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ABSTRACT Gene diversity, or expected heterozygosity (H), is a common statistic for assessing genetic variation =~ KEYWORDS
within populations. Estimation of this statistic decreases in accuracy and precision when individuals are related or  expected
inbred, due to increased dependence among allele copies in the sample. The original unbiased estimator of heterozygosity
expected heterozygosity underestimates true population diversity in samples containing relatives, as it only  identity state
accounts for sample size. More recently, a general unbiased estimator of expected heterozygosity was devel-  inbreeding

oped that explicitly accounts for related and inbred individuals in samples. Though unbiased, this estimator’s
variance is greater than that of the original estimator. To address this issue, we introduce a general unbiased
estimator of gene diversity for samples containing related or inbred individuals, which employs the best linear
unbiased estimator of allele frequencies, rather than the commonly used sample proportion. We examine the
properties of this estimator, Haue, relative to alternative estimators using simulations and theoretical predictions,
and show that it predominantly has the smallest mean squared error relative to others. Further, we empirically
assess the performance of Hgue on a global human microsatellite dataset of 5795 individuals, from 267 pop-
ulations, genotyped at 645 loci. Additionally, we show that the improved variance of Hg e leads to improved
estimates of the population differentiation statistic, Fst, which employs measures of gene diversity within its
calculation. Finally, we provide an R script, BestHet, to compute this estimator from genomic and pedigree data.
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The gene diversity of a locus, also known as its expected heterozygosity
(H), is a fundamental measure of genetic variation in a population, and
describes the proportion of heterozygous genotypes expected under
Hardy-Weinberg equilibrium (Nei 1973). Formally, gene diversity is
the probability that a pair of randomly sampled allele copies from a
population are different, and is computed as
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where I is the number of distinct alleles at a locus, and p;
(i=1,2,...,1) is the frequency of allele 7 in the population.

For a sample without related or inbred individuals composed of n
allele copies, an unbiased estimator of expected heterozygosity is (Nei
and Roychoudhury 1974)

~ n ! ~
H:n_l(l—;pf>, )

where p; is the sample proportion of allele i. H is a biased estimator
when inbred or related individuals are included in the sample
(DeGiorgio and Rosenberg 2009). This result is based on the idea
that, as the proportion of related individuals in the sample increases,

the number of independent allele observations decreases.

When two alleles are drawn from a sample, one each from a pair of
related individuals, there is a nonzero probability that they will be
identical by descent (IBD), rather than just identical by state (Lange
2002). This IBD probability is known as the kinship coefficient, and is
denoted by ®j for a pair of individuals j and k. Thus, the observed
diversity will be lower than the true value because a greater proportion
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of identical alleles are observed than for a sample in which there are no
related individuals. DeGiorgio et al. (2010) developed an estimator of
expected heterozygosity,

~ 1 L,
AH=—" [1- : 3
1_%( i§1pz>, &)

which is unbiased for samples containing related and inbred individ-
uals of any ploidy, and employs a weighted mean kinship coefficient
®, as a bias correction factor. @, is the average of all kinship coef-
ficients @ for every pair of individuals within the sample (see Meth-
ods). Further, DeGiorgio et al. (2010) derived the theoretical variance
of H, as well as its approximate value for samples wherein individuals
are related to no more than one other sampled individual.

As an alternative to the sample proportion (p;), McPeek et al. (2004)
introduced the best linear unbiased estimator (BLUE, denoted as ﬁi) of
population allele frequency, which is an unbiased linear estimator with
smaller variance than the unbiased linear estimator p;. The BLUE
incorporates the relatedness of individuals in the sample as a covariance
matrix to define the weight of each observation. Simulations and ana-
lytical evaluation corroborating their result suggest that the mean
squared error (MSE) of p, is always smaller than that of p,, and this
difference is especially evident for samples with complex pedigrees.

Because p, has the smallest variance of any unbiased linear esti-
mator of allele frequencies, we expect its low variance to translate to
smaller variance of gene diversity statistics that use p;. We devel-
oped such a statistic, termed a BLUE, that is an unbiased estimator of
expected heterozygosity in samples containing related and inbred
individuals of arbitrary ploidy. Through simulations, analytical pre-
dictions, and empirical assessments, we compare the performance
of Hprue to that of H and H for samples containing related indi-
viduals of various types across different ploidy and inbreeding sta-
tus. Additionally, we derive the variance of any measure of expected
heterozygosity that uses unbiased linear estimators of allele frequen-
cies. We find that the increased precision of allele frequency esti-
mates transfers to our unbiased estimator, yielding values for MSE
invariably equal to or smaller than those of H, while occasionally
exceeding the precision of H. The improved properties of Hgiyg
translate to its applications as well, which we demonstrate in the
calculation of the population differentiation statistic, Fsy (Wright
1951). Fsr can be written in terms of intrapopulation and interpop-
ulation gene diversity as (Hudson et al. 1992)

Hpy —Y(H +H,
Fgp=——— 2L =2 2 ), “)

Hip
where H; and H, are the values of expected heterozygosity within
each of two compared populations, and Hj, is the expected hetero-
zygosity between them.

METHODS
Cons1der a locus with I distinct alleles in a sample of # individuals. Let
" denote the fraction of alleles at the locus in individual k that are of

type i,i=1,2,...,1. An unbiased linear estimator of population allele
frequencies p;, denoted by p,, is defined as
=Y wx, 5)
k=1
where wi, 0 = wy =1, is the weight of individual k, k =1,2,...,n,

and ) _;_,wx = 1. Formally, we have that
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1 5,0
= A,
mk; i
0

where A}, is an indicator random variable whose value is 1 if allele t of
individual k is of type i, and zero otherwise, and where m is the ploidy
of individual k. As an example, if individual k were diploid at the
locus, then my = 2. Taking the expectation of p,,

Efp] = 3 2% S E[4)]
= i%%Pi

k=1Mk t=1
= pi,
shows that it is an unbiased estimator of p;.

Unbiased estimation of gene diversity using unbiased
linear estimators of allele frequencies

In this section, we construct an unbiased estimator, H , of expected
heterozygosity that uses a general unbiased linear estimator, p;, of
allele frequency p; (Proposition 1). We then show that the unbiased
estimator, H , of DeGiorgio et al. (2010) follows as a corollary, as-
suming that p, = p,, the sample proportion allele frequency estima-
tor (Corollary 2). We then derive a new estimator, ﬁBLUE, alsoas a
corollary, assuming that p, = p,, the BLUE of allele frequency
(Corollary 3).

Proposition 1: Consider a locus with I distinct alleles and parametric
allele frequencies p; € [0,1], i =1,2,...,1, and Zlep,- =1. For a
sample of size »n individuals of any ploidy, inbreeding status, and
relatedness,

v 1 I )
H=— 1—§ 2 6
1_p2< i_1pl> ©

is an unbiased estimator of expected heterozygosity, where

n n
= Z Z ijkq);k
j=1 k=1

is a weighted mean kinship coefficient of the sample for all pairs of
individuals in the sample, and where wy, k = 1,2, ..., n, is the weight
for individual k. The proof of Proposition 1 is found in the Appendix.

From p,, the sample proportion estimator p; of allele frequency i,
i=1,2,...,1, is recovered when wy = mk/z;‘:lmj for individual k,
k=1,2,...,n, leading to

my (i)
Z Z 1mJX

Here, each individual is weighted by its contribution to the number of
allele copies in the sample.

Corollary 2: Consider alocus with I distinct alleles and parametric allele

frequencies p; € [0,1],i=1,2,...,I,and >__, p; = 1. Fora sample of
size n individuals of any ploidy, inbreeding status, and relatedness,

I
_(1-N"% 7
_@2( Zp) @)
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is an unbiased estimator of expected heterozygosity, where

n
~ M ()
b= X
! k=1 Z;:lmj k

is the sample proportion estimator of allele frequency i, where

my
ZZ 1mx2 1my(D

is a weighted mean kinship coefficient of the sample for all pairs of
individuals, and where my, k = 1,2, ..., n, is the ploidy for individual
k. The proof of Corollary 2 is found in the Appendix.

It may be beneficial to apply an unbiased linear estimator of
allele frequencies that has minimum variance. McPeek et al. (2004)
introduced the BLUE of allele frequencies, which we formally de-
fine here. We will use the BLUE of allele frequencies to construct
a new unbiased estimator of gene diversity that would ideally
have improved variance over other estimators. Let K be an nxn

symmetric matrix of Kinship coefficients, with Kj = ®j. The

~ : . DK
BLUE (p;) of allele frequency is obtained when wy = =jrp=rr—;

yielding

1
ot e
N 1TK 11 X

where K™! denotes the inverse matrix of K, 1 is a column vector of n
elements with all entries equal to 1, and 17 is the transpose of 1.

