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Abstract

Alpine meadows are strongly affected by climate change. Increasing air temperature pro-

longs the growing season and together with changing precipitation patterns alters soil tem-

perature during winter. To estimate the effect of climate change on soil nutrient cycling, we

conducted a field experiment. We transferred undisturbed plant-soil mesocosms from two

wind-exposed alpine meadows at ~2100 m a.s.l. to more sheltered plots, situated ~300–400

m lower in the same valleys. The annual mean air temperature was 2˚C higher at the lower

plots and soils that were normally frozen at the original plots throughout winters were

warmed to ~0˚C due to the insulation provided by continuous snow cover. After two years of

exposure, we analyzed the nutrient content in plants, and changes in soil bacterial commu-

nity, decomposition, mineralization, and nutrient availability. Leaching of N and P from the

soils was continuously measured using ion-exchange resin traps. Warming of soils to ~0˚C

during the winter allowed the microorganisms to remain active, their metabolic processes

were not restricted by soil freezing. This change accelerated nutrient cycling, as evidenced

by increased soil N and P availability, their higher levels in plants, and elevated leaching. In

addition, root exudation and preferential enzymatic mining of P over C increased. However,

any significant changes in microbial biomass, bacterial community composition, decomposi-

tion rates, and mineralization during the growing season were not observed, suggesting

considerable structural and functional resilience of the microbial community. In summary,

our data suggest that changes in soil temperature and snow cover duration during winter

periods are critical for altering microbially-mediated processes (even at unchanged soil

microbial community and biomass) and may enhance nutrient availability in alpine mead-

ows. Consequently, ongoing climate change, which leads to soil warming and decreasing

snow insulation, has a potential to significantly alter nutrient cycling in alpine and subalpine

meadows compared to the current situation and increase the year-on-year variability in

nutrient availability and leaching.
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Introduction

The ongoing climate change puts pressure on the functioning of current ecosystems. Signs of

global climate change can already be observed by the widespread melting of the alpine glaciers

[1,2] and the migration of plant and animal species towards the poles or higher elevations

[3,4]. These changes are attributed to the combined effects of increased global temperatures,

altered precipitation patterns, and consequent changes in the soil moisture regime, presence

and duration of snowpack [5–8], and prolonged vegetation season [9]. The warming trend is

expected to continue: the annual average air temperature is expected to increase by 2.5–4˚C by

the end of this century [10], with more pronounced changes at higher elevations and latitudes

[11,12].

European mountain grasslands in the alpine and sub-alpine zones are already highly

impacted by ongoing climate change [13,14]. This is shown by significant changes in their

plant communities [15], commonly connected with increases in plant productivity [16,17] and

tissue nutrient concentrations [18]. The observed vegetation changes are necessarily associated

with altered processes supplying plants with nutrients. The microbially mediated soil processes

involved in carbon and nutrient cycling are impacted both directly by the temperature and

moisture changes [16,18,19] and indirectly through the changing plant productivity and spe-

cies composition [20]. In concert with climate change-mediated vegetation changes, many

studies have shown accelerated N mineralization [16,21–24] and elevated availability of inor-

ganic N [21] in arctic and alpine soils. These changes in soil nutrient cycling could be accom-

panied by adaptations of soil microbial biomass [25] and its community structure [26] to

changing conditions. On the other hand, the long-term resistance of microbial communities

and enzymatic activities to climate change is also often documented [19,25,27]. Generally, the

responses of belowground compartment of ecosystems to climate changes are more complex

and variable compared to the reaction of vegetation [28].

A typical characteristic of the seasonally snow-covered alpine and sub-alpine grasslands is

their strong seasonality in vegetation activity [29] and structural and functional composition

of microbial communities mediating nutrient transformation in the soil [30–32]. The func-

tioning of alpine meadows during the vegetation season is driven by plant photosynthetic

activity, connected with the release of organic compounds by roots to the soil, intensive micro-

bial decomposition and mineralization processes and fast plant nutrient uptake and immobili-

zation. During the winter period, activities in the belowground ecosystem compartment are

largely controlled by the presence, depth and continuity of snow cover, which insulates the soil

and regulates its temperature [33]. A deep continuous snowpack prevents subzero tempera-

tures [34], allowing enzymatic decomposition, N mineralization, and nitrification to keep

occurring at significant rates. The N released over winter is both immobilized in the microbial

biomass [35,36] and accumulated in mineral forms in the soil [37,38]. In contrast, a shallow or

discontinuous snowpack may enable soil freezing, which significantly reduces, although does

not completely stop, microbial activity [37]. However, more frequent freeze-thaw events may

lead to microbial cell lysis and plant root damage and mortality, associated with high rates of

soil N mineralization and nitrate leaching during these events [39–41]. A spring snowmelt is a

dynamic period in alpine systems. The winter microbial biomass collapses [42], the commu-

nity switches to species utilizing fresh plant-derived inputs [36,42], and plants regrow. Perco-

lating water from melting snow mobilizes and leaches available forms of C and nutrients,

especially accumulated nitrate from the soils [38,41,43].

Nitrogen retention and losses in alpine meadows are controlled by a balance between N

mineralization and nitrification/denitrification during the winter season, snowmelt timing,

amount of percolating water and plant nutrient uptake on the onset of the growing season
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[8,44,45]. Particularly, the winter and spring events, which influence the presence, depth and

duration of the snow cover, strongly impact nutrient cycling, as well as the vegetation of alpine

and arctic ecosystems [6]. Warming during the vegetation period further modifies the func-

tioning of ecosystems through altering plant productivity [46], vegetation composition [47],

and associated soil microbial processes. Most observations to date show a change in the precip-

itation pattern, reduction in snowfall, thinning snow cover, greater temperature fluctuations

in winter, earlier snowmelt and a prolonged vegetation season in alpine and arctic ecosystems

[8,48]. However, the ongoing climatic changes, as well as the observed responses are not uni-

form but rather site-specific [49]. Therefore, in situ transplant studies [50] or field manipula-

tion studies [36,40,41] on regional scales, which cover different summer and winter climate

change scenarios are needed [49]. These integrate multiple factors with their annual dynamics

altered by climate change, which are difficult to simulate in the laboratory [28,51] and thus

impede the assessment of their impacts on natural ecosystems.

