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Impact-induced changes in source depth and
volume of magmatism on Mercury and their
observational signatures
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Mercury's crust is mostly the result of partial melting in the mantle associated with solid-
state convection. Large impacts induce additional melting by generating subsurface thermal
anomalies. By numerically investigating the geodynamical effects of impacts, here we show
that impact-generated thermal anomalies interact with the underlying convection modifying
the source depth of melt and inducing volcanism that can significantly postdate the impact
depending on the impact time and location with respect to the underlying convection pattern.
We can reproduce the volume and time of emplacement of the melt sheets in the interior of
Caloris and Rembrandt if at about 3.7-3.8 Ga convection in the mantle of Mercury was weak,
an inference corroborated by the dating of the youngest large volcanic provinces. The source
depth of the melt sheets is located in the stagnant lid, a volume of the mantle that never
participated in convection and may contain pristine mantle material.
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he crust of Mercury is mostly volcanic in origin and rela-

tively young, having its oldest units being dated to

4.1 Ga'2. The youngest surface units are represented by
smooth plains, which cover about 27% of the surface®. The four
largest smooth plain units (Northern plains, plains within and
around the Caloris basin, and the Rembrandt basin interior
plains) have been emplaced at around 3.7 Ga®>~>. Recent dating of
additional smooth plain units places the termination of wide-
spread volcanic events on Mercury at about 3.5 Ga®. It has been
argued that subsequent extrusive volcanism might have been
hindered by the accumulation of compressive stresses in the
lithosphere induced by the contraction of the planet®. However,
the contraction is a result of cooling and thus of decreasing
temperature and melt production in the interior (see below).
Moreover, the numerous thrust faults seen on the surface are the
surficial manifestation of the contraction of the planet and cor-
respond to weak zones in the lithosphere. They would have
provided conduits for magma ascent, if enough magma had been
produced in the mantle’. Therefore, the end of widespread vol-
canism on Mercury at 3.5Ga indicates that by that time the
amount of melt associated with convection in the mantle of
Mercury was diminishing or negligible. Post-MESSENGER
thermal and thermo-chemical evolution models®® are roughly
consistent both with the duration of the volcanic activity observed
on Mercury® and with the inferred volume of its crust'®. How-
ever, the linkage between the internal dynamical processes

composition has not been fully clarified. The following processes
have been proposed to interpret the observed geochemical
terranes: a heterogeneous mantle generating magmas of different
composition in different areas'!™!% a rapidly cooling mantle
where temperature and pressure in the melt source regions
change rapidl}f in time, thus producing melts of different
compositions!>4; and a homogeneous mantle whose composi-
tion evolves in time due to the cumulative depletion of the
magma source!>!>,

In addition to convection in the mantle, large impact events, as
recorded by the large basins observed on the surface of Mer-
cury'®, may induce melting by three different processes. First, the
release of the shock-pressure associated with the impact can
increase the temperature above the solidus in a significant volume
in the proximity of the impact location and create shock-melt that
forms a melt pool, which rapidly solidifies possibly undergoing
igneous differentiation!”. Second, the pressure field under a newly
formed basin changes due to material being excavated and ejected
outside of the crater rim. The local modification of the lithostatic
pressure field under the crater depresses the solidus in the mantle
and may induce in situ decompression melting'®. Third,
the interaction of the impact-induced thermal anomaly in the
subsurface with the preexisting temperature field induces
convective motions potentially followed by additional postimpact
melting!®!°. Both shock-melting and in situ decompression
melting are processes that happen instantaneously from a
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Fig. 1 Crustal thickness from convective melting as a function of time. a Each set of data corresponds to different values of the reference viscosity (symbol
shape), initial amount of heat-producing elements in the mantle (HPE) and solidus parameterization (symbol size), and presence of a surficial megaregolith
layer (indicated by a black contour). Symbol color indicates the average depth of the melt source region according to the color bar. For each model,

the rightmost symbol plotted corresponds to the termination of convective-melt production. Models consistent both with the inferred crustal thickness'©
(gray horizontal band) and the duration of volcanic activity® (hashed vertical band) are drawn with a thicker black line. b The three mantle melting regimes
are shown for the baseline model, whose parameters are indicated in the white box. The triangles along the time axis indicate the times of impact for the

simulations shown in Figs. 4 and 5
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Fig. 2 Stagnant lid evolution. Temporal evolution of the location of the
bottom of the stagnant lid (solid lines) and of the source depth of
convective melt (dots) for the models compatible with the thickness of the
crust and the duration of volcanic activity (thick black lines in Fig. 1a). The
black boxes indicate the inferred thickness of the lid at the time of
emplacement of the High-Mg region and the northern volcanic plains
(NVP)B. The model in blue satisfies the lid thickness constraint and is
selected as the baseline model (Fig. 1b)

convective timescales—from few to hundreds of millions of years
—and thus postdates the impact event!®.

