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ABSTRACT Gene diversity, or expected heterozygosity (H), is a common statistic for assessing genetic variation
within populations. Estimation of this statistic decreases in accuracy and precision when individuals are related or
inbred, due to increased dependence among allele copies in the sample. The original unbiased estimator of
expected heterozygosity underestimates true population diversity in samples containing relatives, as it only
accounts for sample size. More recently, a general unbiased estimator of expected heterozygosity was devel-
oped that explicitly accounts for related and inbred individuals in samples. Though unbiased, this estimator’s
variance is greater than that of the original estimator. To address this issue, we introduce a general unbiased
estimator of gene diversity for samples containing related or inbred individuals, which employs the best linear
unbiased estimator of allele frequencies, rather than the commonly used sample proportion. We examine the
properties of this estimator, eHBLUE; relative to alternative estimators using simulations and theoretical predictions,
and show that it predominantly has the smallest mean squared error relative to others. Further, we empirically
assess the performance of eHBLUE on a global human microsatellite dataset of 5795 individuals, from 267 pop-
ulations, genotyped at 645 loci. Additionally, we show that the improved variance of eHBLUE leads to improved
estimates of the population differentiation statistic, FST; which employs measures of gene diversity within its
calculation. Finally, we provide an R script, BestHet, to compute this estimator from genomic and pedigree data.
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The gene diversity of a locus, also known as its expected heterozygosity
(H), is a fundamental measure of genetic variation in a population, and
describes the proportion of heterozygous genotypes expected under
Hardy-Weinberg equilibrium (Nei 1973). Formally, gene diversity is
the probability that a pair of randomly sampled allele copies from a
population are different, and is computed as

H ¼ 12
XI
i¼1

p2i ; (1)

where I is the number of distinct alleles at a locus, and pi
(i ¼ 1; 2; . . . ; I) is the frequency of allele i in the population.

For a sample without related or inbred individuals composed of n
allele copies, an unbiased estimator of expected heterozygosity is (Nei
and Roychoudhury 1974)

bH ¼ n
n2 1

 
12

XI
i¼1

bp2i
!
; (2)

where bpi is the sample proportion of allele i. bH is a biased estimator
when inbred or related individuals are included in the sample
(DeGiorgio and Rosenberg 2009). This result is based on the idea
that, as the proportion of related individuals in the sample increases,
the number of independent allele observations decreases.

When two alleles are drawn from a sample, one each from a pair of
related individuals, there is a nonzero probability that they will be
identical by descent (IBD), rather than just identical by state (Lange
2002). This IBD probability is known as the kinship coefficient, and is
denoted by Fjk for a pair of individuals j and k. Thus, the observed
diversity will be lower than the true value because a greater proportion
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of identical alleles are observed than for a sample in which there are no
related individuals. DeGiorgio et al. (2010) developed an estimator of
expected heterozygosity,

eH ¼ 1

12 �F2

 
12

XI
i¼1

bp2i
!
; (3)

which is unbiased for samples containing related and inbred individ-
uals of any ploidy, and employs a weighted mean kinship coefficient
�F2 as a bias correction factor. �F2 is the average of all kinship coef-
ficients Fjk for every pair of individuals within the sample (seeMeth-
ods). Further, DeGiorgio et al. (2010) derived the theoretical variance
of eH; as well as its approximate value for samples wherein individuals
are related to no more than one other sampled individual.

As an alternative to the sample proportion (bpi),McPeek et al. (2004)
introduced the best linear unbiased estimator (BLUE, denoted as epi) of
population allele frequency, which is an unbiased linear estimator with
smaller variance than the unbiased linear estimator bpi: The BLUE
incorporates the relatedness of individuals in the sample as a covariance
matrix to define the weight of each observation. Simulations and ana-
lytical evaluation corroborating their result suggest that the mean
squared error (MSE) of epi is always smaller than that of bpi; and this
difference is especially evident for samples with complex pedigrees.

Because epi has the smallest variance of any unbiased linear esti-
mator of allele frequencies, we expect its low variance to translate to
smaller variance of gene diversity statistics that use epi: We devel-
oped such a statistic, termed eHBLUE; that is an unbiased estimator of
expected heterozygosity in samples containing related and inbred
individuals of arbitrary ploidy. Through simulations, analytical pre-
dictions, and empirical assessments, we compare the performance
of eHBLUE to that of eH and bH for samples containing related indi-
viduals of various types across different ploidy and inbreeding sta-
tus. Additionally, we derive the variance of any measure of expected
heterozygosity that uses unbiased linear estimators of allele frequen-
cies. We find that the increased precision of allele frequency esti-
mates transfers to our unbiased estimator, yielding values for MSE
invariably equal to or smaller than those of eH; while occasionally
exceeding the precision of bH: The improved properties of eHBLUE

translate to its applications as well, which we demonstrate in the
calculation of the population differentiation statistic, FST (Wright
1951). FST can be written in terms of intrapopulation and interpop-
ulation gene diversity as (Hudson et al. 1992)

FST ¼ H12 2 1
2 ðH1 þ H2Þ
H12

; (4)

where H1 and H2 are the values of expected heterozygosity within
each of two compared populations, and H12 is the expected hetero-
zygosity between them.

METHODS
Consider a locus with I distinct alleles in a sample of n individuals. Let
XðiÞ
k denote the fraction of alleles at the locus in individual k that are of

type i, i ¼ 1; 2; . . . ; I: An unbiased linear estimator of population allele
frequencies pi; denoted by �pi; is defined as

�pi ¼
Xn
k¼1

wkX
ðiÞ
k ; (5)

where wk; 0#wk # 1; is the weight of individual k, k ¼ 1; 2; . . . ; n;
and

Pn
k¼1wk ¼ 1: Formally, we have that

XðiÞ
k ¼ 1

mk

Xmk

t¼1

AðiÞ
kt ;

whereAðiÞ
kt is an indicator random variable whose value is 1 if allele t of

individual k is of type i, and zero otherwise, and wheremk is the ploidy
of individual k. As an example, if individual k were diploid at the
locus, then mk ¼ 2: Taking the expectation of �pi;

E
�
�pi
� ¼ Pn

k¼1

wk

mk

Pmk

t¼1
E

h
AðiÞ
kt

i
¼ Pn

k¼1

wk

mk

Pmk

t¼1
pi

¼ pi;

shows that it is an unbiased estimator of pi:

Unbiased estimation of gene diversity using unbiased
linear estimators of allele frequencies
In this section, we construct an unbiased estimator, �H; of expected
heterozygosity that uses a general unbiased linear estimator, �pi; of
allele frequency pi (Proposition 1). We then show that the unbiased
estimator, eH; of DeGiorgio et al. (2010) follows as a corollary, as-
suming that �pi ¼ bpi; the sample proportion allele frequency estima-
tor (Corollary 2). We then derive a new estimator, eHBLUE; also as a
corollary, assuming that �pi ¼ epi; the BLUE of allele frequency
(Corollary 3).

Proposition 1: Consider a locus with I distinct alleles and parametric
allele frequencies pi 2 ½0; 1�; i ¼ 1; 2; . . . ; I; and

PI
i¼1pi ¼ 1: For a

sample of size n individuals of any ploidy, inbreeding status, and
relatedness,

�H ¼ 1
12 r2

 
12

XI
i¼1

�p2i

!
(6)

is an unbiased estimator of expected heterozygosity, where

r2 ¼
Xn
j¼1

Xn
k¼1

wjwkFjk

is a weighted mean kinship coefficient of the sample for all pairs of
individuals in the sample, and wherewk; k ¼ 1; 2; . . . ; n; is the weight
for individual k. The proof of Proposition 1 is found in the Appendix.

From �pi; the sample proportion estimator bpi of allele frequency i,
i ¼ 1; 2; . . . ; I; is recovered when wk ¼ mk=

Pn
j¼1mj for individual k,

k ¼ 1; 2; . . . ; n; leading to

bpi ¼Xn
k¼1

mkPn
j¼1mj

XðiÞ
k :

Here, each individual is weighted by its contribution to the number of
allele copies in the sample.

Corollary 2: Consider a locus with I distinct alleles and parametric allele
frequencies pi 2 ½0; 1�; i ¼ 1; 2; . . . ; I; and

PI
i¼1pi ¼ 1: For a sample of

size n individuals of any ploidy, inbreeding status, and relatedness,

eH ¼ 1

12 �F2

 
12

XI
i¼1

bp2i
!

(7)
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is an unbiased estimator of expected heterozygosity, where

bpi ¼Xn
k¼1

mkPn
j¼1mj

XðiÞ
k

is the sample proportion estimator of allele frequency i, where

�F2 ¼
Xn
j¼1

Xn
k¼1

mjPn
x¼1mx

mkPn
y¼1my

Fjk

is a weighted mean kinship coefficient of the sample for all pairs of
individuals, and wheremk; k ¼ 1; 2; . . . ; n; is the ploidy for individual
k. The proof of Corollary 2 is found in the Appendix.

It may be beneficial to apply an unbiased linear estimator of
allele frequencies that has minimum variance. McPeek et al. (2004)
introduced the BLUE of allele frequencies, which we formally de-
fine here. We will use the BLUE of allele frequencies to construct
a new unbiased estimator of gene diversity that would ideally
have improved variance over other estimators. Let K be an n · n
symmetric matrix of kinship coefficients, with Kjk ¼ Fjk: The

BLUE (epi) of allele frequency is obtained when wk ¼
Pn

j¼1
ðK21Þjk

1TK211 ;

yielding

epi ¼Xn
k¼1

Pn
j¼1ðK21Þjk
1TK211

XðiÞ
k ;

where K21 denotes the inverse matrix of K; 1 is a column vector of n
elements with all entries equal to 1, and 1T is the transpose of 1.

Corollary 3: Consider a locus with I distinct alleles, and parametric
allele frequencies pi 2 ½0; 1�; i ¼ 1; 2; . . . ; I; and

PI
i¼1pi ¼ 1: For a

sample of size n individuals of any ploidy, inbreeding status, and
relatedness,

eHBLUE ¼ 1
12 k2

 
12

XI
i¼1

ep2i
!

(8)

is an unbiased estimator of expected heterozygosity, where

epi ¼Xn
k¼1

Pn
j¼1ðK21Þjk
1TK211

XðiÞ
k

is the BLUE of allele frequencies, and where

k2 ¼
Xn
j¼1

Xn
k¼1

Pn
x¼1ðK21Þxj
1TK211

Pn
y¼1ðK21Þyk
1TK211

Fjk

is a weighted mean kinship coefficient of the sample for all
pairs of individuals. The proof of Corollary 3 is found in the
Appendix.