Corollary 3: Consider a locus with I distinct alleles, and parametric
allele frequencies p; € [0,1], i=1,2,...,I, and ZLlpi = 1. For a
sample of size n individuals of any ploidy, inbreeding status, and

relatedness,
1 L,
— 1= h @)
2 i=1

H =
BLUE = 7

is an unbiased estimator of expected heterozygosity, where

fi = ZZj:

k=1

I(K_l)ij(i)
1’K 11 7k

is the BLUE of allele frequencies, and where

ZX l x‘ zn: (K_l)
ZZ TK o G Ley=1 vk

1K1
is a weighted mean kinship coefficient of the sample for all
pairs of individuals. The proof of Corollary 3 is found in the
Appendix.

jk

Variance of H estimators using unbiased linear

estimators of allele frequencies

We now derive the equation (Proposition 4) describing the vari-
ance of the unbiased estimator H, which takes p, as the unbiased
linear estimate of population allele frequency p;. This value de-
pends on the weighted mean kinship coefficients of the sample for
all pairs, trios, quartets, and pairs of pairs of individuals in the
sample, defined as

-=.G3:Genes| Genomes | Genetics Volume 7
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Here, d)jkj/ is the probability that three randomly sampled alleles, one
each from individuals j, k, and j', are IBD. ®j;1 is the probability that
four randomly sampled alleles, one each from individuals j, k, j’, and
k', are IBD. Finally, ® jx is the joint probability that two randomly
sampled alleles, one each from individuals j and k are IBD, and two
randomly sampled alleles, one each from individuals j and k', are
IBD. Note that individuals j, k, j', and k' are not necessarily distinct.
The variances of H and of H sruk follow as Corollaries 7 and 8, once
again differing only in the weight of a sampled individual in the mean
kinship coefficient calculation.

Proposition 4: Consider a locus with I distinct alleles and parametric

allele frequencies p; € [0,1],i=1,2,...,1, andezlp,- = 1. Fora sam-
ple of size n individuals of any ploidy, inbreeding status, and relatedness,

is the variance of the unbiased estimator of expected heterozygosity H,
where p, = 37 371 wjwi®j is a weighted mean kinship coeffi-

cient of the sample, and where wy for k = 1,2, ..., n is the weight of
individual k. Further, we have

1
I—ZP,}pzz p5+2(p P4Z?
i=1 i=1
I
Pzz)Z
- I 2
+ <3P2,2 +8p3 —6py —4p, — P%) <ZP:2> :
P

(10)

1
—— Var

Var[H] = (1_p2

©)

Var

+ 4<2p4 +py—

The proof of Equation 10 is presented for the specific case of
Var[l — Zleﬁtz] in Appendix B of DeGiorgio et al. (2010), where
P, is substituted for p,, and @,, @3, and D4, and P, , coefficients are
substituted for p,, ps, p,, and p, , coefficients, respectively. We pro-
vide an abbreviated version of this proof for the general case in the
Appendix. Further, the approximate value of Equation 10 for sam-
ples wherein no individual is related to more than one other is

I I I 2
= 3R] |- (3 |

For this simplifying case, the terms p;, py, p, ,, and p3 are negligible
compared to p,.

In the Appendix, we reintroduce the definition of Var[H] from
DeGiorgio et al. (2010) (Corollary 7), and then define Var[ﬁ BLUE)
(Corollary 8), both of which take the form illustrated in Proposition 4.

Var (11)
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As demonstrated by DeGiorgio et al. (2010), the mean kinship coeffi-
cients composing Equation 10 derive from the relationship between
the 15 identity states available to four alleles (Gillois 1965; Cockerham
1971), and the coefficients of kinship between pairs, trios, quartets, and
pairs of pairs of alleles within those four.

Bias of H for samples containing related or

inbred individuals

Here, we briefly derive an equation (Equation 12) within Proposition 5 that
describes the bias of H, which we display in the left panels of Supplemental
Material, Figure S1A and Figure S2A. We include Corollaries 9 and 10 to
Proposition 5 within the Appendix for specific cases of bias derived from
p,-based and p,-based estimations, respectively. We also note that Equation
A10 of Corollary 9 represents the form of the bias typically encountered in
applications of H, as well as in all of our experimental scenarios.

Proposition 5: Consider a locus with I distinct alleles and parametric
allele frequencies p; € [0,1], i=1,2,...,I, and 31, p; = 1. For a
sample of n possibly related or inbred individuals, the bias of the
estimator of expected heterozygosity H changes with the true locus
expected heterozygosity such that

Bias|F1(p;)| = %H, (12)

where

I
H(p;) = " i 1 (1 - Zlu’zz) (13)
pa

Proof: We begin by substituting Equation 6 into Equation 13such that

~ n(l— .
H(Pi) :%H’

and

=[] =" =

From the definition of bias,

Bias [H(5,)] = E[H ()] - H

1_
_ 1"y
n—1 (|

Variance of Fsy estimators using unbiased linear
estimators of allele frequencies

Because the population differentiation statistic Fsy (Wright 1951) can
be defined in terms of expected heterozygosities, it is possible to theo-
retically evaluate its approximate variance. A general estimator of Fsr
can be written as

o 1,. Y
Hi, *E(Hl + H,)

Fsr = , (14)

Hy,
where Hj, is an unbiased estimator for the expected heterozygosity
between a pair of sampled populations, numbered 1 and 2, defined as
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Hp,=1-Y1, P,q; (where g, is a linear unbiased estimator of the
frequency of allele i in population 2, analogous to p; in population 1),
while H; and H, are the within-population expected heterozygosities
for populations 1 and 2, respectively. Referring to the numerator as x,
and the denominator as y, we can write the expression for an approx-
imation of the variance of a ratio as

WHz@mz varl]
(ED))’ (ED)’®

following the definition for the approximate variance of a ratio (Wolter 2007).

Var[x]
(Efx))®

__ Covlx, y]
“BpEy |

Proposition 6: Consider a locus with I distinct alleles across two pop-
ulations and parametric allele frequencies p; € [0,1], i = 1,2,...,],
and 3", pi = 1 for population 1,and g; € [0,1],i=1,2,...,1, and
S™1_,qi = 1 for population 2. For samples of size 7, and , individuals
from populations 1 and 2, respectively, each with individuals of any
ploidy, inbreeding status, and relatedness, the variance of the popula-
tion differentiation statistic calculated from their respective expected
heterozygosities is approximated as

[Hi—1 (H, + Hy))?

Var [F‘ST} ~

Hi,
Var[ﬁlz —%(Hl +H2):| Var[le]
X
[lef%(Hl +H2)]2 H%Z

COV[le *%(IZIl +Irlz)7H12}
-2 ; (16)
[Hiz =} (Hy + Hz)|Hy,

where

L ) 1
Var [le 5 (i + Hz)} = Var[flpp] + Var[i]
. o
+ 5 Var[Hz] — (Cov [, ]
+ Cov[Hn, 2] ). (17)

In the Appendix, we provide a derivation of the variance and co-
variance components of Equations 16 and 17. For each of these
equations, the result and proof are fairly long, and do not simplify
when arranged into Equation 16.

Data availability
The authors state that all data necessary for confirming the conclusions
presented in the article are represented fully within the article.

RESULTS

Analytical validation of ﬁBLUE

We tested the performance of H pLug using both theory and simulations
against that of the unbiased estimator H (DeGiorgio et al. 2010), and of
H (Nei and Roychoudhury 1974). Here, we applied the estimators to
samples of individuals wherein each individual was related to exactly
one other. Thus, for samples of size n individuals, the number of relative
pairs was #/2. When inbred or closely related individuals are included
in a sample, H is a biased estimator of gene diversity for which we use

-=.G3:Genes| Genomes | Genetics
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Figure 1 Theoretical difference
in MSE between the unbiased
estimator Plred (left), H (centen),
or HaLue (right), and the biased
estimator PIM calculated at
each of 645 microsatellite loci
(0.5212=H=0.9301) in the
MS5795 dataset for samples of
60 diploid individuals contain-
ing some inbred relative pairs.
Each sampled individual was re-
lated to exactly one other, and
samples contained 10 pairs of in-
bred full-siblings (® = 3/8), 10
= 1/8). Dotted lines in each plot correspond to a difference in MSE of
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zero with Hyy. See File ST for the true expected heterozygosity values incorporated into analytical calculations.

the symbol Hpr. To construct an unbiased estimator with H , we also
applied H to a reduced sample in which one member of each relative
pair was removed randomly for samples containing only diploid indi-
viduals, and the haploid member was removed for each haploid-diploid
(i.e., male-female) pair (reduced sample size of n/2), and we denote this
estimator by H,eq. To evaluate the performance of the four estimators
(FI fulls b2 reds ba§ ,and H sLUE), we modified the factors upon which their
variance depends: true locus expected heterozygosity (H), sample size n,
and relatedness of individuals within the sample (P).