The aim of our study was to investigate the potential effects of climate change on soil nutri-

ent cycling and leaching from alpine meadows. We located our experiment in the Tatra Moun-

tains (Slovakia), which exhibited pronounced changes in climate characteristics from 1996 till

2019, including an increase in mean annual air temperature from 2.2 to 3.5˚C, prolonged

growing season, increasing frequency of winter thaws, increased annual precipitation and

intensity of rainfall events [52,53]. The climate changes accelerated erosion and weathering in

rocky areas, which elevated leaching of base cations, bicarbonate, and phosphate into alpine

lakes [53] and supported their biological recovery from previous atmospheric acidification

[54]. To simulate climate change, we used the environmental gradients along the slopes of the

Tatra Mountains and transferred the undisturbed plant-soil cores (hereafter referred to as

mesocosms) from high- to low-elevation and warmer sites for two years. We hypothesized

that: (1) The simulated “warming” will enhance rates of enzymatic decomposition and increase

mineralization of nutrients, their availability in the plant-soil mesocosms, and leaching; and

(2) the climate-related change in soil nutrient cycling will be accompanied by an adaptation of

the soil microbial biomass and shift in bacterial community composition. Besides relatively

well described climate change-related impacts on N cycling, we also focused on the rarely stud-

ied [e.g., 55] P availability and leaching from plant-soil systems.

Material and methods

Study area and characteristics of the transplant sites

The study was conducted in the Tatra Mountains situated in central Europe at 49.2˚ N, 20.2˚

E. The two-year transplant experiment simulating the effect of climate change on alpine

meadow ecosystems was done on the slopes of two alpine valleys Furkotska (FU) and Velka

Studena (VS), located in the southern slope of the central Tatra Mountains (Slovakia). Both

valleys have granodiorite bedrock with acidic entisols (dominated by shallow, undeveloped

leptosols and regosols, pHH2O <4.5) of relatively low effective cation exchange capacity, rang-

ing between 96–157 meq kg-1 (one equivalent is one mole of charge) and low base

saturation� 25% (Table 1), covered by dry alpine meadows. The meadow area/patches are

surrounded by large scree areas in the steep slopes [56].

In both valleys, we selected vegetated sites located at ~2100 m a.s.l. and below 1800 m a.s.l.

While the high-elevation (H) sites represented typical alpine meadows with discontinuous

short-stemmed vegetation among rocks and stones, dominated by Luzula alpino-pilosa, Agros-
tis rupestris, and Juncus trifidus, the low-elevation (L) sites were subalpine meadows with

more-or-less continuous vegetation occurring among dwarf pine patches. The FU-L site had

short-stemmed vegetation with dominant Nardus stricta and was more exposed to sunshine
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than the shaded and wetter VS-L site dominated by Callamagrostis villosa. The site characteris-

tics are listed in Table 1.

The study was created as part of the research "Deglaciation and postglacial climate develop-

ment of the High Tatra Mountains" permitted by Ministry of Environment of the Slovak

Republic, District Office Prešov, Permission No.: OU-OSZP1-2016/033834-006/SJ, valid for

years 2017–2020.

Design of the transplant experiment

In September 2013, six undisturbed soil cores (16 × 16 cm), 10 cm deep and with undisturbed

native vegetation were excavated using a spade in the H sites and placed in plastic boxes. The

bottoms of the boxes were perforated by evenly spaced circular holes (5 mm diameter), cov-

ered by a polyamide net with a mesh size of 0.5 mm, which enabled leaching of soil solution

from the mesocosm. Four ion-exchange resin traps (parallels with two different ion-exchange

resins) were placed beneath the bottom of each box, covering the entire bottom (Fig 1A). We

used these types of resins: a mixed-bed anion-cation resin (Purolite C100E and Purolite

A520E, mixed 1:1) designed to retain nitrate and ammonium N (NO3-N, and NH4-N) [57],

and a hybrid anion resin (Purolite FerrIX A33E) for trapping phosphate (PO4-P) [58] leached

from the mesocosm. Then, the box was placed into a second plastic box of the same size, but

without a bottom, which enabled natural seepage of water from the mesocosm to lower soil

horizons. Moreover, walls of the lower box provided a physical barrier, protecting resins from

the accumulation of ions from the mesocosms’ surroundings. The complete mesocosms were

returned to the soil (Fig 1B). At each sampling site, three mesocosms were placed to the same

location serving as controls (H–high site). Three others were transferred down-the-slope to L

sites (H!L–moving from high to low location) in the respective valley. Mesocosms were kept

in field for two years until September 2015, when they were resampled, placed in plastic bags

and kept at 4˚C for 2 days during the transport to the laboratory before analyses (see below).

Soil temperature was measured near the mesocosms at a depth of 2 cm, using HOBO1

UTBI-001 sensors (Onset Computers, USA), with an accuracy of ±0.2˚C. Prior to use, the ther-

mometers were kept several days at 4˚C and then at a laboratory temperature of ~20˚C, and

Table 1. Basic characteristics of the studied sites at high (H) and low (L) elevations in the Furkotska (FU) and Velka Studena (VS) valleys.