Variance of H estimators using unbiased linear
estimators of allele frequencies
We now derive the equation (Proposition 4) describing the vari-
ance of the unbiased estimator �H; which takes �pi as the unbiased
linear estimate of population allele frequency pi: This value de-
pends on the weighted mean kinship coefficients of the sample for
all pairs, trios, quartets, and pairs of pairs of individuals in the
sample, defined as

r2 ¼
Xn
j¼1

Xn
k¼1

wjwkFjk

r3 ¼
Xn
j¼1

Xn
k¼1

Xn
j9¼1

wjwkwj9Fjkj9

r4 ¼
Xn
j¼1

Xn
k¼1

Xn
j9¼1

Xn
k9¼1

wjwkwj9wk9Fjkj9k9

r2;2 ¼
Xn
j¼1

Xn
k¼1

Xn
j9¼1

Xn
k9¼1

wjwkwj9wk9Fjk;j9k9:

Here,Fjkj9 is the probability that three randomly sampled alleles, one
each from individuals j, k, and j9; are IBD.Fjkj9k9 is the probability that
four randomly sampled alleles, one each from individuals j, k, j9; and
k9; are IBD. Finally, Fjk;j9k9 is the joint probability that two randomly
sampled alleles, one each from individuals j and k are IBD, and two
randomly sampled alleles, one each from individuals j9 and k9; are
IBD. Note that individuals j, k, j9; and k9 are not necessarily distinct.
The variances of eH and of eHBLUE follow as Corollaries 7 and 8, once
again differing only in the weight of a sampled individual in the mean
kinship coefficient calculation.

Proposition 4: Consider a locus with I distinct alleles and parametric
allele frequencies pi 2 ½0; 1�; i ¼ 1; 2; . . . ; I; and

PI
i¼1pi ¼ 1: For a sam-

ple of size n individuals of any ploidy, inbreeding status, and relatedness,

Var
�
�H
� ¼ 1

ð12r2Þ2
Var

"
12

XI
i¼1

�p2i

#
(9)

is the variance of the unbiased estimator of expected heterozygosity �H;
where r2 ¼

Pn
j¼1

Pn
k¼1wjwkFjk is a weighted mean kinship coeffi-

cient of the sample, and where wk for k ¼ 1; 2; . . . ; n is the weight of
individual k. Further, we have

Var

"
12

XI
i¼1

�p2i

#
¼ r2;2 2 r22 þ 2

�
r22 2 r4

�XI
i¼1

p2i

þ 4
�
2r4 þ r2 2 2r3 2 r2;2

�XI
i¼1

p3i

þ
�
3r2;2 þ 8r3 2 6r4 2 4r2 2 r22

� XI
i¼1

p2i

!2

:

(10)

The proof of Equation 10 is presented for the specific case of
Var½12PI

i¼1bp2i � in Appendix B of DeGiorgio et al. (2010), wherebpi is substituted for �pi; and
�F2; �F3; and �F4; and �F2;2 coefficients are

substituted for r2; r3; r4; and r2;2 coefficients, respectively. We pro-
vide an abbreviated version of this proof for the general case in the
Appendix. Further, the approximate value of Equation 10 for sam-
ples wherein no individual is related to more than one other is

Var

"
12

XI
i¼1

�p2i

#
� 4r2

"XI
i¼1

p3i 2

 XI
i¼1

p2i

!2#
: (11)

For this simplifying case, the terms r3; r4; r2;2; and r22 are negligible
compared to r2:

In the Appendix, we reintroduce the definition of Var½eH� from
DeGiorgio et al. (2010) (Corollary 7), and then define Var½eHBLUE�
(Corollary 8), both of which take the form illustrated in Proposition 4.
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As demonstrated by DeGiorgio et al. (2010), the mean kinship coeffi-
cients composing Equation 10 derive from the relationship between
the 15 identity states available to four alleles (Gillois 1965; Cockerham
1971), and the coefficients of kinship between pairs, trios, quartets, and
pairs of pairs of alleles within those four.

Bias of bH for samples containing related or
inbred individuals
Here,webrieflyderive anequation (Equation12)withinProposition 5 that
describes the bias of bH; whichwe display in the left panels of Supplemental
Material, Figure S1A and Figure S2A. We include Corollaries 9 and 10 to
Proposition 5 within the Appendix for specific cases of bias derived frombpi-based andepi-based estimations, respectively.We also note that Equation
A10 of Corollary 9 represents the formof the bias typically encountered in
applications of bH; as well as in all of our experimental scenarios.

Proposition 5: Consider a locus with I distinct alleles and parametric
allele frequencies pi 2 ½0; 1�; i ¼ 1; 2; . . . ; I; and

PI
i¼1pi ¼ 1: For a

sample of n possibly related or inbred individuals, the bias of the
estimator of expected heterozygosity bH changes with the true locus
expected heterozygosity such that

Bias
hbH��pi�i ¼ 12 nr2

n2 1
H; (12)

where

bH��pi� ¼ n
n2 1

 
12

XI
i¼1

�p2i

!
: (13)

Proof:Webeginby substitutingEquation 6 intoEquation 13 such that

bH��pi� ¼ nð12 r2Þ
n2 1

�H;

and

E

hbH��pi�i ¼ nð12 r2Þ
n2 1

H:

From the definition of bias,

Bias
hbH��pi�i ¼ E

hbH��pi�i2H

¼ 12 nr2
n2 1

H:
h

Variance of FST estimators using unbiased linear
estimators of allele frequencies
Because the population differentiation statistic FST (Wright 1951) can
be defined in terms of expected heterozygosities, it is possible to theo-
retically evaluate its approximate variance. A general estimator of FST
can be written as

�FST ¼
�H122

1
2

�
�H1 þ �H2

�
�H12

; (14)

where �H12 is an unbiased estimator for the expected heterozygosity
between a pair of sampled populations, numbered 1 and 2, defined as

�H12 ¼ 12
PI

i¼1�pi�qi (where �qi is a linear unbiased estimator of the
frequency of allele i in population 2, analogous to �pi in population 1),
while �H1 and �H2 are the within-population expected heterozygosities
for populations 1 and 2, respectively. Referring to the numerator as x,
and the denominator as y, we can write the expression for an approx-
imation of the variance of a ratio as

Var

�
x
y

	
� ðE½x�Þ2

ðE½y�Þ2
"
Var½x�
ðE½x�Þ2 þ

Var½y�
ðE½y�Þ2 2 2

Cov½x; y�
E½x�E½y�

#
; (15)

followingthedefinitionfortheapproximatevarianceofaratio(Wolter2007).

Proposition 6: Consider a locus with I distinct alleles across two pop-
ulations and parametric allele frequencies pi 2 ½0; 1�; i ¼ 1; 2; . . . ; I;
and

PI
i¼1pi ¼ 1 for population 1, and qi 2 ½0; 1�; i ¼ 1; 2; . . . ; I; andPI

i¼1qi ¼ 1 for population 2. For samples of size n1 and n2 individuals
from populations 1 and 2, respectively, each with individuals of any
ploidy, inbreeding status, and relatedness, the variance of the popula-
tion differentiation statistic calculated from their respective expected
heterozygosities is approximated as

Var
�
�FST
� � �

H1221
2 ðH1 þ H2Þ

�2
H2
12

3

2664Var
h
�H12 2 1

2

�
�H1 þ �H2

�i
�
H1221

2 ðH1 þ H2Þ
�2 þ Var

�
�H12
�

H2
12

2 2
Cov

h
�H122 1

2

�
�H1 þ �H2

�
; �H12

i
�
H12 2 1

2 ðH1 þ H2Þ
�
H12

3775; (16)

where

Var
h
�H122

1
2

�
�H1 þ �H2

�i ¼ Var
�
�H12
�þ 1

4
Var
�
�H1
�

þ 1
4
Var
�
�H2
�
2
�
Cov

�
�H12; �H1

�
þ Cov

�
�H12; �H2

��
: (17)

In the Appendix, we provide a derivation of the variance and co-
variance components of Equations 16 and 17. For each of these
equations, the result and proof are fairly long, and do not simplify
when arranged into Equation 16.

Data availability
The authors state that all data necessary for confirming the conclusions
presented in the article are represented fully within the article.

RESULTS

Analytical validation of eHBLUE

We tested the performance of eHBLUE using both theory and simulations
against that of the unbiased estimator eH (DeGiorgio et al. 2010), and ofbH (Nei and Roychoudhury 1974). Here, we applied the estimators to
samples of individuals wherein each individual was related to exactly
one other. Thus, for samples of size n individuals, the number of relative
pairs was n/2. When inbred or closely related individuals are included
in a sample, bH is a biased estimator of gene diversity for which we use
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the symbol bHfull: To construct an unbiased estimator with bH; we also
applied bH to a reduced sample in which one member of each relative
pair was removed randomly for samples containing only diploid indi-
viduals, and the haploidmember was removed for each haploid-diploid
(i.e., male-female) pair (reduced sample size of n/2), and we denote this
estimator by bHred: To evaluate the performance of the four estimators
(bHfull; bHred; eH; and eHBLUE), we modified the factors upon which their
variance depends: true locus expected heterozygosity (H), sample sizen,
and relatedness of individuals within the sample (F).

Effect of true locus expected heterozygosity, H,
on estimators
Wefirst evaluated the theoretical bias, variance, andmean squared error
(MSE) of each estimator across the 645 human microsatellite loci from
across the genome in the composite datasetMS5795 of Pemberton et al.
(2013), where MSE is the sum of the squared bias and variance. The
data used in our analyses is freely available online within File S1 of
Pemberton et al. (2013) (http://www.g3journal.org/content/early/2013/
03/27/g3.113.005728/suppl/DC1). We took the sample allele frequen-
cies calculated from all individuals in the MS5795 dataset as the true
population allele frequencies for the variance calculations, and, from
these, determined the true expected heterozygosity at each locus using
Equation 1 (see File S1; incorporated into Equation A10). Here, each
sample contained 60 diploid individuals composed of 10 inbred full-
sibling, 10 outbred full-sibling, and 10 outbred avuncular pairs. Each
point in Figure 1 and Figure S1 represents a single analytical computation
for a sample of 60 (or 30 for bHred) individuals at a microsatellite locus.
We report the approximate variance andMSE because each individual is
related to exactly one other in the sample, satisfying the assumption of
Equation 11. Further, under this scenario DeGiorgio et al. (2010)
showed that this was a reasonable approximation of the exact variance.

