github.com/snayfach/MIDAS.
Source code is additionally included as Supplemental Material.
Our reference database of bacterial species and associated genomic
data resources are available at http://lighthouse.ucsf.edu/MIDAS.
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