All major basins on the surface of Mercury show signs
of volcanic infillings that postdate the basin-formation event.
The temporal delay and the volume of the volcanic infilling have
been quantified for a small number of craters, including the
young large basins Caloris and Rembrandt'®2%-23, Such basins
are also associated with crustal thinning®*%>, Here we model the
thermal evolution of Mercury and include the effects of large
impacts on magmatic activity in the interior. We can qualitatively
explain the crustal thinning associated with young large basins
and quantitatively reproduce the volume and time of emplace-
ment of the volcanic melt sheets of Caloris and Rembrandt. These
results depend on the thermal state of the mantle at the time of
the impacts and are compatible with the volcanic history of
Mercury as inferred from the dating of the surface. Interestingly,
the source depth of the material in the melt sheets of Caloris
and Rembrandt is located in the stagnant lid, a volume of the
mantle that never underwent partial melting and thus contains
potentially pristine mantle material. Such material, otherwise
not sampled by convection-induced partial melting, may explain
the compositional signature associated with the interior of
Caloris! 126,

Results

Thermal evolution models. With the convection code GAIA?/,
we first compute thermal histories of Mercury by adopting
commonly accepted values for convection parameters and by
varying the value of the reference viscosity, of the thickness of the
surficial megaregolith layer’®2%, and of the abundance of heat-
producing elements (HPE) in the mantle. For the HPE, we
employ two models in order to encompass their unknown bulk
abundance in Mercury. These models are based on the abun-
dances of potassium, thorium, and uranium in enstatite chon-
drites®® (EH-HPE) and carbonaceous chondrites®! (CI-HPE). We
also tested the bulk silicate Earth model of Lyubetskaya and
Korenaga®?, but it was found to be incompatible with the avail-
able constraints (see below). While the adopted models do not
accurately represent the bulk silicate Mercury, they cover a
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conservative range that likely encompasses the actual HPE
abundances. HPE abundances and associated heat productions
are listed in Supplementary Table 1. HPE are uniformly dis-
tributed in the mantle and no primordial crust is assumed.
The entire set of parameters used in the simulations is listed in
Supplementary Table 2.

During the evolution we track melt (i.e., crustal) production
and calculate the source depth of the melt produced as a function
of time. We account for the mantle depletion of HPE when
extracting melt (see Methods section). Partial melts in Mercury’s
mantle are buoyant over the entire mantle depth range, and they
always contribute to the building of the crust>>. To compute melt
production we consider two different melting curves: an
anhydrous peridotite solidus®® for the CI-HPE models and an
iron-free CMAS solidus corrected for sodium oxide, as appro-
priate for Mercury'?, for the EH-HPE models (the acronym
CMAS comes from the simplified system of oxides—CaO, MgO,
Al,O3, SiO,—used to represent major-element mantle chemistry).
These melting curves and their parameterizations are reported in
Supplementary Fig. 1 and Supplementary Table 3, respectively.
Different assumptions lead to variations in the total crust
produced, in the timing of crust production, and in the
characteristic source depth of the melt associated with convection
(Fig. 1a). Other things being equal, a larger amount of HPE in the
mantle is associated with a thicker crust since the increased heat
production leads to higher temperatures and thus a larger amount
of melt (Supplementary Fig. 2a). A megaregolith layer acts as a
thermal blanket that prevents efficient heat extraction from the
mantle, thus favoring higher temperatures and increased melt and
crustal production. Crustal production is concentrated in the
early phases of evolution when the mantle is vigorously
convecting. The Rayleigh number, a measure of the strength of
convection, is inversely proportional to the reference viscosity.
Thus a higher reference viscosity corresponds to a less vigorously
convecting mantle and to a thinner crust.

Independent of the choice of parameters, crustal production
is very rapid in the early stages of the evolution and is
completed between about 500 Myr and 1.5 Gyr. The source depth
of the melt is deeper for higher reference viscosities (consistent
with classical boundary layer theory, see Methods section) and
shallower in the presence of a megaregolith layer. It is roughly
independent of the amount of HPE in the mantle (Supplementary
Fig. 2a). The source depth of the melt associated with solid-state
convection is roughly constant during the entire evolution of
the planet, as the limited variation of the color of the symbols
for each curve in Fig. la illustrates (see also Supplementary
Figs. 3 and 4).