Effect of true locus expected heterozygosity, H,
on estimators
We first evaluated the theoretical bias, variance, and mean squared error
(MSE) of each estimator across the 645 human microsatellite loci from
across the genome in the composite dataset MS5795 of Pemberton et al.
(2013), where MSE is the sum of the squared bias and variance. The
data used in our analyses is freely available online within File S1 of
Pemberton et al. (2013) (http://www.g3journal.org/content/early/2013/
03/27/g3.113.005728/suppl/DC1). We took the sample allele frequen-
cies calculated from all individuals in the MS5795 dataset as the true
population allele frequencies for the variance calculations, and, from
these, determined the true expected heterozygosity at each locus using
Equation 1 (see File S1; incorporated into Equation A10). Here, each
sample contained 60 diploid individuals composed of 10 inbred full-
sibling, 10 outbred full-sibling, and 10 outbred avuncular pairs. Each
point in Figure 1 and Figure S1 represents a single analytical computation
for a sample of 60 (or 30 for b2 red) individuals at a microsatellite locus.
We report the approximate variance and MSE because each individual is
related to exactly one other in the sample, satisfying the assumption of
Equation 11. Further, under this scenario DeGiorgio et al. (2010)
showed that this was a reasonable approximation of the exact variance.
We begin by demonstrating the relative performance of the unbiased
estimators H reds H ,and H BLUE, Mmeasured in terms of MSE, against the
biased estimator Hpy (Figure 1). While the variance of Hy is invari-
ably smaller than that of the other estimators, and the MSE and vari-
ance of each estimator decrease with increasing locus expected
heterozygosity (0.5212 < H < 0.9301), Hgy accumulates bias quadrat-
ically with increasing H, and thus yields an increasingly unreliable
estimate with increasing site diversity (Figure S1A, left). However,
the effect of this trend differs for each comparison. The MSE of Hyed
always exceeds that of H full, because the removal of relatives to create
the reduced sample causes a substantial increase in estimator Variance,
though, for high diversity markers, the MSE values of Heay and Hiyeg
converge (Figure 1, left). In contrast, H outperforms H a1l for most loci,

-=.G3:Genes| Genomes | Genetics Volume 7

demonstrating that the rate of decrease in MSE with increasing H is
greater for H than for H Hpa (Figure 1, center). Interestingly, the com-
parison of Hy g with Hgy shows an opposite trend to the preceding
two. Despite the impact of bias, the decrease in variance of Hyy over the
analyzed range outpaces that of ﬁBLUE. Even so, ﬁBLUE uniformly
yields a smaller MSE for the analyzed diploid samples (which contain
a proportion of inbred individuals) across all loci (Figure 1, right).

To validate these theoretical predictions, we simulated 30 independent
genotypes for each locus, and, for each independent genotype, simulated a
single relative’s genotype (inbred full-sibling, outbred full-sibling, or
avuncular). Briefly, we generated the independent genotypes by sampling
alleles uniformly at random from the distribution of allele frequencies at
each microsatellite locus, and generated relatives by copying zero, one, or
two alleles from the relative according to the probability the pair would
share zero, one, or two alleles IBD [see Lange (2002), Chapter 5]. The
patterns observed for the simulated data accord with those of the theo-
retical predictions (Figure S2, each point is based on 10* simulations). It
is clear from these results that locus expected heterozygosity is heavily
influential on estimator MSE. However, we also find that the observed
value of expected heterozygosity for a locus normalized to its range of
expected heterozygosity values has an impact on estimator MSE. The
maximum and minimum values of expected heterozygosity for a locus
depend on the number of distinct alleles (I), and the frequency of the
most frequent allele (M), at that locus [see Theorem 2 of Reddy and
Rosenberg (2012)]. We quantify proximity of H for a locus to its max-
imum possible value as B = D/R, where D is the observed value of
expected heterozygosity for a locus minus its minimum possible value
given I and M, and R is the maximum minus the minimum value of
expected heterozygosity, given I and M, such that B € [0, 1]. Loci with a
smaller value of B yield a smaller MSE for all estimators (Figure S3).

Effect of sample size, n, on estimators

We next examined the properties of each estimator as a function of sample
size. All estimators perform increasingly well for samples of increasing size.
We demonstrate this property by measuring estimator MSE for samples
containing 2-100 relative pairs of various type and ploidy at the D352427
locus, selected to highlight the improved performance of i BLUE as the
bias of H i increases (H = 0.9301; Figure 2). For these tests, we con-
sidered only a single relative pair type at a time. The unbiased estimators
H and Hpug perform identically for diploid samples of first- and sec-
ond-degree relative pairs regardless of inbreeding (Figure 2, A-D). Ad-
ditionally, estimator MSE is uniformly smaller for samples containing
only second-degree relative pairs than it is for samples containing only
first-degree pairs (cf. Figure 2, A and B, and Figure 2, C and D; see also,
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Figure S4A). However, Hp yg unambiguously outperforms the other
estimators with relative pairs of varying ploidy (in this case, male-
female full-sibling pairs at an X-linked locus). In this scenario, Heed
provides a more accurate estimate of expected heterozygosity than does
H when the reduced set is created by removing only males from the
original while retaining females (Figure 2E). When all females are re-
moved instead, and males retained (Figure 2F), the MSE of Hyeq is
markedly the largest of the four estimators because 2/3 of the alleles in
the sample are discarded, rather than 1/3. For samples with inbred full-
siblings whose parents are brother and sister (Figure 2, C and D), the
trend of MSE with sample size mirrors that of outbred diploid samples
(Figure 2, A and B), but with larger MSE. However, the relative perfor-
mance of Hgy is notably worse for samples containing inbred diploid
avuncular pairs (Figure 2D) than for samples containing outbred diploid
avuncular pairs (Figure 2B). That is, its MSE remains greater than, or
equal to, that of the other estimators over the range of sample sizes
considered for the inbred diploid avuncular pair scenario (Figure 2D),
but consistently has smaller MSE than ﬁred for the outbred diploid
avuncular pair scenario (Figure 2B). Generally, increasing the sample size
is most effective for samples of <20 individuals, and it is over this range
that the difference in performance of the estimators is most apparent.

Effect of varying sample relative pair composition

on estimators

Finally, we calculated the MSE of each estimator for all 1326 combina-
tions of one to three relative pair types for samples of 100 individuals
fixed at 50 relative pairs, which we represent as triangular heat maps,
across samples containing outbred diploids, males and females at an
X-linked locus, or inbred diploids (each individual related to exactly one
other; Figure 3, Figure S4, Figure S5, Figure S6, Figure S7, and Figure S8).
The kinship coefficients () for each relative pair type considered across
our tests are defined in Lange (2002, Chapter 5) and DeGiorgio et al.
(2010, see Table 2), and modeled on the D352427 locus (H = 0.9301).

The outbred diploid samples included parent-offspring (& = 1/4),
avuncular (® = 1/8), and full-sibling (& = 1/4) relative pairs. Be-
cause parent-offspring and full-sibling pairs have the same kinship
coefficient, the heat maps in Figure 3, Figure S4A, Figure S5A, Figure
S6A, and Figure S7A are symmetrical with parent-offspring and full-
sibling pairs on the bottom vertices, and avuncular pairs on the top
vertex. Hyeq yielded the largest MSE of the four estimators, and this
value was constant throughout the space of the heat map (Figure S4A,
second triangle), because all reduced sets are identical for outbred
diploid samples. Hpyug consistently yielded the smallest MSE across
configurations (Figure S4A, fourth triangle). As was the case in Figure
2, the MSE of the estimators I/'}fu]h H , and ITIBLUE was smallest for
samples with only avuncular pairs, because these contain fewer depen-
dent allele observations on average. We observed these features in
simulated data as well (Figure S8A).

Although Hprur performed best overall for samples including out-
bred diploid relative pairs at D352427, the estimator with the smallest
variance in all situations is the biased estimator ﬁm (Figure S6A).
However, because its squared bias increases with the number of first-
degree pairs (Figure S5A), its relative performance declines compared
to Hpug as more of these pairs are sampled (Figure 3A, left triangle).
The relative performance of b2 red is highest when the number of first
degree pairs is maximized, but this is due to the decreasing performance
of Hyug as more dependent observations are included (Figure 3A,
center triangle). While the difference in MSE between Hand H BLUE 1S
always slight for samples of noninbred diploids, these values diverge as
the complexity of the sample increases (Figure 3A, right triangle). That is,
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as the numbers of first- and second-degree pairs approach each other,
Hyiue emerges decisively as the more accurate estimator, with the max-
imum value of this difference reached at 23 second-degree and 27 first-
degree pairs. Thus, while the performance of the estimators for a sample
containing relatives follows the same general trend, FNIBLUE provides the
greatest accuracy for heterogeneous samples of outbred diploid individuals.

We also considered the relative performance of each estimator when
using either the BLUE (p;) or the sample proportion (p;) to estimate allele
frequencies. Notably, all estimators perform best when the BLUE (p;) of
allele frequency rather than the sample proportion (p,) is used to infer
population allele frequencies. We calculated the theoretical MSE for each
estimator once with p;, and once with p,, across all combinations of
relative pairs for diploid individuals at the D3S2427 locus and mapped
its value for the estimate with p, minus the estimate with p; (Figure S7A).
Because both frequency estimations yield the same values in samples of
unrelated individuals, Hyeq performs identically for p, and p,, and is not
included. The MSE of an estimator calculated with p; is always smaller
than that of the estimator calculated with p;, and the pattern of diver-
gence between their MSEs follows a similar trend across all estimators,
resembling the rightmost panel in Figure 3A. This result suggests that the
difference in MSE between H and I:IBLUE is driven primarily by the
difference in performance between p, and p;. Both the p, and p; estima-
tors yield the same value at the vertices of the triangles, and the difference
in their MSEs reaches a maximum at 22 second-degree pairs for Hg and
24 second-degree pairs for H and ?IBLUE (Figure S7A, center and right
triangles). The MSE of Hpug calculated with f)i is, at most, on the order
of 107° greater than that of Hprus calculated with f)i, indicating its
robustness to variance in allele frequency determination (Figure S7A,
right triangle). In contrast, the other estimators return a maximum
difference in MSE on the order of 1077. The estimation of expected
heterozygosity with i fulls bag , or b2t pLue Will always yield a smaller MSE
for samples of outbred, diploid individuals when p, rather than p, is
taken as the estimator of population allele frequency.