Furkotska valley (FU) Velka Studena valley (VS)

Characteristic Units High (FU-H) Low (FU-L) High (VS-H) Low (VS-L)

Elevation m a.s.l. 2140 1730 2100 1800

Slope % 15 30 18 25

Exposition Degree 230 165 125 195

MAST (min, max) ˚C 1.6 (-14.5, 20.2) 5.4 (-0.3, 22.6) 3.7 (-14.7, 25.6) 4.1 (-6.5, 19.8)

MST (veg/ nonveg) ˚C 5.5/-2.8 9.4/0.8 8.4/-1.3 7.6/0.3

pHH2O 4.21 4.14 4.25 4.25

C mg g-1 130 149 69 130

N mg g-1 8.80 9.47 4.38 9.88

P mg g-1 0.97 1.04 0.47 1.12

CEC meq kg-1 104 146 144 140

BS % 17 9 6 25

Abbreviations: MAST, mean annual soil temperature with absolute minimum and maximum values in brackets; MST, mean soil temperature in vegetation (May–

October) / winter (November–April) season. pHH2O, soil pH in water extracts; C, N, and P, total concentrations of carbon, nitrogen and phosphorus in soil; CEC,

effective cation exchange capacity; and BS, soil base saturation.

https://doi.org/10.1371/journal.pone.0272143.t001
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only thermometers with the proven accuracy range of ±0.2˚C at both temperatures were used.

The temperatures were recorded in 60-min intervals and were used to calculate daily mean

soil temperature.

In situ measurement of mineral N and P leaching from mesocosms by ion-

exchange resin traps

Ion-exchange resin traps were kept in field for one year and then replaced. Their field exposure

thus lasted from Sept 2013 to Sept 2014 and from Sept 2014 to Sept 2015. In laboratory, the res-

ins removed from the traps were washed in demineralized water and extracted by repeated elu-

tion procedure in a glass column. A 10% NaCl solution was used as the elution solution for the

mixed-bed resin retaining mineral N forms [57], while 2% NaOH was used for the resin retain-

ing phosphate [58]. The final volume of eluate was 400 and 300 ml per column for mineral N

and P, respectively. The concentrations of NO3-N and NH4-N were determined using a flow

injection analyzer (FIA, Lachat QC8500, Lachat Instruments, USA), while PO4 was measured

as soluble reactive P (SRP) [59]. The amounts of leached nutrients were corrected for elution

efficiency [57,58]. The amounts of N and P, respectively, from the two parallel ion-exchange

resin traps located under the particular mesocosm were always tallied up and represented the

amount of N and P leached from the half the area of the mesocosm per year. The N and P

leaching was finally expressed in mg m-2 year-1.

Analyses of mesocosms and ambient soils at the end of experiment in 2015

After removal in September 2015, mesocosms were analyzed for nutrient concentrations in

the aboveground and belowground plant biomass, soil chemical characteristics, microbial bio-

mass, enzymatic activities, C and N mineralization rates and bacterial community composition

(see below). The vegetation and soil samples were prepared as follows. Plants were manually

separated from the soil and washed in water. All the soil from the mesocosm was homoge-

nized, sieved through a 5-mm mesh and subsequently analyzed as described below.

At the same time, the ambient soils from the original H and L localities were sampled.

Three representative soil samples, each combined from five ~50–70 g soil subsamples, were

taken by a small spade to the soil depth of 10 cm randomly from the alpine meadows close to

the mesocosms. These samples were processed identically to the mesocosm soil, except for the

bacterial community composition.

Fig 1. Design of mesocosms. (a) The undisturbed plant-soil core was placed in the plastic box with perforated bottom.

Four ion-exchange resin traps–parallels with two different ion-exchange resins that trapped N and P, were placed

beneath the core, covering the entire bottom, and secured by another plastic box of the same size but without bottom.

(b) Photo of mesocosm in the field together with a thermometer in its vicinity, marked with colored string.

https://doi.org/10.1371/journal.pone.0272143.g001
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The characteristics of ambient soils from H sites were compared to those of the mesocosms’

soil samples placed back in H sites to check for the “placing-to-box” effect. A comparison of

vegetation and soil characteristics from the in situ H and downward transferred H!L meso-

cosms were used to assess the effects of simulated climate change.

All soil chemical and biochemical results further reported in this study are given on a dry

weight basis (105˚C).

Plant biomass C, N and P contents. All the above- and belowground plant biomass was

dried at 60˚C for 72 hours and milled. Total C and N concentrations were determined by dry

combustion on an elemental analyzer (ThermoQuest, Italy). Total P was measured colorimet-

rically by the ammonium molybdate-ascorbic acid method on a flow injection analyzer (FIA,

Lachat QC8500, Lachat Instruments, USA) after perchloric acid digestion [60].

Analyses of ambient and mesocosm soils. The soils were divided immediately after siev-

ing for further analyses. A soil subsample (5 g) was immediately frozen for DNA extraction

and an assessment of potential enzymatic activities. A part of the soil was dried at 60˚C to con-

stant weight, milled and analyzed for total concentrations of C, N and P contents using the

same methods as for plant material.

Exchangeable base cations (BC = sum of Ca2+, Mg2+, Na+, K+) and exchangeable acidity

(the sum of exchangeable Al3+ and H+) were determined at natural soil pH by extracting 2.5 g

of air-dried soil with 50 ml of 1M NH4Cl and 1M KCl, respectively, in three successive steps

[56]. Base cation concentrations were measured by atomic absorption spectrometry (Varian,

Australia), and Al3+ and H+ were determined by titration (phenolphthalein, 0.1M NaOH and

0.1M HCl) [61]. The effective cation exchange capacity (CEC) was the sum of BC, Al3+ and

H+. Base saturation (BS) was calculated as the percentage of BC in CEC.