Baseline model. A subset of the models plotted in Fig. la are
compatible both with the inferred thickness of the crust!®?
(those having a crustal thickness within the horizontal gray band)
and with the duration of widespread volcanism on the planet®
(those whose volcanic activity extends to the right of the vertical
hashed band). These are plotted with a thick black line. For this
subset of models, we compute the evolution of the stagnant lid
thickness (Fig. 2). The two black boxes in Fig. 2 indicate the
location of the lid at the time of the formation of the high-
magnesium region (High-Mg), which comprises one of the oldest
terrain observed on Mercury!, and of the Northern plains'?
(NVP), as inferred from numerical modeling and laboratory
experiments!®. For the vertical extension of the boxes, we use data
from Namur et al.!® (their Fig. 7), and for the horizontal extent
we use data from Marchi et al.' and Ostrach et al.>>. In Fig. 2, the
model corresponding to a reference viscosity vrer= 1020 Pass,
an abundance of HPE based on the enstatite chondrites*’, and a
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Fig. 3 Impact-induced convective currents and melt production. The images pertain to the baseline model (Fig. 1b) in the event of an impact happening at t
=300 Myr and producing a Caloris-sized basin. a-e: Temporal evolution of the temperature field (background) and of the magnitude of the velocity field
(arrows). f-j: Temporal evolution of the melt production, which is expressed in equivalent crustal thickness. The outermost layer refers to the column-
integrated value. For the simulation shown here, the impactor hits the target with a velocity of 42.5km/s and an impact angle of 45°. The impact event
corresponds to O Myr. The thermal anomaly warps the isotherms and convective currents, which generate melt, develop in the region close to the impact
but with a certain delay with respect to the impact event. Enhanced melt production persists below the impact location for >100 Myr. The thermal anomaly

is completely absorbed after about 180 Myr (not shown)

5-km-thick megaregolith layer fits the inferred location of the lid.
Therefore, we select it as the baseline model. For the baseline
model, we compute the total thermal contraction of the planet
(see Methods section) following the mantle peak temperature
(Supplementary Fig. 4). The total contraction is 9.9 km, of which
4.7 km are accommodated by mantle cooling. The total value is
slightly in excess of the 7 km inferred from the analysis of surface
contractional features*®. However, due to unfavorable illumina-
tion geometry 7km is likely an underestimate of the total
contraction®. In addition, part of the radius decrease is
accomodated without any manifestation in the geologic record™’.
This “invisible” component can be as large as 2.5 km for Mercury,
potentially bringing the total inferred contraction to 9.5km?’.
The set of parameters characterizing the baseline model can be
regarded as representative of Mercury. However, the details of the
model do not affect our analysis of the effects of large impacts. In
the Supplementary Section, we provide results obtained using a
different baseline model (Supplementary Figs. 2b and 5).

Melting regimes. The large expanses of smooth plains are the last
events of massive widespread volcanism on Mercury. Their
emplacement terminates at about 3.5 Ga®. If the smooth plains
are volcanic eruptions with a 10% extrusive-to-intrusive ratio,
their total volume represents about 16% of the total volume of the
crust (see Methods section). We use this estimate to define three
regimes of melt production in the mantle. Initially the mantle is
convecting vigorously, producing melt which rapidly contributes
to the building of the silicate crust (vigorous melting regime). The
time when the volume of the crust equals the final crustal volume
minus the volume of the melt associated with the smooth plains,
as estimated above, defines the beginning of the second, waning
melting regime. The epoch following the last melting event (i.e.,
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once the thickness of the crust reaches its final value and melt
production ceases in the mantle) defines the beginning of the final
phase or the absent melting regime. The building of the crust as
the cumulative result of partial melting in the mantle is a con-
tinuous process and the definition of the three regimes is some-
what arbitrary since it is based on an assumed extrusive-to-
intrusive ratio and thickness of the extruded part for the smooth
plains. However, it provides a simple classification criterion to
interpret the geodynamical effects of large impacts discussed
below. The three regimes for the baseline model are illustrated in
Fig. 1b.

Effects of large impacts on convection. We account for
the effects of large impact events on the dynamics of the
mantle by using scaling laws to evaluate the thermal anomal

resulting from the release of the impact shock-pressure!®3%3,
The thermal perturbation upon impact brings the temperature in
a volume around the impact location well above the solidus,
consistent with the formation of a melt pool'”. The solidification
of the melt pool is rapid compared to convection timescales'”4?,
and therefore we truncate the temperature at the local
solidus'***4!, We employ the same approach as detailed in
Roberts and Barnouin!®. The population of impactors on
Mercury has a broad distribution of encounter velocities,
between about 15 and 60 km/s, with a mean encounter velocity of
42.5km/s*2. The most probable impact angle is 45° (ref.*?). Since
the scaling laws are referred to the vertical component, the
velocity is corrected accordingly!® and a Caloris-sized basin
requires an impactor with a mean encounter velocity and a dia-
meter of about 92km (see Supplementary Fig. 6). The thermal
anomaly induced by an impact warps the isotherms and produces
convective currents that enhance melt production and change the
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Fig. 4 Melt production following an impact forming a Rembrandt-sized basin. a Results using the baseline model (Fig. 1b) for the impact occurring at 300,
500, 750, 1000, and 1197 Myr. The impactor has a diameter of 37 km and hits the target with a velocity of 42.5km/s at an impact angle of 45°. For each
epoch, the cases for the impact occurring over an upwelling and a downwelling are plotted. The impact over the downwelling (black line) initially extracts
shallower material with respect to the impact over the upwelling (white line). Differences in the total amount of melt for impacts over a downwelling vs.
impacts over an upwelling depend on the size of the basin with respect to the size of the convection cells in the mantle (Fig. 6). The gray background