We repeated these tests in samples of mixed ploidy (Figure 3B, Figure
S4B, Figure S5B, Figure S6B, Figure S7B, and Figure S8B), and ﬁBLUE
emerged similarly superior to the other estimators, once again yielding
the smallest MSE. We analyzed the D352427 locus as X-linked for these
tests, counting males as haploid and females as diploid, and observed
full-sibling pairs [similarly to DeGiorgio et al. (2010), ® =1/2 for
male-male pairs, @ = 1/4 for male-female pairs, and ® = 3/8 for
female-female pairs] for samples of 100 individuals and 50 relative
pairs. All estimators reach their maximum MSE in samples containing
only male-male pairs (Figure S4B). This is because the number of in-
dependent observations (indicated by a larger mean kinship coefficient)
is smallest when there are no females in the sample. Correspondingly,
the estimators yield smaller MSE values with increasing incorporation
of male-female pairs. The minimum MSE of 3 a1 18 reached at 50 male-
female pairs, as with H and Hpg; g because its squared bias (Figure S5B)
decreases with increasing male-female pairs, though its variance is small-
est at 50 female-female pairs, due to the greater number of alleles in the
sample (Figure S6B). To create the reduced sets, males were removed
from male-female pairs to minimize the subsequent increase in MSE.
That is, the removal of males removes 1/3 of the allele copies from the
sample, rather than 2/3 if females are removed, or 1/2 for a pair of same-
ploidy individuals, and so H,q has the same value across samples with
the same number of male-male pairs (Figure S4B, second triangle).

The direct comparison of ﬁBLUE with the other estimators once
again yielded different signatures for each subtraction for mixed-ploidy
samples (Figure 3B). The point of greatest difference in MSE between
H wn and Hppug occurs when all relative pairs are male-male, while the
point of least difference occurs for samples of only male-female pairs
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Figure 2 Theoretical MSE as a function of sample
size for samples of outbred diploid full-siblings (A),
outbred diploid avuncular pairs (B), inbred diploid
full-siblings (C), inbred diploid avuncular pairs (D),
male-female full siblings at an X-linked locus with
the reduced set omitting males and retaining
females (E), and male-female full siblings at an
X-linked locus with the reduced set omitting
females and retaining males (F). The samples were
evaluated for the D352427 locus (H = 0.9301),
and sample size was always twice the number of
relative pairs included in the sample for samples
containing 2-100 relative pairs. Each individual in
the sample was related to exactly one other.

E  Outbred Full-Siblings, Mixed-Ploidy

F Outbred Full-Siblings, Mixed-Ploidy

0.0015 0.0020
I

0.0010

|
|

\

Mean squared error

0.0005
I

0.0000

T T T T T T T T T

0 20 40 60 80 100 0 20 40
Number of male female pairs at X linked locus

(Figure 3B, left triangle). This pattern broadly resembles the squared
bias of Hyy (Figure S5B, first triangle), underscoring the effect of bias
on estimator performance. The pattern of difference in performance
between ﬁred and ﬁBLUE differs markedly, and the two estimators
perform most similarly as the number of male-male pairs decreases,
reaching a minimum at 33 male-female pairs plus 17 female-female
pairs (Figure 3B, middle triangle). H yields the closest MSE to that of
Hpug for all relative pair configurations, and their difference is, at
most, on the order of 10~ (Figure 3B, right triangle). The pattern here
mainly reflects the difference in performance between p; and p; esti-
mates of population allele frequency, as in Figure S7B, where p, esti-
mators yield increasingly smaller comparative MSE values as the
numbers of relative pairs in the sample approach each other.

We repeated the preceding tests once more for a sample in which full-
siblings resulting from a brother-sister mating were included alongside
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second-degree and outbred full-sibling pairs (Figure 3C, Figure S4C,
Figure S5C, Figure S6C, Figure S7C, and Figure S8C). Here, the kinship
of inbred individuals with each other was 3/8 rather than 1/4. For all
estimators, the inclusion of inbred full-siblings increased the MSE of the
estimator, with a maximum MSE at 50 inbred full-sibling pairs, and
a minimum at 50 second-degree pairs. For H red, this minimum was also
reached for any sample in which there were no inbred individuals, be-
cause the reduced sample is identical for these (Figure S4C, second tri-
angle). Again, Hprue was the least errant estimator across the space of
sample configurations (Figure S4C, fourth triangle), and its advantage
over the other estimators differs for each estimator (Figure 3C). Because
the bias of Hgy is largest at 50 inbred full-sibling pairs, the greatest
difference in performance between it and Hpyyg is at this point (Figure
3C, left triangle). Meanwhile, the largest differences in MSE between Hyed
and H pLUE are near the top vertex, where second-degree relative pairs
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Figure 3 Theoretical difference in MSE between ﬁfu” (left), I:I,ed (center), or H (right), and HBLUE, for samples of 100 (A) outbred diploid individuals, (B)
male and female individuals at an X-linked locus, or (C) diploid individuals wherein some full siblings are inbred with brother-sister parents. The samples
and MSE values considered for each subtraction were modeled on the D352427 locus (H = 0.9301). Each sample contained 50 relative pairs, such that
each individual was related to exactly one other. Each sample configuration is a single point in the space of a heat map defined by three coordinates
(each representing the count of a relative pair type). For each configuration, the MSE of PBLUE is subtracted from that of the other estimators, yielding a
value >0. Samples were composed of one to three relative pair types where the vertex of each heat map represents a sample with only a single relative
pair type. The relative pair types were (A) parent-offspring (PO), second-degree avuncular (AV), and full-sibling (FS), (B) male-male (MM), male-female
(MF), and female-female (FF) full-sibling such that the number of males and females in each sample is not fixed, or (C) inbred full-sibling (FSi), second-
degree avuncular (AV), and outbred full-sibling (FSo). Blue and black points indicate the smallest and largest values, respectively, on each map. Threshold
values for coloration are indicated in the scales to the right of each heat map, with smaller values colored lighter. Note that the scales are not identical
across heat maps. The values upon which these subtractions are based are represented as heat maps in (A) Figure S4A, (B) Figure S4B, or (C) Figure SAC.

predominate, while the smallest are toward the bottom vertices (Figure
3C, center triangle). The difference in MSE between Hand H BLUE 18 at
least an order of magnitude less than for the other comparisons, and
increases for increasing sample complexity, but reaches its maximum for
samples of 28 inbred full-sibling plus 22 second-degree pairs (Figure 3C,
right triangle). This pattern reflects the decreased MSE for the estimators
when calculated with p, compared to their calculation with p; (Figure
§7C). Ultimately, the performance of the estimators of expected hetero-
zygosity across varying sample compositions depends on the estimator of
allele frequency incorporated into the expected heterozygosity calcula-
tion. No matter the sample type, estimators based on p, outperform
estimators based on f)i, and Hpue outperforms b2 full b2 red, and H.

Tests of ﬁBLUE on single-nucleotide polymorphism

(SNP) loci

Because SNP datasets are more common in recent studies, we performed
analyses equivalent to our microsatellite analyses for 50 hypothetical
SNP loci. These loci were biallelic with minor allele frequency (MAF)
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between 0.01 and 0.5, with increments of 0.01, corresponding
to expected heterozygosity values ranging from 0.0198 to 0.5. We
first measured the difference in MSE of Hgy with that of ﬁred, H , or
Hppur as a function of true locus expected heterozygosity (H), as we did
in Figure 1 (Figure S9). For each locus, the MSE of g BLUE Was smallest,
while that of H, ful Was generally second-smallest, following the trend for
microsatellite loci visible in Figure 1, wherein less diverse loci yielded a
smaller MSE for Hpy than for H. However, unlike for microsatellite
loci, estimator MSE peaks midway through the range of evaluated SNP
loci, such that the smallest MSE values lie at either extreme of the range
and the largest MSE value, as well as the largest difference in MSE
values for all comparisons, is at the locus with MAF= 0.15
(H = 0.255). Additionally, Hgy performs comparatively better than
ﬁ,ed (Figure S9, left) and H (Figure S9, center) as H approaches
0.255, but is outperformed by these unbiased estimators as H ap-
proaches 0.5. Once more, the trend is opposite for the comparison
between ﬁﬁm and H BLUE, showing the greatest comparative perfor-
mance by Hprug at the same locus (MAF = 0.15, H = 0.255). Thus,
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considering the results presented in Figure 1 and Figure S9, the greatest
relative performance of i pLuE for inbred samples is achieved at loci for
which estimator MSE is largest.

We next examined the effect of sample size on estimator performance
for hypothetical samples of outbred diploid, inbred diploid, and outbred
male-female relative pairs at the simulated locus with MAF = 0.05
(H = 0.095). As we varied the sample size from two relative pairs to
100 (each individual related to exactly one other, one relative pair type
per sample), we found that Hpoe yielded the smallest MSE of all esti-
mators only for samples containing male-female full-sibling pairs mod-
eled at an X-linked locus (Figure S10, E and F). This observation mirrors
the trend seen in Figure 2, wherein H pLuE outperformed the other esti-
mators across all sample sizes. However, Hgy) yielded the smallest MSE
across all sample sizes for outbred and inbred diploid full-siblings and
avuncular pairs (Figure S10, A-D). This result is because the samples
modeled here are minimally complex, with only one relative pair type,
and modeled for a highly homozygous marker—two conditions under
which the low bias and variance of Hg result in favorable performance.