Subsamples of fresh soils (10 g, 3 replicates) were immediately extracted by 40 ml of cold

demineralized water on a roll-and-roll shaker for 1 hour at 4˚C. The extracts were centrifuged

at 4000 g for 30 min. The pHH2O was measured in the supernatant using a glass electrode. The

supernatant was then filtered through 0.45 μm glass-fiber filter and analyzed for dissolved

organic C (DOC) and total dissolved N (DN) using a TOC-L analyzer equipped with the total

N measuring unit TNM-L (Shimadzu, Tokyo, Japan), and for SRP, NO3-N and NH4-N using

flow injection analyzer (FIA Lachat QC8500, Lachat Instruments, USA).

Another set of soil samples (5 g, 6 replicates) was weighed in sealed, airtight 100 ml flasks

and incubated at 20˚C. In three selected samples, soil CO2 efflux was measured after 2, 7, 16,

and 24 days of incubation using the Agilent 6850 GC system (Agilent Technologies, CA,

USA). Flasks were ventilated by a stream of air using a fan after each measurement and closed

again. Cumulative respiratory C loss was calculated to characterize the potential C mineraliza-

tion. The soil samples were further used to assess the net rates of potential N mineralization

and nitrification. These were calculated from differences in concentrations of NH4-N and

NO3-N, respectively, in the 0.5M K2SO4 soil extracts between the 7th and 14th day of incuba-

tion at 20˚C (3 replicates extracted each time, measured using flow injection analyzer; FIA

Lachat QC8500, Lachat Instruments, USA).

Microbial biomass carbon (MB-C), nitrogen (MB-N), and phosphorus (MB-P) were deter-

mined by the chloroform fumigation-extraction method [62–64] in fresh samples within 48

hours after sieving. Samples were extracted either by 0.5M K2SO4 (1:4 w:v; MB-C and MB-N)

or 0.5M NaHCO3 with a pH of 8.5 (1:15 w:v; MB-P) before and after a 24 hour fumigation

with ethanol-free chloroform. The DOC and DN concentrations in the soil extracts were mea-

sured using TOC-L analyzer equipped with the total N measuring unit TNM-L (Shimadzu,

Tokyo, Japan). The SRP in sodium bicarbonate extract was measured colorimetrically by the

ammonium molybdate ascorbic acid method [59]. The MB-C, MB-N, and MB-P concentra-

tions were calculated as differences between the respective C, N, and P concentrations in
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extracts from the fumigated and non-fumigated samples and corrected for incomplete recov-

ery, applying correction factors of 0.45, 0.54 and 0.4, respectively [62–64].

Potential extracellular enzyme activities were determined by microplate fluorometric

assays. For determination of hydrolytic enzyme activities, 0.5 g of thawed soil was suspended

in 50 ml of distilled water and sonicated for 4 minutes to disrupt soil particles. Then, 200 μl of

soil suspension was added to 50 μl of methylumbelliferyl substrate solution specific to β-gluco-

sidase (BG), cellobiosidase (CB), phosphatase (AP), or N-acetylglucoseaminidase (NAG)

determination. To determine leucine aminopeptidase (LAP), 200 μl of soil suspension was

added to 50 μl of 7-aminomethyl-4-coumarin substrate solution [65]. Plates were incubated at

20˚C for 2 hours. Fluorescence was quantified at an excitation wavelength of 365 nm and emis-

sion wavelength of 450 nm, using the INFINITE F200 microplate reader (TECAN, Germany).

The method was optimized for soil samples according to German et al. [66]. All enzymatic

activities were tallied and proportions of C acquisition (BG and CB), N acquisition (LAP and

NAG) and P acquisition (AP) were calculated to document potential shifts in microbial nutri-

ent requirements [67].

Bacterial community composition in mesocosm soils. The bacterial communities were

characterized by barcoded amplicon sequencing using the Illumina MiSeq platform (Argonne

National Laboratory, Illinois USA). We targeted the bacterial V4 region (primers 515F/806R)

[68]. The complete process of library preparation and sequencing was described previously

[69].

Merged paired-end reads were quality filtered (max. expected error rate 0.01, no ambiguous

bases, min. length 252 bp) and trimmed to a length of 252 bp. OTUs were clustered at a 100%

similarity threshold (singletons discarded) using USEARCH v11 [70]. BLAST algorithm [71]

through parallel_assign_blast.py script of QIIME v 1.9.1 pipeline [72] and database Silva 138

[73] were used for taxonomy annotation. One sample with< 2000 reads was omitted from fur-

ther analyses, because such a low sequencing depth might be insufficient to cover the main pat-

tern of the community composition [68]. The raw reads were deposited in NCBI Sequence

Read Archive (SRA) database under BioProject PRJNA800209 as submission SUB10992790.

Statistics

Arithmetic means and standard deviations were calculated for plant and soil characteristics

from the in situ controls (n = 3 for sites L and H) and mesocosm samples (n = 3 at in situ H and

the transferred H!L) for each valley. In the case of nutrient leaching, the corrected and recalcu-

lated amounts of N and P trapped in the ion-exchange resins placed under the three H and

H!L mesocosms were always averaged. Plant C:N and C:P ratios were calculated on a molar

basis. The raw data of all the measured plant and soil characteristics are available in S1 Table.