indicates the melting regime as in Fig. 1b, which are illustrated in d-f at the bottom of this figure. b, ¢ Zoom on the first few tens of Myr after the impact
events at 750 and 1197 Myr. For impacts happening in the vigorous melting regime and early in the waning melting regime, the depth of the source region for
the postimpact melt is rapidly controlled by the contribution of the convective melting (d, e below). For the impact at 1197 Myr the contribution of convection
melting is almost absent, and the melt is the result of partial melting in the shallow mantle (f, below). The postimpact melt thickness (y-axis) represents an
upper bound for the melt sheet thickness within the basin. d-f For the three melting regimes, the cartoons illustrate the temperature field in the mantle
(background red/blue field), the impact-induced thermal anomaly (spherical red shape), and the melting contribution both from convection (azure arrows)
and from postimpact melting (violet arrows). The white lines represent a cold (solid) and a hot (dashed) isotherm. The area of the arrows qualitatively

indicates the amount of melt produced. More melt production is associated with upwellings (see also Supplementary Fig. 3) The thickness and source depth

of the final melt sheet depends on the relative contribution of the two sources of melt and is represented by the boxes labeled “Final melt sheet”

vertical extent of the partial melt zone in the volume of the
mantle below the impact. We illustrate this effect in Fig. 3, which
refers to the baseline model in the case of a Caloris-forming
impact occurring at 300 Myr. The dynamical effects of the impact
last for about 100 Myr.

For the baseline model, we simulate an impact at five different
times, representative of the three regimes of melting defined
above and shown in Fig. 1b. These times are 300 and 500 Myr
(vigorous melting), 750 and 1,000 Myr (waning melting), and
1197 Myr (absent melting). For each of these times, we simulate
two events corresponding to impacts occurring over a down-
welling and an upwelling. We perform two sets of simulations
using impact parameters compatible with the creation of a
Rembrandt-sized basin (impactor diameter 37 km, impactor
velocity 42.5km/s, basin diameter 716 km) and a Caloris-sized
basin (impactor diameter 92 km, impactor velocity 42.5km/s,
basin diameter 1550 km). For these two basins, estimates of the

NATURE COMMUNICATIONS | 8:1945

time of emplacement and volume of the interior volcanic plains
are available!®2%-2243  Starting at the time of the impact event, we
keep track of the amount and source depth of the melt produced
in the volume of the mantle below the final (i.e., observed) impact
basin. This melt, if erupted, contributes to the formation of the
melt sheet (Figs. 4 and 5).

Postimpact eruptions. Following a large impact event, two
processes favor the subsequent eruption of magma at the surface
at very high ratios of extrusive-to-intrusive volcanism. First, any
preexisting crust is largely removed and only partly melted and
mixed with upper mantle material in the melt pool***>, Thus the
possible neutral buoyancy horizon created by a low-density
crust*®, which would cause rising melt to stall at depth, is com-
pletely or largely cancelled. Second, the fractured lithosphere in
the region below and around the impact site*’ allows for an easier
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Fig. 5 Melt production following an impact forming a Caloris-sized basin. a As in Fig. 4a but for an impactor with a diameter of 92 km, compatible with the
formation of a Caloris-sized basin. b, ¢ Zoom on the first few tens of Myr after the impact events at 750 and 1197 Myr. The larger impactor induces melting
at slightly higher depths (colors) with respect to the case of Rembrandt (Fig. 4b, c)

upward migration of the melt. It is natural to expect volcanic
eruptions to occur within the basin and to postdate the impact
event, as long as the two conditions described above are met. All
major basins on Mercury show evidence of volcanism postdating
the basin formation event!®. Therefore, conduits for magma
ascent exist for geologically long time intervals* (tens to hundreds
of millions of years). The relative size of the basin with respect to
the underlying convection pattern influences the difference in the
final amount of postimpact melt for impacts located over an
upwelling and over a downwelling. If the size of the basin,
compared to the underlying convection pattern, encompasses
more than one convection cell, the final amount of melt produced
is similar. Caloris is representative of this scenario (Fig. 5). For
basins smaller than the typical convection cell, the influence of
impact location is more pronounced, as in the case of Rembrandt
(Fig. 4a). This observation can explain the differences in the
postimpact melt thickness associated with impacts over upwel-
lings and downwellings in Figs. 4 and 5. This conclusion is not
affected by the cylindrical rescaling adopted*® in our simulations,
since for the very thin mantle of Mercury the aspect ratio of the
convective cells is roughly the same for 2D spherical, 2D
cylindrical, and 3D simulations®!°. The effect of impact location
and basin size on the final amount of melt is illustrated in Fig. 6.
The temporal delay between the basin formation and the last
volcanic material extrusion also depends upon the interplay
between the impact anomaly and the underlying mantle
dynamics, as the impact event in the absent melting regime
illustrates (Fig. 4c). An impact occurring over a downwelling, a
region where cold and negatively buoyant material descends into
the mantle, results in an almost immediate melting event that
extracts material from very shallow depths. When the impact is
localized over an upwelling, the thermal anomaly revives the
upwelling, which was not producing melt at the time of the
impact, and generates additional melt for an interval of time of
about 70 Myr.