Finally, we analyzed estimator performance once more for the locus
with MAF = 0.05 (H = 0.095), for a sample of 50 individuals across
changing outbred diploid, inbred diploid, and male-female full-sibling
relative pair compositions (Figure S11, A-C). We display these results
as heat maps, and find that our results here are broadly concordant with
those for the D3S2427 human microsatellite locus (H = 0.9301). As
with the experiments displayed in Figure S10, the least complex sam-
ples yielded a smaller MSE for H ful estimates than for H BLUE estimates.
Correspondingly, samples whose relative pair compositions resulted in
fewer independent allele observations were more accurately and pre-
cisely evaluated with Hppyg. Thus, while sampling lower-diversity
markers may occasionally favor the use of ﬁful], the inclusion of two
or more relative pair types in the sample is likely to bias Hgy, and
require the use of 2 sLUE to yield accurate inferences.

Empirical application of HeLue
To conclude our investigation into the performance of Hyy g, we applied
it to empirical data from the MS5795 dataset. We retrieved human
microsatellite data from 5795 individuals (11,590 allele copies) across
645 autosomal loci sampled genome wide. We assumed the mean value
across loci for Hq in each of 267 populations to be the true expected
heterozygosity value for these populations, as it is an unbiased estimate.
We additionally chose to compare the other estimators with b2 red, De-
cause an important basis for their evaluation is their agreement with this
unbiased estimator, irrespective of the data to which they are applied.

To emphasize this, we performed three Wilcoxon signed-rank tests
to compare the ranking of populations by their mean expected hetero-
zygosity across all loci calculated with Hred, and either Hfuu, H or
Hyrue (Table 1). At the e <0.01 significance level, the comparisons
showed that the inclusion of relatives for Hy was highly significant on
the rankings it yielded, indicating that not correcting for relatedness
among samples can significantly alter the estimates of expected hetero-
zygosity. However, both H and, especially, Hg[yg, yielded P-values
greater than the threshold for the test against Heq. These results in-
dicate that the estimates of expected heterozygosity are not significantly
affected by the inclusion of related individuals in the sample when
relatedness is taken into account. Furthermore, a test between H and
Hyug yielded a P-value of 3.44x 1072, suggesting no significant dif-
ference in the ranking of populations by mean expected heterozygosity
with these two estimators.

Although the unbiased estimators H and Hgyug have smaller MSE
than H ful for samples with related individuals, their variance tends to
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Table 1 Wilcoxon signed-rank test for mean across loci of Hieq
with Hy, H, and Hpye for the 93 populations whose samples
contained related individuals

Comparison P-Value for Wilcoxon Signed-Rank Test
Heeq with Hy 4.39%x 10715
Hieq with H 1.00x 1072
Hreq With HgLue 0.255

be larger than that of i full- DeGlorglo et al. (2010) previously showed
that the dlfference in SD of H with Hfull was small, while the mean
values of H and H red were much more similar to each other than either
of them was to the mean of H full- We again show this to be the case, and
find as well that H BLUE DOt only repeats, or improves upon, the con-
cordance of H with Hred, but, in some cases, Hg;yg has a smaller SD
than does H full (Flgure 4, left and center panels) A direct comparison of
the performance of H against that of Hpryg (Figure 4, right panel)
shows that Hpyug has a generally improved SD, and similarity to the
Hred estimate over H. For some samples (primarily those from the
Americas), this is not the case, possibly because all close relatives were
not identified in the original dataset, resulting in an incorrect kinship
matrix for calculation of the statistic.

Improving estimates of Fsy by application of FlBLUE

We predicted that the smaller MSE of Hpue would translate to im-
proved accuracy for estimators that are summaries of expected hetero-
zygosity when samples contain related individuals. To test this
hypothesis, we calculated the population differentiation statistic, Fsy
(Equation 4), for pairs of populations whose samples in the MS5795
dataset contained related individuals. Our intent was to compare the
MSE and bias of the commonly used Fst estimator of Reynolds et al.
(1983), which is based on ﬁmu, and which we label as ﬁST, to an
estimate of Fgr calculated from b2t BLUE, Which we label ﬁST_,BLUE. The
formulas for these estimators follow the form of the general estimator of
Fsr (Equation 14). We first measured the MSE of both methods (and an
estimate using H , Fsr) on simulated data, where the Fsr of pairs of
populations with samples of size 60 diploids each (30 relative pairs,
10 inbred full-sibling, 10 outbred full-sibling, and 10 avuncular pairs;
Figure 5) was averaged across 10* simulated replicates. The calculations
included here were performed for simulated Gujarati and Maya (left),
Guyjarati and Japanese (center), or Gujarati and Hadza (right) samples
for the least diverse (TCTA015M_22), median diverse (D10S2327), and
most diverse (D3S2427) loci of the MS5795 dataset, following their
allele frequency distribution in MS5795. ﬁST,BLUE consistently has a
smaller MSE than the others, and the MSE of all estimators of Fst
decreases with increasing locus diversity, as the MSE of the estimator
of expected heterozygosity decreases.

We additionally find that Fgr has an upward bias compared with
FST red (calculated with H,eq), as well as a larger SD in general than
FST sLut (Figure 6). Furthermore all values of Fsr prug are smaller than
the paired value of Fgr calculated for the same population. The differ-
ence in the mean of ﬁST and of ﬁgT,BLUE across all loci with the mean of
?ST,redy an estimator which serves as a proxy for the true value of Fgr, is
displayed on the vertical axis, while the horizontal axis measures the SD
of ﬁST and of fﬁSTABLUE (Figure~6). Supporting our observations indicat-
ing the improved accuracy of Fgr grug over Fsr, Wilcoxon signed-rank
tests (Table 2) between IA:ST,red and either ﬁST or ﬁST,BLUE indicate that
the inclusion of relatives significantly affects the estimate of population
differentiation at the & < 0.01 significance level. Meanwhile, ﬁST‘, red and
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F stsLUE are not significantly different in their estimates. These results
suggest that the improved properties of Hpyg transfer to the summa-
ries that include it in their calculations.

DISCUSSION

We have introduced H BLUE, an extension to the estimator (ﬁ ) of
expected heterozygosity developed by DeGiorgio et al. (2010) that yields
a smaller mean squared error in samples containing related individuals,
while maintaining unbiasedness. Conveniently, the derivations of H BLUE,
and its variance, are parallel in form to those of H , and we were therefore
able to analytically evaluate the performance of the new estimator simul-
taneously with that of its predecessor. Our updated estimator, H BLUE, 1S
based on results from McPeek et al. (2004), who characterized the BLUE
(p,) of allele frequency. The BLUE improves the precision of allele fre-
quency estimation in complex pedigrees, for which the sample propor-
tion (p,, the estimator of allele frequency used in H and H) is unbiased,
but increases in variance with inclusion of related and inbred individuals.
Because the properties of the estimator of allele frequency transfer to the
estimator of expected heterozygosity, Hpyug is likely to outperform H
in situations where p, has a smaller variance than p,. This trend is true for
genome-wide data as well (Figure 4 and Table 1).

F;; of Gujarati and Maya

F;; of Gujarati and Japanese

Overall, Hy g yields identical results to H in samples containing
only one relative pair type, but the two diverge in performance as
sample complexity increases (see heat maps in Figure 3, Figure S4,
Figure S5, Figure S6, Figure S7, and Figure S8). While both estimators
are unbiased, H experiences a larger increase in variance for each
additional relative pair type introduced into a sample after the first.
This holds true for all sample types regardless of ploidy and inbreeding,
suggesting that i srug will outperform Hin practice, where datasets are
often complex. Furthermore, the results of our empirical analysis pro-
vide an equally important complement to this observation. Of the
93 populations from the MS5795 dataset we considered that contained
relative pairs in their samples, each contained sampled individuals that
were not related to any other in the sample. Thus, these samples were
more complex than those in which each individual was part of a relative
pair of the same type. For most of these cases, except for some Amer-
ican populations (discussed below), Hp ug outperformed H. This is
corroborated by the Wilcoxon signed-rank test (Table 1). We expect
therefore that any scenario in which there is heterogeneity in relative
pair type among sampled individuals, as is observed in many human
population-genetic datasets (Pemberton et al. 2010, 2013), should favor
the application of Hprus over other estimators.