The t-tests were used to evaluate (1) the “placing-to-box” effect, using the soil properties of

mesocosms and ambient soils sampled in 2015, and (2) the effect of the downward transfer on

plant and soil properties, using values from the H and transferred H!L mesocosms. Before

the statistical analyses, the normality of each data product (i.e., plant and soil characteristic)

was checked using histograms and the Kolmogorov-Smirnov test. The homogeneity of vari-

ances was verified using Bartlett’s test. Data were log transformed when necessary to meet the

assumptions of the t-test. Linear regressions were used to test relationships between nutrient

concentrations in plant biomass and leaching from soils enclosed in the respective mesocosms.

Analyses were performed in Statistica 64, version 13.0 (Dell, USA).

Alpha diversity indices (OTU richness, Shannon and Chao1) were calculated from rarefied

datasets (minimal sequencing depth 8979), while the other analyses were based on non-rare-

fied data [74,75]. The differences in bacterial community structures in transferred and in situ
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mesocosms were examined by the PERMANOVA analysis (9999 permutations) of Bray-Curtis

dissimilarities at the OTU level using a model considering valley and downward transfer as

explanatory variables (adonis, R package vegan v. 2.5–4) [76]. The homogeneity of multivariate

dispersions was confirmed prior to analysis. The effect of valley and transfer on square-root

transformed relative abundances of bacterial orders was tested using generalized linear mod-

els. Post-hoc comparison of mesocosm variants was performed by estimated marginal means

(emmeans v.1.4.1) [77].

Results

Different soil temperature regimes at the high and low elevation sites

The H and L sites experienced different microclimate regimes. The mean annual soil tempera-

ture at a depth of 2 cm was lower at H than L sites in both valleys, with a 4˚C difference

between soils at FU-H and FU-L in the more wind-exposed Furkotska valley, but only with a

0.4˚C difference between VS-H and VS-L in the Velka Studena valley (Table 1). The H sites

had frozen soils during the winter period, with rarely occurring thawing-freezing events in

spring, while the soils at L sites generally did not freeze due to the snow insulation (Fig 2). The

Fig 2. Course of soil temperatures at sampling sites. Daily mean temperature measured at the 2-cm soil depth at the

high (H) and low (L) transplant sites in (a) Velka Studena (VS) and (b) Furkotska (FU) valleys during the mesocosms

exposure from Sept 2013 to Sept 2015.

https://doi.org/10.1371/journal.pone.0272143.g002
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longer occurrence of snow cover at L sites prolonged a period of close-to-zero soil tempera-

tures and postponed a spring soil warming by ~5–15 days, compared to the H sites, specifically

in 2015 (Fig 2). During the vegetation period, the FU-H soils were cooler than those on FU-L

site (Fig 2B). However, we did not observe the expected increase of temperature with decreas-

ing elevation in the Velka Studena valley, where the sunlight exposed VS-H site had slightly

warmer soils, experiencing larger diurnal temperature fluctuations than the more shaded VS-L

site, located at the bottom of the deep narrow valley (Fig 2A).

The “placing-to-box” effect

The 2-year enclosure of soils from both H sites into mesocosms did not cause significant shifts

in soil properties, with few exceptions. The DOC concentration was 1.8 times higher in the

ambient than enclosed soils at FU-H (p< 0.05) and DN concentrations (but not that of min-

eral N forms) were 2.7 times higher in the ambient than enclosed soils at VS-H (p< 0.01)

(S2 Table).

Effect of downward transfer on soil chemical properties

In both valleys, the mesocosms transfer enhanced nutrient availabilities in soil. The FU-H!L

soil contained ~40% more DOC, 7-times more DN, including available mineral N forms, and

~40% more SRP compared to the FU-H mesocosms. The VS-H!L soils contained ~40%

more NH4-N and was 20% richer in SRP (non-significant) than the VS-H mesocosms

(Table 2). Other soil physico-chemical parameters: pH, concentrations of base and acid

Table 2. Effect of downward transfer on soil properties. Comparison of soil physico-chemical parameters, potential activities of hydrolytic enzymes between in-site (H)

and downward transferred (H!L) mesocosms after 2-year exposure in the field. Mean (standard deviations, n = 3) are shown. Characteristics, where data are given in

bold differ significantly between mesocosm and ambient soils (p< 0.05).

Soil property, unit FU-H FU-H!L VS-H VS-H!L

pH 4.41 (0.32) 4.65 (0.45) 4.82 (0.18) 4.71 (0.18)

CEC meq kg-1 94 (14) 106 (10) 123 (19) 130 (12)

BS % 17 (4.5) 22 (12) 5.7 (2.1) 6.7 (2.1)

K+ meq kg-1 4.4 (0.82) 4.7 (1.2) 2.3 (0.53) 4.3 (1.7)

Na+ meq kg-1 0.53 (0.34) 0.41 (0.07) 0.45 (0.05) 0.33 (0.06)

Ca2+ meq kg-1 6.6 (2.3) 13 (7.4) 2.9 (1.6) 2.7 (1.07)

Mg2+ meq kg-1 3.3 (0.77) 5.0 (1.4) 1.3 (0.54) 1.3 (0.21)

Al3+ meq kg-1 53 (11) 57 (16) 90 (17) 94 (8.8)

H+ meq kg-1 26 (1.8) 26 (4.5) 26 (2.7) 27 (3.8)

C mg kg-1 90 (32) 111 (12) 45 (19) 34 (0.63)

N mg kg-1 6.7 (2.2) 7.9 (0.7) 3.2 (1.5) 2.3 (0.4)

P mg kg-1 0.02 (0.01) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00)

DOC mg kg-1 96 (3.3) 135 (33) 42 (13) 44 (11)

DN mg kg-1 6.4 (1.5) 44 (14) 3.7 (1.4) 3.2 (0.8)