Observational signatures of impacts as a function of time. The
impact-induced thermal anomaly generates melt in the shallow

6 NATURE COMMUNICATIONS | 8:1945

Caloris Caloris

Rembrandt Rembrandt

Fig. 6 Convection pattern and basin size. In each panel, the vertical solid
black line indicates the impact location, which correspond to a downwelling
(a) and an upwelling (b). The background red/blue field represents the
temperature field in the mantle. The white lines represent a cold (solid) and
a hot (dashed) isotherm. Green arrows represent convection melting, and
their area qualitatively indicates the amount of melt produced, which is
larger for upwellings, where hot positively buoyant material rises, and
almost absent for downwellings, where cold negatively buoyant material
sinks (see also Supplementary Fig. 3). For a basin with a diameter
comparable to or larger than the size of a convective cell (e.g., Caloris), the
location of the impact has a minor influence on the total amount of
postimpact melt produced, since the basin encompasses more than a single
convective cell (vertical black dashed lines). For a smaller basins (e.g.,
Rembrandt), more melt is associated with the impact happening over an
upwelling. Compare upwelling and downwelling cases in Figs. 4 and 5

mantle and subsequently modifies the melt production in the
mantle (Fig. 3). For early impacts, when the mantle is in the
vigorous melting regime and the melt production rate (i.e., the
slope of the curve in Fig. 1b) is high, this shallow melt is rapidly
masked by large volumes of convection-related melt that is gen-
erated at depth in the mantle, mostly in association with hot
plumes (Figs. 4 and 5 and Supplementary Fig. 3). In terms of
source depth, the melt erupted in the basin rapidly loses any
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signature of the shallow, impact-induced melt, to resemble melt
erupted at the same epoch in regions unaffected by the impact.
Indeed, the source depth for the postimpact melt in the vigorous
melting cases in Figs. 4 and 5 is basically undistinguishable from
the convective source depth (Supplementary Fig. 3). Based on the
large amount of melt produced in the early phases of the evolu-
tion, old basins should correspond to only minor, if any, crustal
thinning. Crustal thickness maps corresponding to the old large
basins Matisse-Repin (location -24.4 °N, 285.1 °E, diameter
887km) and Calder-Hodgkins (location 17.1 °N, 21.7 °E, dia-
meter 1460 km) are consistent with this expectation®%. As the
mantle cools, the melt production associated with convection
decreases (waning melting regime) and gradually, in the after-
math of an impact, the shallow impact-related melt dominates the
volume budget of the melt sheet (Figs. 4 and 5). The total amount
of melt produced decreases by about an order of magnitude and
the crustal thinning associated with the formation of the basins is
likely preserved. Indeed, the interior of Caloris is associated
with the thinnest crust on Mercury?*2°, Once convection stops
producing melt (absent melting regime), the melt forming
the melt sheet would only come from the shallow mantle
(Figs. 4c, f and 5c).

A model for the melt sheets of Caloris and Rembrandt. The
emplacement of the Caloris interior plains postdates the Caloris
impact event, dated at about 3.7-3.8 Ga*>20, by 100-200 Myr*2°.
This timing is compatible with the prediction of our model,
according to which, depending on the impact location, melt is
produced for about 60-100 Myr following the impact (Fig. 5b).
From the basin stratigraphy, the volume of the Caloris interior
plains has been inferred to be in the range (3.2-5.2) x 10°km?
(ref. 43), corresponding to an average thickness of the melt sheet
between about 1.7 and 2.8 km. The total amount of melt predicted
by our model would correspond to a melt thickness of about
3.6 km (inset Fig. 5b). Thus we can match the observed thickness
for extrusive-to-intrusive ratios in the range 50-82%. The
Rembrandt basin (diameter 716 km) has a history similar to
Caloris, forming at about 3.8 Ga and having its interior covered
by volcanic plains that postdate the basin formation by
100-200 Myr?%. Using the baseline model and simulating an
impact appropriate for a Rembrandt-sized basin (impactor with
an encounter velocity of 42.5 km/s and a diameter of 37 km), we
estimate that the amount of postimpact melt produced has a
thickness in the range 0.8-1.3km, and it is emplaced in an
interval of time between 30 and 70 Myr, depending on the impact
geometry (Fig. 4b). Similarly to the case of Caloris, a high
extrusive-to-intrusive ratio, in the range 28-64%, can explain the
observed thickness of 360-520 m inferred by analysis of the crater
statistics of the Rembrandt plains®?.