Webeginby demonstrating the relative performance of the unbiased
estimators bHred; eH; and eHBLUE;measured in terms of MSE, against the
biased estimator bHfull (Figure 1). While the variance of bHfull is invari-
ably smaller than that of the other estimators, and the MSE and vari-
ance of each estimator decrease with increasing locus expected
heterozygosity (0:5212#H# 0:9301), bHfull accumulates bias quadrat-
ically with increasing H, and thus yields an increasingly unreliable
estimate with increasing site diversity (Figure S1A, left). However,
the effect of this trend differs for each comparison. The MSE of bHred

always exceeds that of bHfull; because the removal of relatives to create
the reduced sample causes a substantial increase in estimator variance,
though, for high diversity markers, the MSE values of bHfull and bHred

converge (Figure 1, left). In contrast, eH outperforms bHfull for most loci,

demonstrating that the rate of decrease in MSE with increasing H is
greater for eH than for bHfull (Figure 1, center). Interestingly, the com-
parison of eHBLUE with bHfull shows an opposite trend to the preceding
two. Despite the impact of bias, the decrease in variance of bHfull over the
analyzed range outpaces that of eHBLUE: Even so, eHBLUE uniformly
yields a smaller MSE for the analyzed diploid samples (which contain
a proportion of inbred individuals) across all loci (Figure 1, right).

To validate these theoretical predictions,we simulated 30 independent
genotypes for each locus, and, for each independent genotype, simulated a
single relative’s genotype (inbred full-sibling, outbred full-sibling, or
avuncular). Briefly, we generated the independent genotypes by sampling
alleles uniformly at random from the distribution of allele frequencies at
eachmicrosatellite locus, and generated relatives by copying zero, one, or
two alleles from the relative according to the probability the pair would
share zero, one, or two alleles IBD [see Lange (2002), Chapter 5]. The
patterns observed for the simulated data accord with those of the theo-
retical predictions (Figure S2, each point is based on 104 simulations). It
is clear from these results that locus expected heterozygosity is heavily
influential on estimator MSE. However, we also find that the observed
value of expected heterozygosity for a locus normalized to its range of
expected heterozygosity values has an impact on estimator MSE. The
maximum and minimum values of expected heterozygosity for a locus
depend on the number of distinct alleles (I), and the frequency of the
most frequent allele (M), at that locus [see Theorem 2 of Reddy and
Rosenberg (2012)]. We quantify proximity of H for a locus to its max-
imum possible value as B ¼ D=R; where D is the observed value of
expected heterozygosity for a locus minus its minimum possible value
given I and M, and R is the maximum minus the minimum value of
expected heterozygosity, given I andM, such that B 2 ½0; 1�: Loci with a
smaller value of B yield a smaller MSE for all estimators (Figure S3).

Effect of sample size, n, on estimators
Wenext examined theproperties of eachestimator as a functionof sample
size.All estimatorsperformincreasinglywell forsamplesof increasingsize.
We demonstrate this property by measuring estimator MSE for samples
containing 2–100 relative pairs of various type and ploidy at the D3S2427
locus, selected to highlight the improved performance of eHBLUE as the
bias of bHfull increases (H ¼ 0:9301; Figure 2). For these tests, we con-
sidered only a single relative pair type at a time. The unbiased estimatorseH and eHBLUE perform identically for diploid samples of first- and sec-
ond-degree relative pairs regardless of inbreeding (Figure 2, A–D). Ad-
ditionally, estimator MSE is uniformly smaller for samples containing
only second-degree relative pairs than it is for samples containing only
first-degree pairs (cf. Figure 2, A and B, and Figure 2, C and D; see also,

Figure 1 Theoretical difference
in MSE between the unbiased
estimator bHred (left), eH (center),
or eHBLUE (right), and the biased
estimator bHfull calculated at
each of 645 microsatellite loci
(0:5212#H# 0:9301) in the
MS5795 dataset for samples of
60 diploid individuals contain-
ing some inbred relative pairs.
Each sampled individual was re-
lated to exactly one other, and
samples contained 10 pairs of in-
bred full-siblings (F ¼ 3=8), 10

pairs of outbred full-siblings (F ¼ 1=4), and 10 outbred avuncular pairs (F ¼ 1=8). Dotted lines in each plot correspond to a difference in MSE of
zero with bHfull: See File S1 for the true expected heterozygosity values incorporated into analytical calculations.
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Figure S4A). However, eHBLUE unambiguously outperforms the other
estimators with relative pairs of varying ploidy (in this case, male-
female full-sibling pairs at an X-linked locus). In this scenario, bHred

provides a more accurate estimate of expected heterozygosity than doeseH when the reduced set is created by removing only males from the
original while retaining females (Figure 2E). When all females are re-
moved instead, and males retained (Figure 2F), the MSE of bHred is
markedly the largest of the four estimators because 2/3 of the alleles in
the sample are discarded, rather than 1/3. For samples with inbred full-
siblings whose parents are brother and sister (Figure 2, C and D), the
trend of MSE with sample size mirrors that of outbred diploid samples
(Figure 2, A and B), but with larger MSE. However, the relative perfor-
mance of bHfull is notably worse for samples containing inbred diploid
avuncular pairs (Figure 2D) than for samples containing outbred diploid
avuncular pairs (Figure 2B). That is, its MSE remains greater than, or
equal to, that of the other estimators over the range of sample sizes
considered for the inbred diploid avuncular pair scenario (Figure 2D),
but consistently has smaller MSE than bHred for the outbred diploid
avuncular pair scenario (Figure 2B). Generally, increasing the sample size
is most effective for samples of,20 individuals, and it is over this range
that the difference in performance of the estimators is most apparent.

Effect of varying sample relative pair composition
on estimators
Finally, we calculated the MSE of each estimator for all 1326 combina-
tions of one to three relative pair types for samples of 100 individuals
fixed at 50 relative pairs, which we represent as triangular heat maps,
across samples containing outbred diploids, males and females at an
X-linked locus, or inbred diploids (each individual related to exactly one
other; Figure 3, Figure S4, Figure S5, Figure S6, Figure S7, and Figure S8).
The kinship coefficients (F) for each relative pair type considered across
our tests are defined in Lange (2002, Chapter 5) and DeGiorgio et al.
(2010, see Table 2), and modeled on the D3S2427 locus (H ¼ 0:9301).

The outbred diploid samples included parent-offspring (F ¼ 1=4),
avuncular (F ¼ 1=8), and full-sibling (F ¼ 1=4) relative pairs. Be-
cause parent-offspring and full-sibling pairs have the same kinship
coefficient, the heat maps in Figure 3, Figure S4A, Figure S5A, Figure
S6A, and Figure S7A are symmetrical with parent-offspring and full-
sibling pairs on the bottom vertices, and avuncular pairs on the top
vertex. bHred yielded the largest MSE of the four estimators, and this
value was constant throughout the space of the heat map (Figure S4A,
second triangle), because all reduced sets are identical for outbred
diploid samples. eHBLUE consistently yielded the smallest MSE across
configurations (Figure S4A, fourth triangle). As was the case in Figure
2, the MSE of the estimators bHfull; eH; and eHBLUE was smallest for
samples with only avuncular pairs, because these contain fewer depen-
dent allele observations on average. We observed these features in
simulated data as well (Figure S8A).

Although eHBLUE performed best overall for samples including out-
bred diploid relative pairs at D3S2427, the estimator with the smallest
variance in all situations is the biased estimator bHfull (Figure S6A).
However, because its squared bias increases with the number of first-
degree pairs (Figure S5A), its relative performance declines compared
to eHBLUE as more of these pairs are sampled (Figure 3A, left triangle).
The relative performance of bHred is highest when the number of first
degree pairs ismaximized, but this is due to the decreasing performance
of eHBLUE as more dependent observations are included (Figure 3A,
center triangle). While the difference in MSE between eH and eHBLUE is
always slight for samples of noninbred diploids, these values diverge as
the complexity of the sample increases (Figure 3A, right triangle). That is,

as the numbers of first- and second-degree pairs approach each other,eHBLUE emerges decisively as the more accurate estimator, with the max-
imum value of this difference reached at 23 second-degree and 27 first-
degree pairs. Thus, while the performance of the estimators for a sample
containing relatives follows the same general trend, eHBLUE provides the
greatest accuracy for heterogeneous samples of outbred diploid individuals.

We also considered the relative performance of each estimator when
using either the BLUE (epi) or the sample proportion (bpi) to estimate allele
frequencies. Notably, all estimators perform best when the BLUE (epi) of
allele frequency rather than the sample proportion (bpi) is used to infer
population allele frequencies.We calculated the theoreticalMSE for each
estimator once with bpi; and once with epi; across all combinations of
relative pairs for diploid individuals at the D3S2427 locus and mapped
its value for the estimate withbpi minus the estimate withepi (Figure S7A).
Because both frequency estimations yield the same values in samples of
unrelated individuals, bHred performs identically for bpi and epi; and is not
included. The MSE of an estimator calculated with epi is always smaller
than that of the estimator calculated with bpi; and the pattern of diver-
gence between their MSEs follows a similar trend across all estimators,
resembling the rightmost panel in Figure 3A. This result suggests that the
difference in MSE between eH and eHBLUE is driven primarily by the
difference in performance between bpi and epi: Both the bpi and epi estima-
tors yield the same value at the vertices of the triangles, and the difference
in theirMSEs reaches amaximumat 22 second-degree pairs for bHfull and
24 second-degree pairs for eH and eHBLUE (Figure S7A, center and right
triangles). The MSE of eHBLUE calculated with bpi is, at most, on the order
of 1029 greater than that of eHBLUE calculated with epi; indicating its
robustness to variance in allele frequency determination (Figure S7A,
right triangle). In contrast, the other estimators return a maximum
difference in MSE on the order of 1027: The estimation of expected
heterozygosity with bHfull; eH; or eHBLUE will always yield a smaller MSE
for samples of outbred, diploid individuals when epi rather than bpi is
taken as the estimator of population allele frequency.

We repeated these tests in samplesofmixedploidy (Figure3B, Figure
S4B, Figure S5B, Figure S6B, Figure S7B, and Figure S8B), and eHBLUE

emerged similarly superior to the other estimators, once again yielding
the smallest MSE.We analyzed the D3S2427 locus as X-linked for these
tests, counting males as haploid and females as diploid, and observed
full-sibling pairs [similarly to DeGiorgio et al. (2010), F ¼ 1=2 for
male-male pairs, F ¼ 1=4 for male-female pairs, and F ¼ 3=8 for
female-female pairs] for samples of 100 individuals and 50 relative
pairs. All estimators reach their maximumMSE in samples containing
only male-male pairs (Figure S4B). This is because the number of in-
dependent observations (indicated by a largermean kinship coefficient)
is smallest when there are no females in the sample. Correspondingly,
the estimators yield smaller MSE values with increasing incorporation
of male-female pairs. TheminimumMSE of bHfull is reached at 50male-
female pairs, as with eH and eHBLUE because its squared bias (Figure S5B)
decreases with increasing male-female pairs, though its variance is small-
est at 50 female-female pairs, due to the greater number of alleles in the
sample (Figure S6B). To create the reduced sets, males were removed
from male-female pairs to minimize the subsequent increase in MSE.
That is, the removal of males removes 1/3 of the allele copies from the
sample, rather than 2/3 if females are removed, or 1/2 for a pair of same-
ploidy individuals, and so bHred has the same value across samples with
the same number of male-male pairs (Figure S4B, second triangle).