NH4-N mg kg-1 1.1 (0.5) 2.7 (1.6) 0.59 (0.20) 0.83 (0.20)

NO3-N mg kg-1 2.7 (1.3) 5.6 (2.3) 2.4 (1.1) 1.7 (0.50)

Nmin mg kg-1 4.1 (1.8) 8.3 (1.7) 3.0 (1.2) 2.5 (0.5)

SRP mg kg-1 0.26 (0.07) 0.36 (0.06) 0.07 (0.01) 0.09 (0.01)

β-glucosidase μmol g-1 h-1 1.5 (0.31) 1.4 (0.39) 0.79 (0.33) 0.46 (0.03)

Cellobiosidase μmol g-1 h-1 0.41 (0.13) 0.37 (0.12) 0.17 (0.09) 0.08 (0.01)

Phosphatase μmol g-1 h-1 1.4 (0.50) 1.7 (0.54) 1.6 (0.37) 1.2 (0.16)

Ala-aminopeptidase μmol g-1 h-1 0.03 (0.01) 0.05 (0.01) 0.02 (0.01) 0.02 (0.01)

Chitinase μmol g-1 h-1 0.10 (0.01) 0.13 (0.04) 0.09 (0.01) 0.07 (0.01)

https://doi.org/10.1371/journal.pone.0272143.t002
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cations, CEC, and total C, N, and P contents were not affected by the downward transfer

(Table 2).

Effect of downward soil transfer on microbial biomass and activities

The downward transfer of mesocosms reduced the soil microbial biomass in comparison to

control mesocosms (Fig 3). The soil concentrations of MB-C, MB-N and MB-P in the

FU-H!L mesocosms decreased by 7–15% compared to the FU-H mesocosms, but these dif-

ferences were not significant. In the VS-H!L mesocosms, the significant decreases in MB-C,

MB-N, and MB-P concentrations occurred in comparison to the VS-H control mesocosms

(Fig 3).

Total activity of hydrolytic enzymes decreased significantly in the VS-H!L compared to

VS-H mesocosms (p< 0.05), while it did not change in the FU-H!L in comparison to the

respective control mesocosm (Fig 4A). Activities of individual enzymes varied in response to

transfer, but both C-mining enzymes (BG+CB) systematically decreased in the transferred

VS-H!L (significantly) and FU-H!L (non-significantly) mesocosms (Table 2). Therefore,

the relative enzymatic investment into C-mining decreased in favor of P-mining phosphatases

in all downward transferred mesocosms (Fig 4B).

Potential C and N mineralization rates were accelerated and more variable in the meso-

cosms transferred downhill compared to the respective in situ H controls in both valleys (Fig

Fig 3. Effect of downward transfer of mesocosms on soil microbial biomass (MB). Concentrations of C (a), N (b),

and P (c) in soil microbial biomass (MB) in the high (H) and transferred (H!L) mesocosms in Furkotska (FU) and

Velka Studena (VS) valleys (mean as line, standard error as box and standard deviation as whiskers are shown, n = 3).

Asterisks mark significant effect of downward transfer on microbial biomass (p< 0.05).

https://doi.org/10.1371/journal.pone.0272143.g003

Fig 4. Effect of downward transfer on activity of hydrolytic enzymes. (a) Total potential activity of hydrolytic

exoenzymes (mean as line, standard error as box and standard deviation as whiskers are given, n = 3) and (b)

proportional investments in C, N and P mining (mean standard deviations are given, n = 3) in the soils of in situ H and

downward transferred H!L mesocosms. Asterisks mark the significant effect of downward transfer on depicted

characteristics (p< 0.05). Abbreviations: FU, Furkotska valley; VS, Velka Studena valley.

https://doi.org/10.1371/journal.pone.0272143.g004
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5A and 5B). However, the increase was not significant due to the large variability in data. The

transfer did not influence net nitrification rates (Fig 5C).

Effect of downward soil transfer on bacterial community composition

The composition of soil bacterial communities differed between the control in situ mesocosms

in the two valleys (S3 Table). Mesocosms in the FU have a higher proportion of Ktedonobac-

terales, Chitinophagales, Caulobacterales, and Armatimonadales. Soils in the VS were richer in

Acidobacteria (Subgroup 2) and Solibacterales, Chthoniobacteriales, and RCP2-54 (S4 Table).

The downhill transfer of mesocosms did not significantly affect the overall composition of bac-

terial communities and diversity indices (S3 Table). Therefore, we did not conduct further

tests on the transfer effect on the abundance of the respective bacterial orders.

Effect of downward soil transfer on in situ P and N leaching

The downward transfer systematically accelerated the P leaching from the FU-H!L meso-

cosms in comparison to the respective in situ H transplants in both years (Fig 6A).

The N leaching (the sum of NH4-N and NO3-N losses) composed from 60–80% of leached

NO3-N at all sites. Generally, the N leaching from the soils was an order of magnitude higher

than the P leaching and higher in 2014 than in 2015. The transferred FU-H!L and VS-H!L

mesocosms showed enhanced N leaching compared to the in situ H mesocosms in both years,

with a significant increase only in the FU (Fig 6B).

Nutrient concentrations in plant biomass in mesocosms

The plant biomass in the FU-H!L and VS-H!L mesocosms was enriched in N and P, having

significantly lower C/P and C/N ratios than plants in the respective in situ H mesocosms (Fig 7A

and 7B). The N and P concentration in the above- and belowground plant biomass correlated

with the amounts of the nutrients leached from the respective mesocosms (Fig 7C and 7D).