Our model predicts prolonged volcanic activity, from few
tens to about a hundred million years, following the Caloris
and Rembrandt impact events. This result is consistent with
the inferred delay between the formation of the basins and
the emplacement of the interior melt sheets. However, the
exact timing is difficult to measure with high accuracy, since
the error associated with estimates of this kind of delays is close to
the value of the delay itself*°. The large extrusive-to-intrusive ratio
required to match the observed volume of the melt melt sheets
within the two basins is expected, given the postimpact crustal
removal and fracture of the lithosphere. These results are based on
assuming the average velocity (42.5km/s) for the impactors
forming the basins. Slower impactors produce larger thermal
anomalies'®. We tested the effect of a Caloris-forming impact
using an impactor with 15km/s encounter velocity, consistent
with the lower end of impactor velocities at Mercury*?
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(the corresponding impactor diameter is 164 km, Supplementary
Fig. 6). For this end-member scenario, volcanic activity within
the basin lasts for 75-110 Myr and an extrusive-to-intrusive
ratio in the range 36-66% can explain the observed melt sheet
thickness.

Discussion

The formation of a stagnant lid is characteristic of a single-plate
planet like Mercury. Its evolution depends on the assumed
parameters (Fig. 2), but a number of general considerations are
valid throughout the parameter space. First, independent of the
initial conditions of the model, the growth of the lid thickness is
initially very rapid (Fig. 2 and, e.g., ref. ®). Second, at the onset of
convection, the magnitude of the flow velocity of the mantle
is larger at depth and close to zero in the upper mantle.
We compared the evolution of the lid thickness for the baseline
model and for the same model but with the initial temperature
profile set at the solidus (Supplementary Fig. 7). We performed a
similar calculation using a different baseline model (Supple-
mentary Fig. 2b). The hotter initial conditions correspond to a
thinner lid thickness (Supplementary Fig. 8). However, the values
of velocities in the upper mantle quickly reach values on the order
of 1072 cm/year (corresponding to distances of about 10km
per hundred Myr), while the lid thickness grows several tens of
kilometers thick. Thus the majority of mantle material in the lid
never participates in the convection and in related partial-melting
events.

The source depth of the volcanic infilling of large impact
basins becomes shallower with time (Figs. 4 and 5). For the
baseline model, a comparison of the source depth of the
melt sheet for a Caloris basin forming at 3.75 Ga (Fig. 5b) with
the minimum depth of the lid (>90 km, solid blue line in Fig. 2)
shows that the source depth of the melt sheet is shallower than
or comparable to the thickness of the lid. Therefore, the
Caloris interior plains contain substantial contributions from
partial melting of volumes of the mantle not sampled
by convection-induced partial melting and composed of pristine
mantle material, the products of the solidification of the initial
postimpact melt pool, or both. A similar conclusion can be
drawn for the plains within the Rembrandt basin (Fig. 4b).
In general, the thicker the stagnant lid, the stronger is the
contrast between the source depth of the melt sheet and
the source depth of convective melt (in Supplementary Fig. 5,
we present results similar to Fig. 5 obtained using a different
baseline model).

Mineralogical models of the surface of Mercury show that the
Caloris interior plains are peculiar in being the most plagioclase-
rich area found on the surface!. Such mineralogical composition
has been interpreted as being the result of tertiary crustal for-
mation or of plagioclase floatation in a large melt pool'*.
Hydrocode simulations of large impacts on Mercury show that
the crust 0present before the impact is almost entirely
removed*>>’. This scenario cannot be easily reconciled with a
tertiary crust origin for the plagioclase. On geological timescales,
the melt pool freezes rapidly!”*° and a floatation origin for the
plagioclase would not be consistent with the inferred delay of the
emplacement of the melt sheet. In addition, due to the low iron
content of the mantle of Mercury the buoyancy of plagioclase in
liquid melts is reduced and its floatation unlikely’>>!. The
observed melt sheet in the interior of Caloris covers a layer of
dark material*®. Graphite is the only buoyant mineral in Mer-
curian melts and the low-reflectance material might represent a
floatation crust formed during the solidification of the melt
pool?. The postimpact melting model can explain the delay and
volume of the melt sheet covering the dark material. However,
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predicting the mineral composition of postimpact melts using a
convection code would require a level of complexity—two-phase
flow dynamics combined with stability of liquid and solid phases
at extremely high spatial resolutions—which, to our knowledge,
no global convection code is capable of doing at the present time.
In addition to its forsterite-rich mineralogy, the composition of
the plains in the interior of Caloris differs from that of other large
volcanic units with approximately the same age but not associated
with large impact basins>'*!>26, Our model indicates that from a
geodynamical point of view two possible components of the
Caloris interior plains are partial melts of pristine mantle material
and partial melts of the solidified melt pool. These components
would only be relevant for young large impact basins, of which
Caloris is the only example in the northern hemisphere. Their
potential role in generating the unique mineralogy and compo-
sition of the Caloris plains should thus be investigated. We make
similar predictions for the interior plains of Rembrandt, for
which, however, detailed geochemical analyses are missing due to
the low-resolution data in the southern hemisphere. Better data
coverage of the southern hemisphere to be provided by the
forthcoming BepiColombo mission>? will help to further validate
our model.