The direct comparison of eHBLUE with the other estimators once
again yielded different signatures for each subtraction for mixed-ploidy
samples (Figure 3B). The point of greatest difference in MSE betweenbHfull and eHBLUE occurs when all relative pairs are male-male, while the
point of least difference occurs for samples of only male-female pairs
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(Figure 3B, left triangle). This pattern broadly resembles the squared
bias of bHfull (Figure S5B, first triangle), underscoring the effect of bias
on estimator performance. The pattern of difference in performance
between bHred and eHBLUE differs markedly, and the two estimators
perform most similarly as the number of male-male pairs decreases,
reaching a minimum at 33 male-female pairs plus 17 female-female
pairs (Figure 3B, middle triangle). eH yields the closest MSE to that ofeHBLUE for all relative pair configurations, and their difference is, at
most, on the order of 1026 (Figure 3B, right triangle). The pattern here
mainly reflects the difference in performance between bpi and epi esti-
mates of population allele frequency, as in Figure S7B, where epi esti-
mators yield increasingly smaller comparative MSE values as the
numbers of relative pairs in the sample approach each other.

We repeated the preceding tests oncemore for a sample in which full-
siblings resulting from a brother-sister mating were included alongside

second-degree and outbred full-sibling pairs (Figure 3C, Figure S4C,
Figure S5C, Figure S6C, Figure S7C, and Figure S8C). Here, the kinship
of inbred individuals with each other was 3/8 rather than 1/4. For all
estimators, the inclusion of inbred full-siblings increased the MSE of the
estimator, with a maximum MSE at 50 inbred full-sibling pairs, and
a minimum at 50 second-degree pairs. For bHred; this minimum was also
reached for any sample in which there were no inbred individuals, be-
cause the reduced sample is identical for these (Figure S4C, second tri-
angle). Again, eHBLUE was the least errant estimator across the space of
sample configurations (Figure S4C, fourth triangle), and its advantage
over the other estimators differs for each estimator (Figure 3C). Because
the bias of bHfull is largest at 50 inbred full-sibling pairs, the greatest
difference in performance between it and eHBLUE is at this point (Figure
3C, left triangle). Meanwhile, the largest differences inMSE between bHred

and eHBLUE are near the top vertex, where second-degree relative pairs

Figure 2 Theoretical MSE as a function of sample
size for samples of outbred diploid full-siblings (A),
outbred diploid avuncular pairs (B), inbred diploid
full-siblings (C), inbred diploid avuncular pairs (D),
male-female full siblings at an X-linked locus with
the reduced set omitting males and retaining
females (E), and male-female full siblings at an
X-linked locus with the reduced set omitting
females and retaining males (F). The samples were
evaluated for the D3S2427 locus (H ¼ 0:9301),
and sample size was always twice the number of
relative pairs included in the sample for samples
containing 2–100 relative pairs. Each individual in
the sample was related to exactly one other.
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predominate, while the smallest are toward the bottom vertices (Figure
3C, center triangle). The difference in MSE between eH and eHBLUE is at
least an order of magnitude less than for the other comparisons, and
increases for increasing sample complexity, but reaches its maximum for
samples of 28 inbred full-sibling plus 22 second-degree pairs (Figure 3C,
right triangle). This pattern reflects the decreasedMSE for the estimators
when calculated with epi compared to their calculation with bpi (Figure
S7C). Ultimately, the performance of the estimators of expected hetero-
zygosity across varying sample compositions depends on the estimator of
allele frequency incorporated into the expected heterozygosity calcula-
tion. No matter the sample type, estimators based on epi outperform
estimators based on bpi; and eHBLUE outperforms bHfull; bHred; and eH:

Tests of eHBLUE on single-nucleotide polymorphism
(SNP) loci
BecauseSNPdatasets aremorecommon in recent studies,weperformed
analyses equivalent to our microsatellite analyses for 50 hypothetical
SNP loci. These loci were biallelic with minor allele frequency (MAF)

between 0.01 and 0.5, with increments of 0.01, corresponding
to expected heterozygosity values ranging from 0.0198 to 0.5. We
first measured the difference in MSE of bHfull with that of bHred; eH; oreHBLUE as a function of true locus expected heterozygosity (H), as we did
in Figure 1 (Figure S9). For each locus, the MSE of eHBLUE was smallest,
while that of bHfull was generally second-smallest, following the trend for
microsatellite loci visible in Figure 1, wherein less diverse loci yielded a
smaller MSE for bHfull than for eH: However, unlike for microsatellite
loci, estimator MSE peaks midway through the range of evaluated SNP
loci, such that the smallest MSE values lie at either extreme of the range
and the largest MSE value, as well as the largest difference in MSE
values for all comparisons, is at the locus with MAF¼ 0:15
(H ¼ 0:255). Additionally, bHfull performs comparatively better thanbHred (Figure S9, left) and eH (Figure S9, center) as H approaches
0.255, but is outperformed by these unbiased estimators as H ap-
proaches 0.5. Once more, the trend is opposite for the comparison
between bHfull and eHBLUE; showing the greatest comparative perfor-
mance by eHBLUE at the same locus (MAF ¼ 0:15; H ¼ 0:255). Thus,

Figure 3 Theoretical difference in MSE between bHfull (left), bHred (center), or eH (right), and eHBLUE; for samples of 100 (A) outbred diploid individuals, (B)
male and female individuals at an X-linked locus, or (C) diploid individuals wherein some full siblings are inbred with brother-sister parents. The samples
and MSE values considered for each subtraction were modeled on the D3S2427 locus (H ¼ 0:9301). Each sample contained 50 relative pairs, such that
each individual was related to exactly one other. Each sample configuration is a single point in the space of a heat map defined by three coordinates
(each representing the count of a relative pair type). For each configuration, the MSE of eHBLUE is subtracted from that of the other estimators, yielding a
value.0. Samples were composed of one to three relative pair types where the vertex of each heat map represents a sample with only a single relative
pair type. The relative pair types were (A) parent-offspring (PO), second-degree avuncular (AV), and full-sibling (FS), (B) male-male (MM), male-female
(MF), and female-female (FF) full-sibling such that the number of males and females in each sample is not fixed, or (C) inbred full-sibling (FSi), second-
degree avuncular (AV), and outbred full-sibling (FSo). Blue and black points indicate the smallest and largest values, respectively, on each map. Threshold
values for coloration are indicated in the scales to the right of each heat map, with smaller values colored lighter. Note that the scales are not identical
across heat maps. The values upon which these subtractions are based are represented as heat maps in (A) Figure S4A, (B) Figure S4B, or (C) Figure S4C.
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considering the results presented in Figure 1 and Figure S9, the greatest
relative performance of eHBLUE for inbred samples is achieved at loci for
which estimator MSE is largest.

We next examined the effect of sample size on estimator performance
for hypothetical samples of outbred diploid, inbred diploid, and outbred
male-female relative pairs at the simulated locus with MAF ¼ 0:05
(H ¼ 0:095). As we varied the sample size from two relative pairs to
100 (each individual related to exactly one other, one relative pair type
per sample), we found that eHBLUE yielded the smallest MSE of all esti-
mators only for samples containing male-female full-sibling pairs mod-
eled at an X-linked locus (Figure S10, E and F). This observation mirrors
the trend seen in Figure 2, wherein eHBLUE outperformed the other esti-
mators across all sample sizes. However, bHfull yielded the smallest MSE
across all sample sizes for outbred and inbred diploid full-siblings and
avuncular pairs (Figure S10, A–D). This result is because the samples
modeled here are minimally complex, with only one relative pair type,
and modeled for a highly homozygous marker—two conditions under
which the low bias and variance of bHfull result in favorable performance.

Finally, we analyzed estimator performance once more for the locus
with MAF ¼ 0:05 (H ¼ 0:095), for a sample of 50 individuals across
changing outbred diploid, inbred diploid, and male-female full-sibling
relative pair compositions (Figure S11, A–C). We display these results
as heatmaps, and find that our results here are broadly concordant with
those for the D3S2427 human microsatellite locus (H ¼ 0:9301). As
with the experiments displayed in Figure S10, the least complex sam-
ples yielded a smaller MSE for bHfull estimates than for eHBLUE estimates.
Correspondingly, samples whose relative pair compositions resulted in
fewer independent allele observations were more accurately and pre-
cisely evaluated with eHBLUE: Thus, while sampling lower-diversity
markers may occasionally favor the use of bHfull; the inclusion of two
or more relative pair types in the sample is likely to bias bHfull, and
require the use of eHBLUE to yield accurate inferences.

Empirical application of eHBLUE

To conclude our investigation into the performance of eHBLUE;we applied
it to empirical data from the MS5795 dataset. We retrieved human
microsatellite data from 5795 individuals (11,590 allele copies) across
645 autosomal loci sampled genome wide. We assumed the mean value
across loci for bHred in each of 267 populations to be the true expected
heterozygosity value for these populations, as it is an unbiased estimate.
We additionally chose to compare the other estimators with bHred; be-
cause an important basis for their evaluation is their agreement with this
unbiased estimator, irrespective of the data to which they are applied.

To emphasize this, we performed three Wilcoxon signed-rank tests
to compare the ranking of populations by their mean expected hetero-
zygosity across all loci calculated with bHred; and either bHfull; eH; oreHBLUE (Table 1). At the a, 0:01 significance level, the comparisons
showed that the inclusion of relatives for bHfull was highly significant on
the rankings it yielded, indicating that not correcting for relatedness
among samples can significantly alter the estimates of expected hetero-
zygosity. However, both eH and, especially, eHBLUE; yielded P-values
greater than the threshold for the test against bHred: These results in-
dicate that the estimates of expected heterozygosity are not significantly
affected by the inclusion of related individuals in the sample when
relatedness is taken into account. Furthermore, a test between eH andeHBLUE yielded a P-value of 3:44· 1022; suggesting no significant dif-
ference in the ranking of populations by mean expected heterozygosity
with these two estimators.