F;; of Gujarati and Hadza
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Figure 5 Application of the estimators ﬁfu“, FI, and Hgyue to the calculation of Fer as IEST, Fst, and IN:ST,BLUE7 respectively, using simulated data for the
Guijarati sample, with either the Maya (left), Japanese (center), or Hadza (right) samples, showing MSE on the vertical axis. The Reynolds et al. (1983)
estimator is equivalent to the application of Hyy in calculating population differentiation. The simulated samples contained 60 individuals and
30 relative pairs, of which 10 were inbred full-siblings, 10 were outbred full-siblings, and 10 were outbred avuncular pairs. Each individual was
related to exactly one other, and the data were simulated following the same probabilistic method as employed to generate Figure S2. The three loci
displayed on the horizontal axis are the least diverse, median diverse, and most diverse loci of the 645 MS5795 human microsatellites.
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Figure 6 Appllcatlon of the estimators Hg ue and Hfu” to the estima-
tion of Fst as Fst and FstaLue, respectively, from empirical data. Sim-
ilarly to Figure 4, the difference between the mean of the estimator of
Fst (either derived from Hgye or /I:’fu”) and an unbiased estimator (de-
rived from ﬁred), is displayed on the vertical axis, while the SD of the
estimator is displayed on the horizontal axis. The empty circles repre-
sent the Reynolds et al. (1983) estimator (identical to the Hfu”—derived
estimation), while the filled circles represent the estimation derived
from HgLye. Here, the Fsr values for the French sample with each of
the 92 other samples containing related individuals in the dataset
MS5795 are plotted, colored by the region of the changing sample.

In addition, random sampling of small isolated populations yields an
increased chance that related individuals will be included with large
enough sample sizes. Further, inbreeding may confound estimates of
diversity, and mislead Hiay to underreport true population expected
heterozygosity. Populations of interest that may display these attributes
include geographically isolated human settlements in remote alpine
(Coia et al. 2012; Capocasa et al. 2013), South American rainforest
(Wang et al. 2007), and Siberian taiga and steppe habitats (Dulik
et al. 2012), and groups such as the Old Order Amish (Van Hout
et al. 2010), Hutterites (Abney et al. 2002; Chong et al. 2011), and
Mennonites (Payne et al. 2011). Further, though our analysis did not
directly consider polyploid organisms, the applicability of ﬁBLUE to
samples containing individuals of any, and varying, ploidy highlights
its usefulness for such data. Prominently, analysis on polyploid organ-
isms such as plants including tetraploid Arabidopsis thaliana (Hollister
et al. 2012), and hexaploid bread wheat (Nielsen et al. 2014), both of
which self-fertilize, and may therefore be inbred, as well as commer-
cially and ecologically significant Hymenopteran insects, including
honeybees (Solignac et al. 2003; Harpur et al. 2014), bumblebees (Lye
et al. 2011), and ants (Butler et al. 2014), whose males are haploid at all
loci, while females are diploid, is likely to benefit from the improved
accuracy and precision of H BLUE-

We additionally believe that continued investigations into the di-
versity at single sites in organisms as diverse as dogs (Sutter et al. 2007),
gray wolves (Zhang et al 2014), humans living at high altitude
(Simonson et al. 2010; Huerta-Sanchez et al. 2013), and rice (Huang
et al. 2012), in addition to host-microbiome studies (Blekhman et al.
2015), will benefit from the advances provided by Hprug. These studies,
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Table 2 Wilcoxon signed-rank test for weighted mean across all
loci of ﬁST‘red with Fsr and fST,BLUE for the French population with
the 92 other populations whose samples contained related
individuals

Comparison P-Value for Wilcoxon Signed-Rank Test
EST,red with EST 5.25x1071
Fstred With FstpLue 0.967

as well as many others, have performed scans for positive selection using
genomic outliers of population differentiation-based statistics (e.g., Fsr,
locus-specific branch length, and the population branch statistic), where
the calculation is performed per-site, rather than averaged across a large
number of sites. Such studies would benefit from estimators of genetic
diversity, such as i srue and FST,BLUE7 with improved variance.

Itis pertinent at this point to revisit a pair of potential limitations in our
method and examine their implications. First, in Figure 4 (rightmost
panel), the mean of H is either closer to that of H red than to Hpug,
has smaller SD than H BLUE, Or both for certain samples (predominantly
from the Americas). These observations indicate that the accuracy and
precision of Hprur may be impacted by the accuracy of the kinship
information incorporated into the calculation. The pedigrees of smaller,
more remotely located, populations may be more complex compared to
those of larger groups. Further, with a greater proportion of relative pairs
in each sample, the effect of relative pair type misidentification may be
larger. For RELPAIR (Epstein et al. 2000), which was the software chosen
to identify relative pairs in MS5795 samples, second-degree pairs cannot
be identified as confidently as first-degree pairs (Pemberton et al. 2010).
Even so, although H may exhibit a somewhat greater robustness to
relative pair misclassification, it is still generally outperformed by Hprug.

The second point we address is the smaller MSE of H full at less diverse
loci in the dataset, especially for samples with fewer relative pairs. While
the variance of Hyy is always smaller than that of the other estimators, its
bias increases with increasing locus allelic diversity. It is for this reason
that the unbiasedness of Hyyy is its most desirable property. In practice,
the mean of expected heterozygosity is often taken across loci. Based on
such an approach, Hpug (and H as well) will return the mean expected
heterozygosity, and the variance of this estimation (as with all estimators
taking the mean across loci) approaches zero as more loci are sampled. An
interesting property of all estimators is that their variance (and therefore
MSE) is larger for loci whose value for B is closer to 1, where B = D/R
(B € [0, 1]; see Results and Figure S3). Because this effect is greatest for
loci with lower true values of H, we expect " fl to have the smallest MSE
of all estimators at less diverse loci that are close to their maximum
expected heterozygosity, and for which the sample mean kinship coeffi-
cient is insufficiently large to appreciably bias the estimator (Equation 12).
It is thus important to note that no estimator is uniformly superior to the
others. Accordingly, the unique limitation of Hpiug is that the sample
kinship matrix must be invertible for the calculation to proceed.

H pLue additionally confers its improved MSE over 3 @l down-
stream to calculations that incorporate estimates of expected heterozy-
gosity. To illustrate this point, we computed Fsr as a function of three
estimators: 2, wl, H, and Hppyg. For simulated data, we found that
FST BLUE, ylelded an estimate with smaller MSE for the three tested loci
than did F sr (Figure 5) or FST, and a much smaller mean distance from
the true Fst value than FST _For empirical data (Figure 6), we observed a
consistent upward bias for Fsr compared to F ST red N SaMples contain-
ing relatives that followed much the same pattern as the downward bias
of 1%111 for such samples. This trend is clear when we consider the
formula for Fsy, which can be written as 1 — (H; + H,)/(2H)2). Tak-
ing a 1full and o 2.full as Hy and H,, this expression yields a larger value
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than if H 1 red and 2 2.red Were used, because the ratio (H; + H,)/(2H12)
is smaller for downwardly biased estimators. Interestingly, the SD of
F ST,BLUE 1S, in most cases, smaller than that of Fgr for the dataset, while
the SD of Hyyg was frequently (though not consistently) larger than
that of H, n (Figure 4, center panel).

It is thus noteworthy to consider that the performance of Hgyug and
Hga may diverge further in their applications, where any improvement
in MSE for Hyur may be magnified downstream. This is highlighted by
the increased concordance between ng_,BLUE and ﬁST‘,ed compared to
Hpyug and b3 red (¢f. P-values between Table 1 and Table 2). With this
in mind, applications of ﬁST,BLUE can also be considered. Two such
examples are the locus-specific branch length (LSBL; Shriver et al.
2004) and the similar population branch statistic (PBS; Yi et al. 2010).
These statistics incorporate Fgr values between three populations as
measures of branch length to detect positive selection at a locus. Loci
for which the unrooted three-taxon tree indicates a significantly longer
branch length in a particular lineage may represent regions possibly un-
der selection. To allow for the easy application of H BLUE, we have written
an R script, BestHet, that computes HBLUE, IFSTBLUE, and LSBLgy U,
given matrices of genotype and kinship data for a sample (download
available at http://www.personal.psu.edu/mxd60/best_het.html).
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APPENDIX

Derivations of unbiased estimators of expected heterozygosity

In this section, we derive the general unbiased estimator of expected heterozygosity H for any unbiased linear estimator of population allele
frequencies, defined in Proposition 1, and show how the formulas for H (DeGiorgio et al. 2010), and Hpypur (Corollaries 2 and 3), emerge from
specific cases of H.

Proof of Proposition 1: We need to show that E[H] = H. Note that

j=1 k=1
n n mo my ) .
Wk (i) 4 (D)
= —= AYAY.
Taking the expectation, we obtain
. non mi o my .
E[5}] = - B[4 4]
s L L Sy
n n X mi o my
- WiWk P [A](Q — 1,40 = ]
s L0 L Sy
n n Wiw mp my
=> > [(1 = @y)p} + Pyepi]
s WL L Sy
) (1= p: A
=pi +popi(1=pi).- (A1)

Therefore

Proof of Corollary 2: We show that defining the weight of each individual in the calculation of p, in terms of an individual’s relative allele copy
contribution yields H from H. Letting wx = my/> "_, m,, we have that

o my (i) ~
= x\W —

p i P ]n lmj k p i

and
n n m m _
j k
P2 = o ®,
]':ZI k=1 Zx*l My Zy*l m)’

Plugging in yields

Proof of Corollary 3: We show that defining the welght each individual according to their relative contribution to the inverted kinship matrix of
the sample yields Hppyg from H. Letting wy = Y = (KT ik /1TK™'1, we have that
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Plugging in yields

Derivations of variances of expected heterozygosity estimators

In this section, we summarize the procedure by which DeGiorgio et al. (2010) derived the equation for the variance of H, illustrating the variance
of the general case, H. For the full derivation, see Appendix B of DeGiorgio et al. (2010). We then provide the specific formulation for the variance of
)i (Corollary 7) and Hyrur (Corollary 8).