A large high-Mg region with an approximate diameter
of 3000km, apparent in geochemical maps of Mercury, was
tentatively identified as the site of an ancient impact basin'®,
Our model predicts that the source region of postimpact
melt within ancient impact basins would be indistinguishable
from convective melt originating in regions of the mantle unaf-
fected by large impacts (Figs. 4 and 5). Enhanced melt production
in the mantle below the impact location (Fig. 3) is compatible
with the generation of Mg-rich magmas*’. However, impact-
induced thermal anomalies are absorbed on timescales on the
order of one hundred millions of years, even for an event
producing a basin the size of the high-Mg region. The high-Mg
region encompasses a large range of surface ages"!>*>, and it is
difficult to reconcile a terrain with a large range of ages with a
compositional signature characteristic only of the first 100 Myr
following the impact*>. From the point of view of our model, a
large impact cannot explain the high-Mg region. This conclusion
is consistent with independent analyses based on hydrocode
simulations and mineralogical experiments!®*>. Thus, a crucial
question that future thermo-chemical models should investigate
in relation to the high-Mg region is the role of heterogeneities in
the mantle.

Large impacts modify the source depth of the melt region. This
modification varies as a function of the impactor properties, of
the timing of the impact event, and of the pattern of the con-
vection in the mantle. Volcanism globally resurfaced Mercury in
an interval of time corresponding to the late heavy bombard-
ment'. The large amount of impacts that characterize this phase
of the history of Mercury and their effects on the magmatic
activity in the mantle as inferred here provide an additional
mechanism to produce the geochemical anomalies observed
today on the surface of the planet.

Methods

Convection. We compute the two-dimensional (2D) convection in the mantle
of Mercury using the code GATA?. We use a cylindrical domain where the

core and mantle radii are rescaled to reproduce the curvature of the spherical
planet?8. The scaling is obtained by making the ratio of the areas of the
cylindrical, 2D domain the same as for the spherical domain. The domain thickness
Dis set to 419 km, corresponding to the thickness of the silicate shell of Mercury>>.
We employ a half-cylindrical grid with 84 uniformly spaced layers, corresponding
to a radial resolution of about 5km. We use the extended Boussinesq approx-
imation®* to solve the non-dimensional conservation equations of mass,

8
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momentum, and thermal energy:

V-u=0, (1)
—VP+ V. [V(Vu+ (Vu)T>] = RaTe,, @)

oT Di _ Rag
O W VT =V (kVT) + Diuy(T + Ts) + — @ + 22 3
P (kVT) + Diu, (T + S)+Ra 2 (3)

Velocity, dynamic pressure, temperature, and temperature of the surface are
indicated with u, P, T, and T , respectively. Symbols v and k indicate dynamic
viscosity and thermal conductivity, respectively. The radial direction is indicated by
e, and the radial component of the velocity with u,. Viscous dissipation is indicated
with @ = (1:€)/2, with 7 the deviatoric stress tensor and € the strain rate tensor. The
dimensionless numbers Ra, Raq, and Di denote the thermal and internal heating
Rayleigh numbers and the dissipation number, and are defined as:

ATD?p*C
Ra =2 TP (4)
VRefk
agD®p* CpH,
Rapg == """ 5
aq gk (5)
. oagD
pi = %~ 6
- ©

where p is the mantle density, Cp the heat capacity, a the thermal expansivity, g the
acceleration of gravity at the surface (which is approximately constant throughout
the mantle), and AT the temperature variation across the mantle. The radiogenic
heat production in the mantle is indicated by H,. We adopt a 1D parametrized
model for the cooling of the core, assumed to have a constant density and heat
capacity®>.

The temperature- and pressure-dependent viscosity is calculated with an
Arrhenius law for diffusion creep, which in dimensional form reads:

E+PV7E+PMV>

-7 7
RT RTret @)

V(P, T) = vges exp<

where vge, E, V, and R are the reference values for the viscosity, the activation
energy, the activation volume, and the gas constant, respectively. Values for the
parameters used in the simulations are listed in Supplementary Table 2.

We model the megaregolith layer as a surficial shell of constant thickness. It
affects convection only through its low conductivity. Although this layer would also
have low density, we do not consider the density difference since it does not
participate in convection and it has a negligible mass, at most 1% of the total
silicate mass.

With respect to the models of Tosi et al.® we do not employ the particle-in-cell
method®® to calculate crustal production and heat-producing element depletion of
the mantle as a consequence of gartial melting. However, we reproduced the results
of Tosi et al.® and Grott et al.® by accounting for latent heat and crustal
enrichment as described below.