Although the unbiased estimators eH and eHBLUE have smaller MSE
than bHfull for samples with related individuals, their variance tends to

be larger than that of bHfull: DeGiorgio et al. (2010) previously showed
that the difference in SD of eH with bHfull was small, while the mean
values of eH and bHred were much more similar to each other than either
of themwas to themean of bHfull:We again show this to be the case, and
find as well that eHBLUE not only repeats, or improves upon, the con-
cordance of eH with bHred; but, in some cases, eHBLUE has a smaller SD
than does bHfull (Figure 4, left and center panels). A direct comparison of
the performance of eH against that of eHBLUE (Figure 4, right panel)
shows that eHBLUE has a generally improved SD, and similarity to thebHred estimate over eH: For some samples (primarily those from the
Americas), this is not the case, possibly because all close relatives were
not identified in the original dataset, resulting in an incorrect kinship
matrix for calculation of the statistic.

Improving estimates of FST by application of eHBLUE

We predicted that the smaller MSE of eHBLUE would translate to im-
proved accuracy for estimators that are summaries of expected hetero-
zygosity when samples contain related individuals. To test this
hypothesis, we calculated the population differentiation statistic, FST
(Equation 4), for pairs of populations whose samples in the MS5795
dataset contained related individuals. Our intent was to compare the
MSE and bias of the commonly used FST estimator of Reynolds et al.
(1983), which is based on bHfull; and which we label as bFST; to an
estimate of FST calculated from eHBLUE; which we label eFST;BLUE: The
formulas for these estimators follow the form of the general estimator of
FST (Equation 14).We first measured theMSE of bothmethods (and an
estimate using eH; eFST) on simulated data, where the FST of pairs of
populations with samples of size 60 diploids each (30 relative pairs,
10 inbred full-sibling, 10 outbred full-sibling, and 10 avuncular pairs;
Figure 5) was averaged across 104 simulated replicates. The calculations
included here were performed for simulated Gujarati and Maya (left),
Gujarati and Japanese (center), or Gujarati and Hadza (right) samples
for the least diverse (TCTA015M_22),median diverse (D10S2327), and
most diverse (D3S2427) loci of the MS5795 dataset, following their
allele frequency distribution in MS5795. eFST;BLUE consistently has a
smaller MSE than the others, and the MSE of all estimators of FST
decreases with increasing locus diversity, as the MSE of the estimator
of expected heterozygosity decreases.

We additionally find that bFST has an upward bias compared withbFST;red (calculated with bHred), as well as a larger SD in general thaneFST;BLUE (Figure 6). Furthermore, all values of eFST;BLUE are smaller than
the paired value of bFST calculated for the same population. The differ-
ence in the mean of bFST and of eFST;BLUE across all loci with the mean ofbFST;red; an estimator which serves as a proxy for the true value of FST; is
displayed on the vertical axis, while the horizontal axis measures the SD
of bFST and of eFST;BLUE (Figure 6). Supporting our observations indicat-
ing the improved accuracy of eFST;BLUE over bFST;Wilcoxon signed-rank
tests (Table 2) between bFST;red and either bFST or eFST;BLUE indicate that
the inclusion of relatives significantly affects the estimate of population
differentiation at thea, 0:01 significance level.Meanwhile, bFST;red and

n Table 1 Wilcoxon signed-rank test for mean across loci of bHred

with bHfull; eH; and eHBLUE for the 93 populations whose samples
contained related individuals

Comparison P-Value for Wilcoxon Signed-Rank TestbHred with bHfull 4:39· 10215bHred with eH 1:00· 1022bHred with eHBLUE 0.255
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eFST;BLUE are not significantly different in their estimates. These results
suggest that the improved properties of eHBLUE transfer to the summa-
ries that include it in their calculations.

DISCUSSION
We have introduced eHBLUE; an extension to the estimator (eH) of
expected heterozygosity developed by DeGiorgio et al. (2010) that yields
a smaller mean squared error in samples containing related individuals,
while maintaining unbiasedness. Conveniently, the derivations of eHBLUE;
and its variance, are parallel in form to those of eH; and we were therefore
able to analytically evaluate the performance of the new estimator simul-
taneously with that of its predecessor. Our updated estimator, eHBLUE; is
based on results fromMcPeek et al. (2004), who characterized the BLUE
(epi) of allele frequency. The BLUE improves the precision of allele fre-
quency estimation in complex pedigrees, for which the sample propor-
tion (bpi; the estimator of allele frequency used in bH and eH) is unbiased,
but increases in variance with inclusion of related and inbred individuals.
Because the properties of the estimator of allele frequency transfer to the
estimator of expected heterozygosity, eHBLUE is likely to outperform eH
in situations whereepi has a smaller variance thanbpi: This trend is true for
genome-wide data as well (Figure 4 and Table 1).

Overall, eHBLUE yields identical results to eH in samples containing
only one relative pair type, but the two diverge in performance as
sample complexity increases (see heat maps in Figure 3, Figure S4,
Figure S5, Figure S6, Figure S7, and Figure S8). While both estimators
are unbiased, eH experiences a larger increase in variance for each
additional relative pair type introduced into a sample after the first.
This holds true for all sample types regardless of ploidy and inbreeding,
suggesting that eHBLUE will outperform eH in practice, where datasets are
often complex. Furthermore, the results of our empirical analysis pro-
vide an equally important complement to this observation. Of the
93 populations from the MS5795 dataset we considered that contained
relative pairs in their samples, each contained sampled individuals that
were not related to any other in the sample. Thus, these samples were
more complex than those in which each individual was part of a relative
pair of the same type. For most of these cases, except for some Amer-
ican populations (discussed below), eHBLUE outperformed eH: This is
corroborated by the Wilcoxon signed-rank test (Table 1). We expect
therefore that any scenario in which there is heterogeneity in relative
pair type among sampled individuals, as is observed in many human
population-genetic datasets (Pemberton et al. 2010, 2013), should favor
the application of eHBLUE over other estimators.

Figure 4 Application of the es-
timators to dataset MS5795.
Here, we show a comparison of
two estimators at a time (bHfull; eH;
or eHBLUE) by the difference in
their mean with that of bHred

across the 645 sampled microsa-
tellite loci of MS5795 (vertical
axis), and by their SDs (horizon-
tal axis). The horizontal dotted
line corresponds to no differ-
ence between the mean of the
estimator and the mean of the
unbiased estimator bHred: Solid
lines connect calculations made

for the same population with different estimators. Points are colored by geographic division defined in the dataset. Only the 93 populations with
relatives in their samples were included because bHfull; eH; and eHBLUE return the same value for samples of unrelated individuals. In the leftmost plot,
open points are estimates for bHfull; while closed points are for eH: In the center plot, open points are estimates for bHfull; while closed points are foreHBLUE: In the rightmost plot, open points are estimates for eH; while closed points are for eHBLUE:

Figure 5 Application of the estimators bHfull; eH; and eHBLUE to the calculation of FST as bFST; eFST; and eFST;BLUE; respectively, using simulated data for the
Gujarati sample, with either the Maya (left), Japanese (center), or Hadza (right) samples, showing MSE on the vertical axis. The Reynolds et al. (1983)
estimator is equivalent to the application of bHfull in calculating population differentiation. The simulated samples contained 60 individuals and
30 relative pairs, of which 10 were inbred full-siblings, 10 were outbred full-siblings, and 10 were outbred avuncular pairs. Each individual was
related to exactly one other, and the data were simulated following the same probabilistic method as employed to generate Figure S2. The three loci
displayed on the horizontal axis are the least diverse, median diverse, and most diverse loci of the 645 MS5795 human microsatellites.
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In addition, randomsampling of small isolated populations yields an
increased chance that related individuals will be included with large
enough sample sizes. Further, inbreeding may confound estimates of
diversity, and mislead bHfull to underreport true population expected
heterozygosity. Populations of interest that may display these attributes
include geographically isolated human settlements in remote alpine
(Coia et al. 2012; Capocasa et al. 2013), South American rainforest
(Wang et al. 2007), and Siberian taiga and steppe habitats (Dulik
et al. 2012), and groups such as the Old Order Amish (Van Hout
et al. 2010), Hutterites (Abney et al. 2002; Chong et al. 2011), and
Mennonites (Payne et al. 2011). Further, though our analysis did not
directly consider polyploid organisms, the applicability of eHBLUE to
samples containing individuals of any, and varying, ploidy highlights
its usefulness for such data. Prominently, analysis on polyploid organ-
isms such as plants including tetraploid Arabidopsis thaliana (Hollister
et al. 2012), and hexaploid bread wheat (Nielsen et al. 2014), both of
which self-fertilize, and may therefore be inbred, as well as commer-
cially and ecologically significant Hymenopteran insects, including
honeybees (Solignac et al. 2003; Harpur et al. 2014), bumblebees (Lye
et al. 2011), and ants (Butler et al. 2014), whose males are haploid at all
loci, while females are diploid, is likely to benefit from the improved
accuracy and precision of eHBLUE:

We additionally believe that continued investigations into the di-
versity at single sites in organisms as diverse as dogs (Sutter et al. 2007),
gray wolves (Zhang et al. 2014), humans living at high altitude
(Simonson et al. 2010; Huerta-Sánchez et al. 2013), and rice (Huang
et al. 2012), in addition to host-microbiome studies (Blekhman et al.
2015), will benefit from the advances provided by eHBLUE: These studies,

as well as many others, have performed scans for positive selection using
genomic outliers of population differentiation-based statistics (e.g., FST;
locus-specific branch length, and the population branch statistic), where
the calculation is performed per-site, rather than averaged across a large
number of sites. Such studies would benefit from estimators of genetic
diversity, such as eHBLUE and eFST;BLUE; with improved variance.