Abbreviated proof of Proposition 4: The variance of H (Equation 9) is defined as

o 1
Var[H] = (1—p2)2 Var|1l—

By definition of variance, we get

1
Var I—Zf)lz} ZVarpl +ZZ ZCovpl,pl
i=1 i=1 i'=it1
with
varlp?] = B[] - (B[]
and

Cov[p;,pi] = E[p; p7] — E[p;]E[p7].
Recalling that p; = Z;‘ZIZZ’L’I%A};) for the ¢th allele copy of individual j, whose ploidy is #;, we have that
D90 90 95 3D 90 3p 9p wp e MEVFENA]
g el e e e m]mkm my GOkt K
and
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W]WkWJ Wk
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211 1 i . >
for the case i # i'. We have ]é)rewously shown 1n Equatlon Al that E[p’] = p? + p,pi(1 — p;), and the value of E[p>] similarly follows. Thus, we

need to calculate E[A;, AV A ,((r)A]() M ,] and E[ A% A Ay t} for the i # i’ case. These are

]t/ kt Ajy

E A AGALAL, | = ®pgpi+ [y + D + Dy + Pugic + Dy + Py + Bty — 7y |}

+ [12c1>jkjfkr + O+ Dy + Do + Dy + Dy + Dy — 3 (cbjk,-r + Dy + Dy + Dy )
_2(‘1’jkwk' + Pjjie + Py )]Pz [1 + Qi jrre + Py e + Py

+ 2(¢'jkj' + @ + Py + Prjx ) = 6@pip — (q)jk + @ + Pjpr + Py + Ppyr + ‘I)j’k'>]P;1 (A2)
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and

E A Alit>Aj'té’)A< )] :[q)jk,j'k’ — Qi }PIP; [ itk + Pjk — ((I)J'k]" + cDﬁ"") B q)jk,j'k’}PiP?'
+ [2c1>jkj,k, + Pjp — (q)jj’k’ + ‘ij'k'> - (I)jk,j’k’]P%Pi’
+ [l + q)jk,j’k' + (I)] Kk + q)jk'.,kj’ + 2<q)jkj’ + q)jkk' + Q)] K+ q)k] K )

— 6Djx — (d>jk + ®j + Djpr + Dy 4+ Dy + <I>jfkr>] pips. (A3)

Substituting Equation A2 into E[p;] and solving for Var[p:], we obtain

)
Var[p;| = pypi + <4p3 +3p22 = 7Py — p%)p? + <12p4 +4p, +2p; — 12p5 — 6pz,z>P? + (3/)2,2 +8p3 — 6py — 4py — p%)p?,

and, substituting Equation A3 into E[p; p>], and solving for Cov[p;, p>], we obtain

)
Cov|[p;,p7] = (Pz,z —ps— P%)Pil%‘* <2P4 +p5—2p3— P2,2>PiP,% + <2P4 +p5—2p3— Pz,z)PiZPi’
+ (3P2,2 +8p; —6py —4p, — P%)P?Pz%'

Thus, substituting the values for variance and covariance into the definition of variance, we have
1 I
Var[H] :m [Pz 2= P +2(p Z (2P4 +py 23— Pz,z) ZP?
2 py L

2
+ (3P2,2 +8p; —6py —4p, — P%) (ZP?) ] : u
i1

Corollary 7: Consider alocus with I distinct alleles, and parametric allele frequencies p; € [0,1],i = 1,2,...,I,and >_"_ p; = 1. For a sample
of size n individuals of any ploidy, inbreeding status, and relatedness,

~ 1
Var [H] = m Var

I
1- Zﬁf] (A4)
i=1
and

Var

I
=35
i=1

I I
= (I)272 - cb; + 2(‘1); - CI)4> szz +4(2CI)4 +CI)2 - 2(1)3 - cbzﬁz) ZP?
i=1 i=1
I 2
+(3CI32‘2+8(I33—6(I34—4CI32—CI3§>(Ep?) , (A5)
i=1

where ®,, &5, &4, and @, , are mean kinship coefficients, weighted by the contribution of individuals to the number of allele copies in the
sample, with subscripts corresponding to the number of individuals considered for the calculation. Additionally,

i (ipf)z} (A6)

Var ~ 4

The proof of Corollary 7 follows from the proof of Proposition 4, where p, is substituted for p,, and ® ,, ® 3, ® 4, and P , , are substituted for
P2, P3, Pa, and p, ,, respectively.

Corollary 8: Consider a locus with I distinct alleles and parametric allele frequencies p; € [0,1],i=1,2,...,I,and >.I_ p; = 1. For a sample
of size n individuals of any ploidy, inbreeding status, and relatedness,

Var [IA‘}BLUE} = (-« Var
- 2

1- Z ] (A7)

and
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I

1 1
1-— Zﬁlz:| =K22 K% + Z(K% — K4) szz + 4(2K4 + Ky — 2Kk3 — K272) Zp?

i=1 i=1 i=1

Var

+(3K272 + 8k3 — 6Ky — 4Ky — K2 (Zp,) , (A8)

where k», K3, K4, and k,, are mean kinship coefficients, weighted by the contribution of individuals to the inverted kinship matrix, with
subscripts corresponding to the number of individuals considered for the calculation. Additionally,

I I 2
Var [I’:IBLUE} ~ 4K, |:Zpl3 - <Zp12> :| . (A9)
i=1

i=1

The proof of Corollary 8 follows from the proof of Proposition 4, where p; is substituted for p;, and k3, k3, k4, and k» , are substituted for p,, p;,
p4, and p, ,, respectively.

Derivations of bias measurements in the application of H

For samples containing related and inbred individuals, H has a downward bias, which is defined in Equation 12 for the general estimator of
population allele frequency p,. Here, we present Corollaries 9 and 10 for the specific estimators of population allele frequency p; and p;, respectively.
Corollary 9: Consider a locus with I distinct alleles and parametric allele frequencies p; € [0,1],i = 1,2,...,I,and 31 p; = 1. For a sample of
size n possibly related or inbred individuals, the bias of the estimator of expected heterozygosity H changes with the true locus expected
heterozygosity such that

1—nq32
n—1

1
H(p,) :nil(l— ﬁ?)-
i=1

As this is the standard application of H (Equation 2), Equation A10 describes the bias of H in the Results. However, H is biased with any unbiased
linear estimator of allele frequency for samples containing related or inbred individuals. The proof of Corollary 9 follows from the proof of
Proposition 5, where @, is substituted for p,.

H, (A10)

Bias [H(p )]

where

Corollary 10: Consider a locus with I distinct alleles and parametric allele frequencies p; € [0,1],i=1,2,...,I,and SI_,pi = 1. Fora sample
of size n possibly related or inbred individuals, the bias of the estimator of expected heterozygosity H changes with the true locus expected
heterozygosity such that

BMS[ (1)] I;i?fzf{, (A11)

where

H(p;) = n_1< E: )- (A12)

The proof of Corollary 10 follows from the proof of Proposition 5, where k; is substituted for p,.
Derivations of components for the variance of Fs; estimators

In this final section of the Appendix, we provide derivations for the components of Equations 16 and 17, which describe the variance of Fsr. We
derive the variance of H 12, as well as the covariances of H,, with H, (and interchangeably, H,, with H;), and of {Iu{ 1= %PUI 1= %H 2} with Hp,.

Because the complete expression for Var[Fgr] is unwieldy, we stop at the derivation of the final component.

Lemma 11: Consider a locus with I distinct alleles across two independent populations and parametric allele frequencies p; € [0,1],
i=1,2,...,1,and 3. p; = 1 for population 1, and g; € [0,1], i =1,2,...,I, and 31_ q; = 1 for population 2. For two samples of size
ny and ny, individuals from populations 1 and 2, respectively, each with individuals of any ploidy, inbreeding status, and relatedness,

I I I 2
Var[f] = pi (1= o8 ) Y- pigt + o8 (1= 3 )ZP:%JFPZ D> b (o868 o) p§2)<2piqi> L (A1)

i=1 i=1 i—1
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where the superscript of the mean kinship coefficient p, corresponds to the population for which it is calculated. The equations for the
variance of Hy, and Hy, ug are obtained by substituting &, and k,, respectively, into Equation A13 as the mean kinship coefficients in
place of p,.

Proof: By definition of variance,

-1 1
Var H12 ZVar Pid; +ZZ Z Cov[ﬁizlﬁﬁi’éi’]

i=1 i'=i+1

where

and

Cov [ﬁiéﬁﬁi’éi’} = E[ﬁiéiﬁi’éi’] - E[ﬁlél]E[ﬁle]
Because p; and g, are unbiased estimators of population allele frequency, and populations 1 and 2 are independent,
E[pd;] = pigi
Similarly, E[p, ;] = piqi Next, we have

E[5;4}] = E[p]E[4]
= [P? + 3 pi(1 _Pi)} [Q? + 51— 61:')} (Al4)
= pigi [Pi +P§1>(1 —Pi)} [Qz +p; >(1 - %’)]7

where E[g; ?] takes the same form as E[p ] (Equation A1), except that the resulting weighted mean kinship coefficient p, is for population 2,
indicated by the superscript. By substituting Equation A14 into Var[p,q,], we have

Varlpi) = pias|pi+ o (1= pi) | [ai+ o8 (1= )| = (piai)’
= piqi{ [Pi + Pgl) (1- Pi)] [Qi + sz) (1- qi)} - piqi} (A15)
= iy (L= pi)a + o pi(1 = a)) + o8 (1= pi) (1= a1) .