Latent heat. Whenever in a grid cell i the local temperature T; rises above the local
solidus temperature Ts,), we equate the “super-solidus” energy

Es = CpAT, (8)

where AT =T; - Ts,, to the energy required to melt a fraction ¢; of the volume of
the cell and to compute the variation in temperature AT; (<AT) of the unmolten
part (1 — ;). AT; represents the local increase in the solidus temperature, which is
obtained by solving the equation

Es = Lng; + GATI(1 — ¢y), )

where L, is the latent heat of melting. We assume instantaneous melt extraction
since timescales of melt percolation are faster than convection timescales®”~>°.
Partial melts in the Mercurian mantle are buoyant over the entire mantle depth
range33, so we always extract melt to form the crust. The volume of the melt Vil
produced under a basin of angular extension 6 corresponds to a physical thickness
h = Rp — Rytelr» Where Ry is calculated through the expression

0 2 2
SR = RMelt}'

2[ (10)

Vet =

Since we use a 2D grid, Vye should be regarded as an area.

Heat sources. We allow the HPE to decay according to the standard exponential
decay law®”. Since HPE are highly incompatible, they concentrate in the partial
melt. In order to take this process into account, we correct the internal heating
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Rayleigh number by a factor (1 — Ag,) at each time step, where A is the enrichment
factor and ¢; is the total melt produced in the mantle in that time step. We
consider the same enrichment factor for the three radioactive elements®?%,
Potassium provides the largest contribution to the heat production in the earliest
phases of the evolution, when most of the crust is produced. For each HPE model,
we estimate the enrichment factor A by calculating the ratio between the observed
amount of potassium on the surface®! and the bulk abundance (Supplementary
Table 1).

Comparison with thermo-chemical models. Tosi et al.® showed that 1D para-
meterized models are in excellent agreement with 2D thermo-chemical models. To
validate our thermal convection model, we compared its results on crustal pro-
duction, core-mantle boundary (CMB) temperature, and stagnant lid thickness
with results of 1D parameterized models?®. In Supplementary Fig. 9, we plot the
temporal evolution of the crustal thickness and of the core temperature for a 1D
and a 2D simulation. The parameters used are listed in Supplementary Table 4. The
agreement is very good, with differences in crustal thickness and CMB temperature
<5% throughout the evolution. The 2D model is slightly colder than the 1D case,
but in the first billion year of the evolution, when the majority of the crust is
produced, the difference is <20 K. A direct comparison with the lid thickness is not
meaningful, since Grott et al.?® use a thermodynamical definition, while we use a
more appropriate dynamical definition based on the gradient velocity method®2.
The final value, however, agrees within 5%. We note that the main results of the
paper rely on the crustal production curve (Fig. 1 and Supplementary Fig. 2), whose
shape (i.e,, its three regimes) is similar across the entire range of parameters and is
also similar to the crustal production curve obtained with thermo-chemical models
(e.g., Fig. 6 in Tosi et al.%). As long as the model produces a crustal thickness
compatible with the inferred value!® and predicts melt production for an interval of
time compatible with the dating of the most recent large volcanic units®, the details
of the model do not affect our conclusions (compare Fig. 5 and Supplementary
Fig. 5).

Source depth of melt. At each time step, melt is extracted vertically and con-
tributes to the formation of the crust or the melt sheet. The mean source depth of
the melt is computed by weighting the depth of each grid cell with the corre-
sponding melt fraction. The source depth of the melt is deeper for higher reference
viscosities, a result consistent with classical boundary layer theory, since the
thickness of the boundary layer, and thus the depth of the top of the convecting
region, where most melt is produced, is proportional to the reciprocal of the
Nusselt number Nu and thus to the reference viscosity through the Rayleigh
number Ra: Nu~! < Ra~# I/]icf, where f has a value of about 1/3.

Thermal contraction. Variations in the radius of Mercury Rp between time t;
and time t, induced by variations in the temperature profile, can be calculated from
ref.

Ry

R 1
CMB |

ARp(t, 1) = ac[Tems(t) — Toms(6) e 2
P pJ R

[T (7, t) — T (t)]7*dr,

(11)

where the symbols are defined in Supplementary Table 2. In computing the
thermal contraction of the baseline model, we consider t=4.5Gyr and ;=

0.75 Gyr, the latter value corresponding to the peak mantle temperature (Supple-
mentary Fig. 4).

Volume of the smooth plains and melt production regimes. The smooth plains
represent the youngest large volcanic units of the surface of Mercury. They account
globally for about 27% of the surface of Mercury>. An upper limit for the volume of
the smooth plains is obtained by assuming that they are all volcanic in origin and
that they have a thickness of 2 km, as in the case of the northern plains®. Assuming
that the plains cover a spherical cap with an area Agp corresponding to 27% of the
surface, their volume Vgp is

Vsp = Aspx 2 = 87R%; % 0.27, (12)

which corresponds to about 1.6% of the entire volume of the crust for a crustal
thickness of 35km!?. This figure increases by an order of magnitude if an
extrusive-to-intrusive ratio of 10% is assumed. We use a value of 16% for the total
volume of the volcanic plains to define the three melting regimes in the main text.

Data availability. The output of the thermal evolution simulations are available
upon request from the corresponding author.
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