Discussion

Alpine and arctic systems are characterized by harsh climate conditions and considerable sea-

sonality. The growing season can be up to 50% longer below- than aboveground due to the

temperature-buffering capacity of the soils in such systems [29]. Therefore, any change in soil

temperature regime would influence the timing of growth and activity of root and associated

microorganisms, and rates of biogeochemical processes, which may result in significant

changes in the functioning of the entire system.

Fig 5. Effect of downward transfer on microbial processes. (a) Rates of potential C mineralization, (b) potential net

N mineralization and (c) net nitrification in the in situ H and transferred H!L mesocosms (mean as line, standard

error as box and standard deviation as whiskers are shown, n = 3). Abbreviations: FU, Furkotska valley; VS, Velka

Studena valley.

https://doi.org/10.1371/journal.pone.0272143.g005
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Through the downward transfer of plant-soil mesocosms, we simulated the climate shift

from harsh conditions prevailing in the alpine Tatra Mountain zone at ~2100 m a.s.l. into the

milder temperature regime in the subalpine zone. In addition, the highly wind-exposed alpine

meadows at the H sites commonly froze during the winter due to lower temperature and thin-

ner snow cover. Snow blown from the steep, higher elevation meadows accumulated in more

wind-protected areas where the L sites were located. Therefore, the downward transferred

mesocosms experienced steadily higher soil temperature than the H sites during the whole

study, including the winter period with daily average temperatures� 0˚C (Fig 2). The down-

ward transferred mesocosms in the FU (although not in the VS valley) was additionally

exposed to significant soil warming during the vegetation period (Fig 2). Despite the relatively

short period of the experiment, the mesocosms’ 2-year exposure to the warmer temperature

regime significantly altered their soil nutrient cycling. All the H!L mesocosms showed evi-

dence of fastened nutrient cycling and elevated N and P leaching in comparison to their

respective H controls.

Plant biomass in the transferred mesocosms was enriched with nutrients, namely in terms

of the P content (Fig 7B). Plants take up and immobilize nutrients in their biomass during the

whole vegetation season and are also capable of winter N and P uptake [78–80], specifically in

alpine and arctic regions, where roots remain active longer than shoots due to the snow’s

Fig 6. Effect of downward transfer on nutrient leaching. In situ (a) P and (b) N leaching from original and

downward transferred soils in Furkotska (FU) and Velka Studena (VS) valleys in 2014 (Sept 2013–Sept 2014) and 2015

(Sept 2014–Sept 2015). N leaching composes of ammonium- and nitrate-N leaching (means and standard deviations

are given, n = 3). Asterisks mark significant changes in element leaching between the in situ H and transferred H!L

mesocosms in particular year (p< 0.05).

https://doi.org/10.1371/journal.pone.0272143.g006
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insulating capacity [29]. The nutrient-enriched plant biomass in the H!L mesocosms, which

integrated the whole-year nutritional state of the soils, thus served as a useful and sensitive

indicator of the enhanced in situ soil N and P availability.

In agreement with the plant indications of enhanced in situ nutrient availability, the soils of

all H!L mesocosms contained more SRP and available NH4-N than their H controls

(Table 2). The soils of FU-H!L mesocosms, facing higher temperatures also during vegeta-

tion periods (Fig 2A), were additionally enriched in total available N (DN, NO3-N and NH4-

N), and DOC in comparison to the H controls (Table 2) at the end of the 2015 vegetation

period. Specifically the increases in DOC and available N concentrations in the soils from

FU-H!L mesocosms are likely related to the enhanced plant activity, which is commonly

observed during warmer vegetation periods [81–83]. The higher plant activity is directly

responsible for higher input of organic compounds to the soil [84], which contributes to the

DOC pool [85], stimulates soil microbial activity, and enhances N recycling and plant N supply

[86].

The observed higher nutrient availability in the systems exposed to higher temperature was

in agreement with results of other ecosystem warming experiments performed elsewhere

[16,18], as well as with snow manipulation and transplant studies [87–89]. The larger pools of

available N in “warmer” soils are commonly associated with higher rates of gross and net N

mineralization, respiration and enzymatic activity [16,37,87,89,90]. However, in contrast to

those studies, we did not observe significant alteration of soil processes, like rates of total

Fig 7. The plant tissue C/N (a) and C/P (b) ratios in the in situ H and transferred H!L mesocosms in Furkotska (FU)

and Velka Studena (VS) valleys in 2015 (mean as line, standard error as box and standard deviation as whiskers are

given, n = 3), asterisks mark significant effect of downward transfer (p< 0.05). Correlations between N (c) and P (d)

concentration in the above- and belowground plant biomass with the amount of mineral N and P, respectively,

contained in ion-exchange resin traps in 2015.

https://doi.org/10.1371/journal.pone.0272143.g007
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exoenzymatic activity and C and N mineralization and nitrification, in the “warmer” H!L

transplants compared to the in situ H controls, when measured in the standardized laboratory

conditions. The absence of the functional adaptation after the two-year exposure to a milder

climate regime was in accord with the stable composition of the soil microbial community.

Similar structural continuity of the soil microbial communities were observed also in other

studies of “climate change in cold ecosystems”: e.g. in the four-year transplant study conducted

in subalpine grassland [30], and even in 17-year long transplant experiment in mountain

grassland [19]. Similarly, Rinnan et al. [91] showed that>10-year period was needed for the

development of significant changes in microbial biomass and strong alterations in microbial

community composition in the 15-year lasting climate change manipulations in a subarctic

heath ecosystem. They also showed that bacterial communities from colder regions were less

temperature sensitive than those from the warmer regions by comparing bacterial growth

rates and turnover in terrestrial Antarctic ecosystems [92].