It is pertinent at thispoint to revisit apair ofpotential limitations inour
method and examine their implications. First, in Figure 4 (rightmost
panel), the mean of eH is either closer to that of bHred than to eHBLUE;
has smaller SD than eHBLUE; or both for certain samples (predominantly
from the Americas). These observations indicate that the accuracy and
precision of eHBLUE may be impacted by the accuracy of the kinship
information incorporated into the calculation. The pedigrees of smaller,
more remotely located, populations may be more complex compared to
those of larger groups. Further, with a greater proportion of relative pairs
in each sample, the effect of relative pair type misidentification may be
larger. For RELPAIR (Epstein et al. 2000), which was the software chosen
to identify relative pairs in MS5795 samples, second-degree pairs cannot
be identified as confidently as first-degree pairs (Pemberton et al. 2010).
Even so, although eH may exhibit a somewhat greater robustness to
relative pair misclassification, it is still generally outperformed by eHBLUE:

The second point we address is the smallerMSE of bHfull at less diverse
loci in the dataset, especially for samples with fewer relative pairs. While
the variance of bHfull is always smaller than that of the other estimators, its
bias increases with increasing locus allelic diversity. It is for this reason
that the unbiasedness of eHBLUE is its most desirable property. In practice,
the mean of expected heterozygosity is often taken across loci. Based on
such an approach, eHBLUE (and eH as well) will return the mean expected
heterozygosity, and the variance of this estimation (as with all estimators
taking themean across loci) approaches zero asmore loci are sampled. An
interesting property of all estimators is that their variance (and therefore
MSE) is larger for loci whose value for B is closer to 1, where B ¼ D=R
(B 2 ½0; 1�; see Results and Figure S3). Because this effect is greatest for
loci with lower true values ofH, we expect bHfull to have the smallest MSE
of all estimators at less diverse loci that are close to their maximum
expected heterozygosity, and for which the sample mean kinship coeffi-
cient is insufficiently large to appreciably bias the estimator (Equation 12).
It is thus important to note that no estimator is uniformly superior to the
others. Accordingly, the unique limitation of eHBLUE is that the sample
kinship matrix must be invertible for the calculation to proceed.eHBLUE additionally confers its improved MSE over bHfull down-
stream to calculations that incorporate estimates of expected heterozy-
gosity. To illustrate this point, we computed FST as a function of three
estimators: bHfull; eH; and eHBLUE: For simulated data, we found thateFST;BLUE; yielded an estimate with smaller MSE for the three tested loci
than did bFST (Figure 5) or eFST; and amuch smaller mean distance from
the true FST value than bFST: For empirical data (Figure 6), we observed a
consistent upward bias for bFST compared to bFST;red in samples contain-
ing relatives that followedmuch the same pattern as the downward bias
of bHfull for such samples. This trend is clear when we consider the
formula for FST; which can be written as 12 ðH1 þ H2Þ=ð2H12Þ: Tak-
ing bH1;full and bH2;full asH1 andH2; this expression yields a larger value

Figure 6 Application of the estimators eHBLUE and bHfull to the estima-
tion of FST as bFST and eFST;BLUE; respectively, from empirical data. Sim-
ilarly to Figure 4, the difference between the mean of the estimator of
FST (either derived from eHBLUE or bHfull) and an unbiased estimator (de-
rived from bHred), is displayed on the vertical axis, while the SD of the
estimator is displayed on the horizontal axis. The empty circles repre-
sent the Reynolds et al. (1983) estimator (identical to the bHfull-derived
estimation), while the filled circles represent the estimation derived
from eHBLUE: Here, the FST values for the French sample with each of
the 92 other samples containing related individuals in the dataset
MS5795 are plotted, colored by the region of the changing sample.

n Table 2 Wilcoxon signed-rank test for weighted mean across all
loci of bFST;red with bFST and eFST;BLUE for the French population with
the 92 other populations whose samples contained related
individuals

Comparison P-Value for Wilcoxon Signed-Rank TestbFST;red with bFST 5:25· 10215bFST;red with eFST;BLUE 0.967
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than if bH1;red and bH2;red were used, because the ratio ðH1 þ H2Þ=ð2H12Þ
is smaller for downwardly biased estimators. Interestingly, the SD ofeFST;BLUE is, in most cases, smaller than that of bFST for the dataset, while
the SD of eHBLUE was frequently (though not consistently) larger than
that of bHfull (Figure 4, center panel).

It is thus noteworthy to consider that the performance of eHBLUE andbHfull may diverge further in their applications, where any improvement
in MSE for eHBLUE may be magnified downstream. This is highlighted by
the increased concordance between eFST;BLUE and bFST;red compared toeHBLUE and bHred (cf. P-values between Table 1 and Table 2). With this
in mind, applications of eFST;BLUE can also be considered. Two such
examples are the locus-specific branch length (LSBL; Shriver et al.
2004) and the similar population branch statistic (PBS; Yi et al. 2010).
These statistics incorporate FST values between three populations as
measures of branch length to detect positive selection at a locus. Loci
for which the unrooted three-taxon tree indicates a significantly longer
branch length in a particular lineage may represent regions possibly un-
der selection. To allow for the easy application of eHBLUE; we have written
an R script, BestHet, that computes eHBLUE; eFST;BLUE; and LSBLBLUE;
given matrices of genotype and kinship data for a sample (download
available at http://www.personal.psu.edu/mxd60/best_het.html).
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APPENDIX

Derivations of unbiased estimators of expected heterozygosity
In this section, we derive the general unbiased estimator of expected heterozygosity �H for any unbiased linear estimator of population allele

frequencies, defined in Proposition 1, and show how the formulas for eH (DeGiorgio et al. 2010), and eHBLUE (Corollaries 2 and 3), emerge from
specific cases of �H:

Proof of Proposition 1: We need to show that E½�H� ¼ H: Note that
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Proof of Corollary 2: We show that defining the weight of each individual in the calculation of r2 in terms of an individual’s relative allele copy
contribution yields eH from �H: Letting wk ¼ mk=

Pn
x¼1mx; we have that
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j¼1mj
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and
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Plugging in yields
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Proof of Corollary 3: We show that defining the weight each individual according to their relative contribution to the inverted kinshipmatrix of
the sample yields eHBLUE from �H: Letting wk ¼

P​ n
j¼1ðK21Þjk=1TK211; we have that
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Derivations of variances of expected heterozygosity estimators
In this section, we summarize the procedure bywhichDeGiorgio et al. (2010) derived the equation for the variance of eH; illustrating the variance

of the general case, �H: For the full derivation, see Appendix B of DeGiorgio et al. (2010).We then provide the specific formulation for the variance ofeH (Corollary 7) and eHBLUE (Corollary 8).

Abbreviated proof of Proposition 4: The variance of �H (Equation 9) is defined as

Var
�
�H
� ¼ 1

ð12r2Þ2
Var

"
12

XI
i¼1

�p2i

#
:

By definition of variance, we get

Var

"
12

XI
i¼1

�p2i

#
¼
XI
i¼1

Var
�
�p2i
�þ 2

XI21

i¼1

XI
i9¼iþ1

Cov
�
�p2i ; �p

2
i9

�
;

with

Var
�
�p2i
� ¼ E

�
�p4i
�
2
�
E
�
�p2i
��2

and

Cov
�
�p2i ; �p

2
i9

� ¼ E
�
�p2i �p

2
i9

�
2E

�
�p2i
�
E
�
�p2i9
�
:

Recalling that �pi ¼
Pn

j¼1

Pmj

ℓ¼1
wj

mj
AðiÞ

jℓ for the ℓth allele copy of individual j, whose ploidy is mj; we have that

E
�
�p4i
� ¼Xn

j¼1

Xn
k¼1

Xn
j9¼1

Xn
k9¼1

Xmj

ℓ¼1

Xmk

t¼1

Xmj9

ℓ9¼1

Xmk9

t9¼1

wjwkwj9wk9

mjmkmj9mk9
E

h
AðiÞ
jℓ A

ðiÞ
kt A

ðiÞ
j9ℓ9A

ðiÞ
k9t9

i
;

and

E
�
�p2i �p

2
i9

� ¼Xn
j¼1

Xn
k¼1

Xn
j9¼1

Xn
k9¼1

Xmj

ℓ¼1

Xmk

t¼1

Xmj9

ℓ9¼1

Xmk9

t9¼1

wjwkwj9wk9

mjmkmj9mk9
E

h
AðiÞ
jℓ A

ðiÞ
kt A

ði9Þ
j9ℓ9A

ði9Þ
k9t9

i
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i
p2i

þ
h
12Fjkj9k9 þFjk þFjj9 þFjk9 þFkj9 þFkk9 þFj9k9 2 3

�
Fjkj9 þFjkk9 þFjj9k9 þFkj9k9

�
22
�
Fjk;j9k9 þFjj;kk9 þFjk;kj9

�i
p3i þ

h
1þFjk;j9k9 þFjj9;kk9 þFjk9;kj9

þ 2
�
Fjkj9 þFjkk9 þFjj9k9 þFkj9k9

�
2 6Fjkj9k9 2

�
Fjk þFjj9 þFjk9 þFkj9 þFkk9 þFj9k9

�i
p4i (A2)
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and

E

h
AðiÞ
jℓ A

ðiÞ
kt A

ði9Þ
j9ℓ9A

ði9Þ
k9t9

i
¼
h
Fjk;j9k9 2Fjkj9k9

i
pipi9þ

h
2Fjkj9k9 þFjk 2

�
Fjkj9 þFjkk9

�
2Fjk;j9k9

i
pip

2
i9

þ
h
2Fjkj9k9 þFj9k9 2

�
Fjj9k9 þFkj9k9

�
2Fjk;j9k9

i
p2i pi9

þ
h
1þFjk;j9k9 þFjj9;kk9 þFjk9;kj9 þ 2

�
Fjkj9 þFjkk9 þFjj9k9 þFkj9k9

�
2 6Fjkj9k9 2

�
Fjk þFjj9 þFjk9 þFkj9 þFkk9 þFj9k9

�i
p2i p

2
i9: (A3)

Substituting Equation A2 into E½�p4i � and solving for Var½�p2i �; we obtain

Var
�
�p2i
� ¼ r4pi þ

�
4r3 þ 3r2;2 2 7r4 2 r22

�
p2i þ

�
12r4 þ 4r2 þ 2r22 2 12r3 2 6r2;2

�
p3i þ

�
3r2;2 þ 8r3 2 6r4 2 4r2 2 r22

�
p4i ;

and, substituting Equation A3 into E½�p2i �p2i9�; and solving for Cov½�p2i ; �p2i9�; we obtain

Cov
�
�p2i ; �p

2
i9

� ¼�r2;2 2 r4 2 r22

�
pipi9þ

�
2r4 þ r22 2 2r3 2 r2;2

�
pip

2
i9 þ

�
2r4 þ r22 2 2r3 2 r2;2

�
p2i pi9

þ
�
3r2;2 þ 8r3 2 6r4 2 4r2 2 r22

�
p2i p

2
i9:

Thus, substituting the values for variance and covariance into the definition of variance, we have

Var
�
�H
� ¼ 1

ð12r2Þ2
"
r2;22 r22 þ 2

�
r22 2 r4

�XI
i¼1

p2i þ 4
�
2r4 þ r2 2 2r3 2 r2;2

�XI
i¼1

p3i

þ
�
3r2;2 þ 8r3 2 6r4 2 4r2 2 r22

� XI
i¼1

p2i

!2#
: h

Corollary 7: Consider a locus with I distinct alleles, and parametric allele frequencies pi 2 ½0; 1�; i ¼ 1; 2; . . . ; I; and
PI

i¼1pi ¼ 1: For a sample
of size n individuals of any ploidy, inbreeding status, and relatedness,