We now derlve an expression for Cov[p,q;, p;q;] Let Bkt be an indicator random variable in population 2 analogous to the indicator random
variable A" i » which we have previously defined for population 1.

=K

C

C

C
=

ii)i]E[éiéi'}

=

E [f’i‘JiPi"]i’

noom M

:<Z §55h g WJE[ (>AJ(,} ( Z k i:’;nwi { ;El,)D

=1 j=1 =1 ¢=1 "My’ k=1 k'=1 t=1 t'=1

._.
~

where

E[afal)] =p[ay =1,4%) = 1],

and
E [B;((?Bz(f’t)f} =P [Bi? —1,B) = 1],

Consider a scenario in which we have two allele copies. Let s; be the identity state with probability A, in which two randomly drawn alleles are
not IBD, and s, be the identity state occurring with probability A, = 1 — Ay, in which the two alleles are IBD.
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P[Ajj =1,4%) = ] —F {A]() =1.4l) = 1|51] Is }+P{A}j) =1.4l) = 1|52]P[52}

= pipr A1 + 0X A,
= Aipipy
Note that, because A + A, =1 and <I>;jl,> = A, (same with <I>](j<>,), we have Aj =1 — (I);jl,). Thus,

play =14y =1] = (1- 0 )pips

and

Substituting, we now have

j
= (1 - pg)) (1 - P§2)>Pipi'%'%’7 (A16)

and substituting Equation A16 into Cov[p,q;, p,/q;] yields

Cov[pipy ] = (1-05") (1~ ()>P!P1 4idi— Pidipidy-

Do (A17)
= (Pg )Pg )~ P ( )>P1Pz qiqi"

Therefore, using Equations A15 and A17,

Var[H1o] zplq, (08 (1= pi)ai + o8 pi(1 = @) + ool (1= pi) (1~ 41

i=1

I-1 1
+22 Z (le> P - (2))Pipi'qi‘h'

»Q

1
=p} Z (1=pi)d; +p; >ZP, (1—a) +p} pf)Zle— )ai(1

i=

1 Z ( 1) ( )>P1P1 qiqi’
0 (1=62) S + 2 (1= ) ipgqi 4 (068 = )= ) S g2

i=1 i=1 i=1

1 1
+ Z piai+ 2o =0l =) SN pipsaiar

i=1 i'=1

I I I 2
=i (1=6) Yo pigt + 65 (1= ) D plai+ 01 0P Y puai - (6865 o ) <ZM1> : O
i=1 i=1

i=1

Lemma 12: Consider a locus with I distinct alleles across two independent populations and parametric allele frequencies p; € [0, 1],
i=1,2,...,1, and Zlepi =1 for population 1, or ¢; € [0,1],i=1,2,...,]I, and Eleq,- =1 for population 2. For two samples of size n;
and #, individuals from populations 1 and 2, respectively, each with individuals of any ploidy, inbreeding status, and relatedness,

Cov[Hi, Hi] = l—lp(1> |: ( _Pz )ZP: gi t+ <2P2 _3P3 >ZP; qi JrP3 ZP:‘]:] (A18)
2

and
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Cov([Hiz, 1] :1_1p<2> [ (65 = o5 )qul (205" = 30 )szql + 5 qu, 7 (A19)
2

where the superscript of the mean kinship coefficients p, and p, corresponds to the population for which these are calculated. The formulas for

Cov[Hu, Hi], Cov[le7 Hz] Cov[Hu BLUE, H, BLUE), and Cov[le BLUE, H2 BLUE] are obtained by substituting &, and @ ; (for H), or k, and k;
(for HBLUE) into Equations A18 and A19, respectively.

Proof: The covariance between Hy, and H; is

o 1 L. L
Cov[Hy, Hy| = —(I)COV[<1 - ZP:’%): (1 - ZP;Z)}

i=1 =1 i'=1
i'#i

1 1 1
= 1(1)(ZCovpé,, +ZZCovp,qﬁp,>

The value of the covariance calculated for the case where i = i’ can be written as

Cov[ﬁi‘u]ivlu’ﬂ = E[ﬁ?qz] - E[uiéi]E[uﬂ'

From the proof of Lemma 11, we have derived the value of E[p,q;], and, from the proof of Proposition 1 we know the value for IE[f),z] We
therefore only need to compute

where E[3,] = g;. Solving for E[p}], we have

T wwvwv ;
-3 3050505 5 el

j=1 v=1 v'=1 (=1 z=1
n n n m - m, my . . .
- DY e[ = 1Al =1l =1,
s ey v s e e R L2
The value of ]P’[A](;) = 1,A(VQ =1, AE,I)Z = 1] depends on the probabilities of distinct identity states in which three alleles are drawn from the
sample (one each from individuals j, v, and v'). We define state 1 as no IBD alleles drawn (probability &, ), state 2 as IBD alleles drawn from j

and v (probability 8,), state 3 as IBD alleles drawn from v and v' IBD (probability 83), state 4 as IBD alleles drawn from j and v’ IBD
(probability 8,),and state 5 as all three IBD (probability 85), with 3278, = 1. Thus, the probabilities for the relevant kinship coefficients are

oM — 5,

jwv
‘I)J(VI) =05+0
o) =55 +85
cpj(vl,) = 05 + 04,
which yields
(0 _ (i) _ @ _ 1] Z_ sop. 2 3
P AJ.{ =1,Ay; =1,A,, = 1| =8s5p; + (82 + 83 + 84)p; + 1p;
= @) pi+ (B + B)) + ) 300 )p2 4 (14200 — @) — @)~ of))p2.

' jvv v’ vy Jv

Thus, E[p} ;] is
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Epia) = 8 pigi +3(py" = o )ptai+ (1+ 208" = 301" )plai. (A20)

and from Equations A20 and Al, and the definition of E[p,g,],

coova (1) m_ MY,2, n _ 2 W
Cov|[pd;: pi] = p3 Pz‘]z+3(p2 P3 )piq,+ <1+2p3 3P2 )P,qz quz[P,- +p3 pi(l Pz)} (A21)

2<pgl) - pg”)P?qi + <ZP§ /- 3P3 )P1 qi + P3 Pt‘ll

Meanwhile, for the Cov[p,q,, p-] case of i # i', Cov[p,q;, p] = 0. This is intuitively sensible because the products p,g, and p;. are independent,
describing different alleles, and should not covary.

Flnally, we can see that, when the two populations considered are independent from one another, the value of Cov[H1,, H,] (or equivalently of
Cov[H 12, H)) is driven entirely by the case in which i = i', such that

. o 1 Cu v
Cov[H127H1] = 0 ZCOV[Pi%Pﬂ

— 1 _1p(1) { ( - Pz ) ZP: qi + (2P2 - 3P3 ) ZPZ qi +p3 Zplq,}, 0
2 =1

We now need to derive Cov [ﬁ = % (ﬁ L+ H 2), H 12], the final term required to compute Var[FsT]

Lemma 13: Consider a locus with I distinct alleles across two independent populations and parametric allele frequencies p; € [0, 1],
i=1,2,...,1,and Zlep,- =1 for population 1, or g; € [0,1],i=1,2,...,1I, and Zleq,- =1 for population 2. For two samples of size n;
and n, individuals from populations 1 and 2, respectively, each with individuals of any ploidy, inbreeding status, and relatedness,

1) 0
. 1. 1. o 3 —2 3 -2 I
Cov HIZ—EHI—EHz,Hn}z p§1>< p§2)+ Y p2 Ep,q,+ p (1— <‘)+7p3 (f>2> § P2qi
—

2( > 2<1 i=1
B RO R SO Zp ai+ (p} 0% = p} )(sz ) (422)
2 P2 2<1—pgl)> 2( ) 2 P2 2

(1)

(2)

ZI: qu,,

where the superscript of the mean kinship coefficients p, and p; corresponds to the population for which these quantities are calculated. The
formulas for Cov[le (1/2)ﬁ1 (1/2)H2,H12} and Cov[le BLUE — (1/2)ITILBLUE — (1/2)ITIZ>BLUE,ITIU>BLUE] are obtained by substituting
&, and @5 (for H), or K, and k3 (for HBLUE) into Equation A22.

Proof: We begin by breaking up the covariance into its components,

. 1. 1. o o 1 VI 1 VI
Cov H12*§H1 *EH27H12:| :Var|:H12:| *ECOV[H17H12:| *ECOVI:H27H12:|.

This equation is composed of terms that we previously derived (Equations A13, A18, and A19). Therefore,
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L1, 1
Cov|Hiz =3 Hi =, o }—pz <

AR

)ZP:% +0 (1-p
P§2>> (é?i%)z

)Zp,qz+pz

Z pidi

- pg”) ip?qi + (2 - 3P ) ZP1 qi +P3 ZP:%]

_M{ ( @ _ <2>> ZP"L ( ~3p{ )Zplql +p ZPI%]

(1
(1) (2) P3

(2

= {pé” (1-p) +2 2(

(2)

TPy Py —
2(1—

(1) I
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pgl)) _2<
(1)
P3 ZP: i+

)

— p3 szql
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