The fact that we did not observe any structural and functional adaptation of the soil micro-

bial community after the 2-year experiment suggests that warmer winter periods (Fig 2) were

critical in enhancing nutrient availability in the downward transplants. While the constantly

below-zero soil temperatures limited the overall microbial activity and nutrient mineralization

at the H sites (Fig 2), the close-to-zero temperatures in the more snow-insulated soils in the

H!L mesocosms allowed microorganisms to remain active during the whole winter, as also

observed elsewhere [88,93,94]. Such soil warming during winter period, connected with effi-

cient snow insulation [37,40,41], was shown to enhance N availability in the system in spring.

In our case, the “extra” released N in the H!L mesocosms, which remained active for 4–6

winter months longer than the H mesocosms, was available to the plants at the beginning of

the growing season and was partly immobilized in their biomass (Fig 7A). The rest of poten-

tially available N was washed out of the system and retained in ion-exchange resin traps under

the mesocosms (Fig 6B). Elevated N losses from the systems exposed to climate warming were

reported in several other studies, e.g., from temperate heathlands and grasslands [89,90], oce-

anic mountain ecosystems [41] or forests [43]. Some of the studies [41,43] additionally show

that the N leaching rates from the warmed systems are high especially at sites with persistent

winter snow cover in comparison to not-insulated sites exposed to frequent soil freeze-thaw

events.

In contrast to N cycling, the knowledge of warming effects on the soil P transformation and

availability is limited. Our study provides the first in situ evidence showing that the increasing

average annual temperature enhances the P availability in soils (Table 2), resulting in P enrich-

ment in plant biomass (Fig 7B) and larger P leaching (Fig 6A). It is likely that winter microbial

activity contributes to the accumulation of available P in the soil, some of which is flushed out

with water from thawing snow, similarly to mineral N. Consistent with the increased soil P

availability in the H!L mesocosms, we observed a systematic decrease in the soil enzymatic

C:P ratio in the late growing season (Fig 4B). It resulted from a reduced enzymatic C acquisi-

tion and increased activity of phosphatases. Such change in C:P acquisition could be associated

with greater plant productivity and organic C exudation due to enhanced nutrient supply (Fig

7, Table 2) and higher temperatures during vegetation period (in case of the FU), as observed

also elsewhere [82].

The mineral N and P leaching (quantified by ion-exchange resin traps) correlated with the

N and P concentrations in plant biomass (Fig 7C and 7D). Both these methods integrate the in
situ nutrient availability in the whole plant-soil system for long-term periods (vegetation sea-

son for plant biomass and annual element leaching for ion-exchange resin traps). This is their

major advantage over seasonally changing parameters such as soil chemistry, microbial activ-

ity, and active microbial community composition that could confound the response of plant-
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soil systems under changing climate conditions. Both methods, ion-exchange resin traps quan-

tifying nutrient leaching and nutrient enrichment of plant biomass indicating enhanced N and

P availability, have been demonstrated to be sensitive indicators of the accelerated soil N and P

cycling in the H!L mesocosms even in the absence of any supportive significant changes in

microbial biomass, the structure of bacterial community, or C and N mineralization rates. The

elevated losses of mineral N and P forms from the alpine grasslands documented in our trans-

plant experiment complement earlier observations in the alpine catchments in the Tatra

Mountains [52,53], showing the complex effect of climate change on soil biogeochemical pro-

cesses. We provide the evidence that the N and P cycles accelerate in alpine meadow soils,

most likely due to continuing microbial activity in snow-insulated soils during winter and

increased plant activity in the growing season.

Ongoing climate change will lead to rising temperatures in the growing season and also in win-

ter, combined with a decrease in snow precipitation and accumulation. Overall warmer winters

and thinner and discontinuous snowpack will likely result in reduced snow insulation, more fre-

quent freeze-thaw events in soils, and their washing with infiltrating water. These conditions will

result in repeating cycles of increased microbial activity and decay and leaching of mineral nutri-

ent forms already during winter. The final amount of nutrients accumulated in the soil and avail-

able in the beginning of the growing season will thus increasingly depend on the winter weather

condition [41,43], especially at elevations with winter air temperature fluctuating around freezing

point. It will inevitably lead to an increase in year-on-year variability in soil nutrient availability

and leaching to surface waters depending on current weather conditions.

Conclusions

The use of a transplant method allowed us to study the complex response of the alpine system

to changing climate conditions, with both the plants and the soil microbiome responding

inseparably and in close interaction.

Alpine meadow ecosystems sensitively responded to climate change simulated by a down-

ward transfer along the elevation gradient. Even in the short term, the increase in the mean

annual air temperature by 2˚C accelerated the nutrient cycling, shown by a higher content of

N and P in plant biomass and greater annual losses of these nutrients from the systems by

leaching. Except signs of enhanced plant root activities and preferential enzymatic mining of P

versus C, changes in other soil characteristics such as bacterial community composition,

microbial biomass and potential rates of decomposition and nutrient transformation processes

were not significant. These results suggest that prolonged, warmer winter periods due to snow

insulation, which enabled soil microorganisms to remain active, were critical for enhanced

nutrient availability in the alpine meadows.

The duration of the experiment was not suitable for tracking longer-term changes in the

ecosystem functions associated with potential shifts in plant vegetation composition, litter

quality, and microbial adaptation to the new conditions. However, we can expect that ongoing

climate change will lead to a decrease in snowfall, depth and duration of snow cover, resulting

in more frequent freeze-thaw events in soils that have so far been frozen or covered with snow.

This will affect the nutrient cycling in alpine meadow systems compared to the current situa-

tion, and the year-on-year variability of soil nutrient availability and leaching from alpine and

subalpine meadows will probably increase.
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Data curation: Michal Choma, Petr Čapek, Jiřı́ Kaňa, Karolina Tahovská.
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