Var
�eH� ¼ 1�

12 �F 2
�2 Var

"
12

XI
i¼1

bp2i
#

(A4)

and

Var

"
12

XI
i¼1

bp2i
#
¼ �F 2;2 2 �F

2
2 þ 2

�
�F
2
2 2

�F 4

�XI
i¼1

p2i þ 4
�
2 �F 4 þ �F 2 2 2 �F 3 2 �F 2;2

�XI
i¼1

p3i

þ
�
3 �F 2;2 þ 8 �F 3 2 6 �F 4 2 4 �F 2 2 �F

2
2

� XI
i¼1

p2i

!2

; (A5)

where �F 2; �F 3; �F 4; and �F 2;2 are mean kinship coefficients, weighted by the contribution of individuals to the number of allele copies in the
sample, with subscripts corresponding to the number of individuals considered for the calculation. Additionally,

Var
�eH� � 4 �F 2

"XI
i¼1

p3i 2

 XI
i¼1

p2i

!2#
: (A6)

The proof of Corollary 7 follows from the proof of Proposition 4, where bpi is substituted for �pi; and
�F 2; �F 3; �F 4; and �F 2;2 are substituted for

r2; r3; r4; and r2;2; respectively.
Corollary 8: Consider a locus with I distinct alleles and parametric allele frequencies pi 2 ½0; 1�; i ¼ 1; 2; . . . ; I; and

PI
i¼1pi ¼ 1: For a sample

of size n individuals of any ploidy, inbreeding status, and relatedness,

Var
�eHBLUE

� ¼ 1

ð12k2Þ2
Var

"
12

XI
i¼1

ep2i
#

(A7)

and
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Var

"
12

XI
i¼1

ep2i
#
¼ k2;2 2 k22 þ 2

�
k22 2 k4

�XI
i¼1

p2i þ 4
�
2k4 þ k2 2 2k3 2 k2;2

�XI
i¼1

p3i

þ�3k2;2 þ 8k3 2 6k4 2 4k2 2 k22
� XI

i¼1

p2i

!2

; (A8)

where k2; k3; k4; and k2;2 are mean kinship coefficients, weighted by the contribution of individuals to the inverted kinship matrix, with
subscripts corresponding to the number of individuals considered for the calculation. Additionally,

Var
heHBLUE

i
� 4k2

"XI
i¼1

p3i 2

 XI
i¼1

p2i

!2#
: (A9)

The proof of Corollary 8 follows from the proof of Proposition 4, whereepi is substituted for �pi; and k2; k3; k4; and k2;2 are substituted for r2; r3;
r4; and r2;2; respectively.

Derivations of bias measurements in the application of bH
For samples containing related and inbred individuals, bH has a downward bias, which is defined in Equation 12 for the general estimator of

population allele frequency �pi: Here, we present Corollaries 9 and 10 for the specific estimators of population allele frequency bpi and epi; respectively.
Corollary 9: Consider a locus with I distinct alleles and parametric allele frequencies pi 2 ½0; 1�; i ¼ 1; 2; . . . ; I; and

PI
i¼1pi ¼ 1: For a sample of

size n possibly related or inbred individuals, the bias of the estimator of expected heterozygosity bH changes with the true locus expected
heterozygosity such that

Bias
�bH�bpi�� ¼ 12 n �F 2

n2 1
H; (A10)

where

bH�bpi� ¼ n
n2 1

 
12

XI
i¼1

bp2i
!
:

As this is the standard application of bH (Equation 2), Equation A10 describes the bias of bH in the Results. However, bH is biased with any unbiased
linear estimator of allele frequency for samples containing related or inbred individuals. The proof of Corollary 9 follows from the proof of
Proposition 5, where �F 2 is substituted for r2:

Corollary 10: Consider a locus with I distinct alleles and parametric allele frequencies pi 2 ½0; 1�; i ¼ 1; 2; . . . ; I; and
PI

i¼1pi ¼ 1: For a sample
of size n possibly related or inbred individuals, the bias of the estimator of expected heterozygosity bH changes with the true locus expected
heterozygosity such that

Bias
hbH�epi�i ¼ 12 nk2

n2 1
H; (A11)

where

bH�epi� ¼ n
n2 1

 
12

XI
i¼1

ep2i
!
: (A12)

The proof of Corollary 10 follows from the proof of Proposition 5, where k2 is substituted for r2:

Derivations of components for the variance of FST estimators
In this final section of the Appendix, we provide derivations for the components of Equations 16 and 17, which describe the variance of �FST:We

derive the variance of �H12; as well as the covariances of �H12 with �H1 (and interchangeably, �H12 with �H2), and of

�
�H12 2 1

2
�H1 2 1

2
�H2

	
with �H12:

Because the complete expression for Var½�FST� is unwieldy, we stop at the derivation of the final component.

Lemma 11: Consider a locus with I distinct alleles across two independent populations and parametric allele frequencies pi 2 ½0; 1�;
i ¼ 1; 2; . . . ; I; and

PI
i¼1pi ¼ 1 for population 1, and qi 2 ½0; 1�; i ¼ 1; 2; . . . ; I; and

PI
i¼1qi ¼ 1 for population 2. For two samples of size

n1 and n2; individuals from populations 1 and 2, respectively, each with individuals of any ploidy, inbreeding status, and relatedness,

Var
�
�H12
� ¼ r

ð1Þ
2

�
12 r

ð2Þ
2

�XI
i¼1

piq
2
i þ r

ð2Þ
2

�
12 r

ð1Þ
2

�XI
i¼1

p2i qi þ r
ð1Þ
2 r

ð2Þ
2

XI
i¼1

piqi þ
�
r
ð1Þ
2 r

ð2Þ
2 2 r

ð1Þ
2 2 r

ð2Þ
2

� XI
i¼1

piqi

!2

; (A13)
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where the superscript of the mean kinship coefficient r2 corresponds to the population for which it is calculated. The equations for the
variance of eH12 and eH12;BLUE are obtained by substituting �F 2 and k2; respectively, into Equation A13 as the mean kinship coefficients in
place of r2:

Proof: By definition of variance,

Var
�
�H12
� ¼XI

i¼1

Var
�
�pi�qi
�þ 2

XI21

i¼1

XI
i9¼iþ1

Cov
�
�pi�qi; �pi9�qi9

�
where

Var
�
�pi�qi
� ¼ E

�
�p2i �q

2
i

�
2
�
E
�
�pi �qi

��2
and

Cov
�
�pi�qi; �pi9�qi9

� ¼ E
�
�pi�qi�pi9�qi9

�
2E

�
�pi�qi
�
E
�
�pi9�qi9

�
:

Because �pi and �qi are unbiased estimators of population allele frequency, and populations 1 and 2 are independent,

E
�
�pi�qi
� ¼ piqi

Similarly, E½�pi9�qi9� ¼ pi9qi9: Next, we have

E
�
�p2i �q

2
i

� ¼ E
�
�p2i
�
E
�
�q2i
�

¼
h
p2i þ r

ð1Þ
2 pi

�
12 pi

�ih
q2i þ r

ð2Þ
2 qi

�
12 qi

�i
¼ piqi

h
pi þ r

ð1Þ
2

�
12 pi

�ih
qi þ r

ð2Þ
2

�
12 qi

�i
;

(A14)

where E½�q2i � takes the same form as E½�p2i � (Equation A1), except that the resulting weighted mean kinship coefficient r2 is for population 2,
indicated by the superscript. By substituting Equation A14 into Var½�pi�qi�; we have

Var
�
�pi�qi
� ¼ piqi

h
pi þ r

ð1Þ
2

�
12 pi

�ih
qi þ r

ð2Þ
2

�
12 qi

�i
2
�
piqi
�2

¼ piqi
nh

pi þ r
ð1Þ
2

�
12 pi

�ih
qi þ r

ð2Þ
2

�
12 qi

�i
2 piqi

o
¼ piqi

h
r
ð1Þ
2

�
12 pi

�
qi þ r

ð2Þ
2 pi

�
12 qi

�þ r
ð1Þ
2 r

ð2Þ
2

�
12 pi

��
12 qi

�i
:

(A15)

We now derive an expression for Cov½�pi�qi; �pi9�qi9� Let BðiÞ
kt be an indicator random variable in population 2 analogous to the indicator random

variable AðiÞ
jℓ ; which we have previously defined for population 1.

E
�
�pi�qi�pi9�qi9

� ¼ E
�
�pi�pi9
�
E
�
�qi�qi9
�

¼
 Pn1

j¼1

Pn1
j9¼1

Pmj

ℓ¼1

Pmj9

ℓ9¼1

wjwj9

mjmj9
E

�
AðiÞ
jℓ A

ði9Þ
j9ℓ9

	1A Xn2
k¼1

Xn2
k9¼1

Xmk

t¼1

Xmk9

t9¼1

wkwk9

mkmk9
E

�
BðiÞkt B

ði9Þ
k9t9

	!
;

where

E

h
AðiÞ
jℓ A

ði9Þ
j9ℓ9

i
¼ ℙ

h
AðiÞ
jℓ ¼ 1;Aði9Þ

j9ℓ9 ¼ 1
i
;

and

E

h
BðiÞkt B

ði9Þ
k9t9

i
¼ ℙ

h
BðiÞkt ¼ 1;Bði9Þk9t9 ¼ 1

i
:

Consider a scenario in which we have two allele copies. Let s1 be the identity state with probability D1; in which two randomly drawn alleles are
not IBD, and s2 be the identity state occurring with probability D2 ¼ 12D1; in which the two alleles are IBD.
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ℙ
h
AðiÞ
jℓ ¼ 1;Aði9Þ

j9ℓ9 ¼ 1
i
¼ ℙ

h
AðiÞ
jℓ ¼ 1;Aði9Þ

j9ℓ9 ¼ 1js1
i
ℙ½s1� þ ℙ

h
AðiÞ
jℓ ¼ 1;Aði9Þ

j9ℓ9 ¼ 1js2
i
ℙ½s2�

¼ pipi9D1 þ 0 ·D2

¼ D1pipi9:

Note that, because D1 þ D2 ¼ 1 and F
ð1Þ
jj9 ¼ D2 (same with F

ð2Þ
kk9), we have D1 ¼ 12F

ð1Þ
jj9 : Thus,

ℙ
h
AðiÞ
jℓ ¼ 1;Aði9Þ

j9ℓ9 ¼ 1
i
¼
�
12F

ð1Þ
jj9

�
pipi9

and

ℙ
h
BðiÞkt ¼ 1;Bði9Þk9t9 ¼ 1

i
¼
�
12F

ð2Þ
kk9

�
qiqi9:

Substituting, we now have

E

�
�pi�pi9�qi�qi9

	
¼
0@Xn1

j¼1

Xn1
j9¼1

Xmj

ℓ¼1

Xmj9

ℓ9¼1

wjwj9

mjmj9

�
12F

ð1Þ
jj9

�
pipi9

1A Xn2
k¼1

Xn2
k9¼1

Xmk

t¼1

Xmk9

t9¼1

wkwk9

mkmk9

�
12F

ð2Þ
kk9

�
qiqi9

!

¼
�
12 r

ð1Þ
2

��
12 r

ð2Þ
2

�
pipi9qiqi9; (A16)

and substituting Equation A16 into Cov½�pi�qi; �pi9�qi9� yields

Cov
�
�pi�qi; �pi9 �qi9

� ¼ �12 r
ð1Þ
2

��
12 r

ð2Þ
2

�
pipi9qiqi92 piqipi9qi9:

¼
�
r
ð1Þ
2 r

ð2Þ
2 2 r

ð1Þ
2 2 r

ð2Þ
2

�
pipi9qiqi9:

(A17)

Therefore, using Equations A15 and A17,

Var
�
�H12
� ¼XI

i¼1

piqi
h
r
ð1Þ
2

�
12 pi

�
qi þ r

ð2Þ
2 pi

�
12 qi

�þ r
ð1Þ
2 r

ð2Þ
2

�
12 pi

��
12 qi

�i

þ 2
XI21

i¼1

XI
i9¼iþ1

�
r
ð1Þ
2 r

ð2Þ
2 2 r

ð1Þ
2 2 r

ð2Þ
2

�
pipi9qiqi9

¼ r
ð1Þ
2

XI
i¼1

pi
�
12 pi

�
q2i þ r

ð2Þ
2

XI
i¼1

p2i qi
�
12 qi

�þ r
ð1Þ
2 r

ð2Þ
2

XI
i¼1

pi
�
12 pi

�
qi
�
12 qi

�þ 2
XI21

i¼1

XI
i9¼iþ1

�
r
ð1Þ
2 r

ð2Þ
2 2 r

ð1Þ
2 2 r

ð2Þ
2

�
pipi9qiqi9

¼ r
ð1Þ
2

�
12 r

ð2Þ
2

�XI
i¼1

piq
2
i þ r

ð2Þ
2

�
12 r

ð1Þ
2

�XI
i¼1

p2i qi þ
�
r
ð1Þ
2 r

ð2Þ
2 2 r

ð1Þ
2 2 r

ð2Þ
2

�XI
i¼1

p2i q
2
i

þ r
ð1Þ
2 r

ð2Þ
2

XI
i¼1

piqi þ 2
�
r
ð1Þ
2 r

ð2Þ
2 2 r

ð1Þ
2 2 r

ð2Þ
2

�XI
i¼1

XI
i9¼1

pipi9qiqi9

¼ r
ð1Þ
2

�
12 r

ð2Þ
2

�XI
i¼1

piq
2
i þ r

ð2Þ
2

�
12 r

ð1Þ
2

�XI
i¼1

p2i qi þ r
ð1Þ
2 r

ð2Þ
2

XI
i¼1

piqi þ
�
r
ð1Þ
2 r

ð2Þ
2 2 r

ð1Þ
2 2 r

ð2Þ
2

� XI
i¼1

piqi

!2

: h

Lemma 12: Consider a locus with I distinct alleles across two independent populations and parametric allele frequencies pi 2 ½0; 1�;
i ¼ 1; 2; . . . ; I; and

PI
i¼1pi ¼ 1 for population 1, or qi 2 ½0; 1�; i ¼ 1; 2; . . . ; I; and

PI
i¼1qi ¼ 1 for population 2. For two samples of size n1

and n2 individuals from populations 1 and 2, respectively, each with individuals of any ploidy, inbreeding status, and relatedness,

Cov
�
�H12; �H1

� ¼ 1

12 r
ð1Þ
2

"
2
�
r
ð1Þ
3 2 r

ð1Þ
2

�XI
i¼1

p3i qi þ
�
2rð1Þ2 2 3rð1Þ3

�XI
i¼1

p2i qi þ r
ð1Þ
3

XI
i¼1

piqi

#
(A18)

and
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Cov
�
�H12; �H2

� ¼ 1

12 r
ð2Þ
2

"
2
�
r
ð2Þ
3 2 r

ð2Þ
2

�XI
i¼1

piq
3
i þ

�
2rð2Þ2 2 3rð2Þ3

�XI
i¼1

piq
2
i þ r

ð2Þ
3

XI
i¼1

piqi

#
; (A19)

where the superscript of the mean kinship coefficients r2 and r3 corresponds to the population for which these are calculated. The formulas for
Cov½eH12; eH1�; Cov½eH12; eH2�; Cov½eH12;BLUE; eH1;BLUE�; and Cov½eH12;BLUE; eH2;BLUE� are obtained by substituting �F 2 and �F 3 (for eH), or k2 and k3
(for eHBLUE) into Equations A18 and A19, respectively.

Proof: The covariance between �H12 and �H1 is

Cov
�
�H12; �H1

� ¼ 1

12 r
ð1Þ
2

Cov

" 
12

XI
i¼1

�pi�qi

!
;

 
12

XI
i¼1

�p2i

!#

¼ 1

12 r
ð1Þ
2

XI
i¼1

XI
i9¼1

Cov
�
�pi�qi; �p

2
i9

�
¼ 1

12 r
ð1Þ
2

 XI
i¼1

Cov
�
�pi�qi; �p

2
i

�þXI
i¼1

XI
i9¼1
i96¼i

Cov
�
�pi�qi; �p

2
i9

�!
:

The value of the covariance calculated for the case where i ¼ i9 can be written as

Cov
�
�pi�qi; �p

2
i

� ¼ E
�
�p3i �qi

�
2E

�
�pi�qi
�
E
�
�p2i
�
:

From the proof of Lemma 11, we have derived the value of E½�pi�qi�; and, from the proof of Proposition 1 we know the value for E½�p2i � We
therefore only need to compute

E
�
�p3i �qi

� ¼ E
�
�p3i
�
E
�
�qi
�
;

where E½�qi� ¼ qi: Solving for E½�p3i �; we have

E
�
�p3i
� ¼Xn1

j¼1

Xn1
v¼1

Xn1
v9¼1

Xmj

ℓ¼1

Xmv

z¼1

Xmv9

z9¼1

wjwvwv9

mjmvmv9
E

h
AðiÞ
jℓ A

ðiÞ
vz A

ðiÞ
v9z9

i

¼
Xn1
j¼1

Xn1
v¼1

Xn1
v9¼1

Xmj

ℓ¼1

Xmv

z¼1

Xmv9

z9¼1

wjwvwv9

mjmvmv9
ℙ
h
AðiÞ
jℓ ¼ 1;AðiÞ

vz ¼ 1;AðiÞ
v9z9 ¼ 1

i
:

The value of ℙ½AðiÞ
jℓ ¼ 1;AðiÞ

vz ¼ 1;AðiÞ
v9z9 ¼ 1� depends on the probabilities of distinct identity states in which three alleles are drawn from the

sample (one each from individuals j, v, and v9). We define state 1 as no IBD alleles drawn (probability d1), state 2 as IBD alleles drawn from j
and v (probability d2), state 3 as IBD alleles drawn from v and v9 IBD (probability d3), state 4 as IBD alleles drawn from j and v9 IBD
(probability d4), and state 5 as all three IBD (probability d5), with

P5
s¼1ds ¼ 1: Thus, the probabilities for the relevant kinship coefficients are

F
ð1Þ
jvv9 ¼ d5

F
ð1Þ
jv ¼ d5 þ d2

F
ð1Þ
vv9 ¼ d5 þ d3

F
ð1Þ
jv9 ¼ d5 þ d4;

which yields

ℙ
h
AðiÞ
jℓ ¼ 1;AðiÞ

vz ¼ 1;AðiÞ
v9z9 ¼ 1

i
¼ d5pi þ ðd2 þ d3 þ d4Þp2i þ d1p3i

¼ F
ð1Þ
jvv9pi þ

�
F

ð1Þ
jv þF

ð1Þ
vv9 þF

ð1Þ
jv9 2 3Fð1Þ

jvv9

�
p2i þ

�
1þ 2Fð1Þ

jvv9 2F
ð1Þ
jv9 2F

ð1Þ
vv9 2F

ð1Þ
jv

�
p3i :

Thus, E½�p3i �qi� is
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E
�
�p3i �qi

� ¼ r
ð1Þ
3 piqi þ 3

�
r
ð1Þ
2 2 r

ð1Þ
3

�
p2i qi þ

�
1þ 2rð1Þ3 2 3rð1Þ2

�
p3i qi; (A20)

and from Equations A20 and A1, and the definition of E½�pi�qi�;

Cov
�
�pi�qi; �p

2
i

� ¼ r
ð1Þ
3 piqi þ 3

�
r
ð1Þ
2 2 r

ð1Þ
3

�
p2i qi þ

�
1þ 2rð1Þ3 2 3rð1Þ2

�
p3i qi 2 piqi

h
p2i þ r

ð1Þ
2 pi

�
12 pi

�i
¼ 2
�
r
ð1Þ
3 2 r

ð1Þ
2

�
p3i qi þ

�
2rð1Þ2 2 3rð1Þ3

�
p2i qi þ r

ð1Þ
3 piqi:

(A21)

Meanwhile, for the Cov½�pi�qi; �p2i9� case of i 6¼ i9; Cov½�pi�qi; �p2i9� ¼ 0: This is intuitively sensible because the products �pi�qi and �p2i9 are independent,
describing different alleles, and should not covary.

Finally, we can see that, when the two populations considered are independent from one another, the value of Cov½�H12; �H1� (or equivalently of
Cov½�H12; �H2�) is driven entirely by the case in which i ¼ i9; such that
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We now need to derive Cov
�
�H12 2 1

2 ð�H1 þ �H2Þ; �H12
�
; the final term required to compute Var½�FST�

Lemma 13: Consider a locus with I distinct alleles across two independent populations and parametric allele frequencies pi 2 ½0; 1�;
i ¼ 1; 2; . . . ; I; and

PI
i¼1pi ¼ 1 for population 1, or qi 2 ½0; 1�; i ¼ 1; 2; . . . ; I; and

PI
i¼1qi ¼ 1 for population 2. For two samples of size n1

and n2 individuals from populations 1 and 2, respectively, each with individuals of any ploidy, inbreeding status, and relatedness,
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(A22)

where the superscript of the mean kinship coefficients r2 and r3 corresponds to the population for which these quantities are calculated. The
formulas for Cov½eH12 2 ð1=2ÞeH1 2 ð1=2ÞeH2; eH12� and Cov½eH12;BLUE 2 ð1=2ÞeH1;BLUE 2 ð1=2ÞeH2;BLUE; eH12;BLUE� are obtained by substituting
�F 2 and �F 3 (for eH), or k2 and k3 (for eHBLUE) into Equation A22.
Proof: We begin by breaking up the covariance into its components,
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This equation is composed of terms that we previously derived (Equations A13, A18, and A19). Therefore,
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