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Laboratory data indicate the hip capsular ligaments prevent excessive range of motion, may protect the
joint against adverse edge loading and contribute to synovial fluid replenishment at the cartilage sur-
Keywords:
Hip
Capsule
Ligaments
Range of motion
Slack
x.doi.org/10.1016/j.jbiomech.2015.09.002
90/& 2015 The Authors. Published by Elsevie

esponding author. Tel.: þ44 20 7594 5471; fa
ail address: j.jeffers@imperial.ac.uk (J.R.T. Jeffe
a b s t r a c t

faces of the joint. However, their repair after joint preserving or arthroplasty surgery is not routine. In
order to restore their biomechanical function after hip surgery, the positions of the hip at which the
ligaments engage together with their tensions when they engage is required. Nine cadaveric left hips
without pathology were skeletonised except for the hip joint capsule and mounted in a six-degrees-of-
freedom testing rig. A 5 N m torque was applied to all rotational degrees-of-freedom separately to
quantify the passive restraint envelope throughout the available range of motion with the hip func-
tionally loaded. The capsular ligaments allowed the hip to internally/externally rotate with a large range
of un-resisted rotation (up to 50710°) in mid-flexion and mid-ab/adduction but this was reduced
towards the limits of flexion/extension and ab/adduction such that there was a near-zero slack region in
some positions (po0.014). The slack region was not symmetrical; the mid-slack point was found with
internal rotation in extension and external rotation in flexion (po0.001). The torsional stiffness of the
capsular ligamentous restraint averaged 0.870.3 N m/° and was greater in positions where there were
large slack regions. These data provide a target for restoration of normal capsular ligament tensions after
joint preserving hip surgery. Ligament repair is technically demanding, particularly for arthroscopic
procedures, but failing to restore their function may increase the risk of osteoarthritic degeneration.
& 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Anatomical limits to the range of motion (ROM) of the hip joint
are important to prevent impingements, which can lead to serious
clinical problems. For young adults, femoroacetabular impinge-
ment (FAI) in the native hip causes pain and trauma to the acet-
abular labrum or articular cartilage and can, in the long-term, lead
to osteoarthritis (Leunig and Ganz, 2014). For total hip arthroplasty
(THA) patients, impingements cause subluxations and subsequent
edge loading and high wear (De Haan et al., 2008; Esposito et al.,
2012) or dislocation (Bartz et al., 2000). Consequently, there is
much benefit to be gained from understanding how the natural
hip limits ROM to prevent impingement.

The majority of hip ROM research considers how impingement
is influenced by bony hip morphology only, and the effects that
surgery can have on this (Audenaert et al., 2011, 2012; Bedi et al.,
2011a; Burroughs et al., 2005; D’Lima et al., 2000; Kessler et al.,
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2008; Kubiak-Langer et al., 2007; Nakahara et al., 2011; Tannast et
al., 2007, 2012). Many of these studies investigate joint morphol-
ogy or implant shape/position in isolation and find that there is a
non-symmetrical range of hip rotation. In extension, the hip has a
large range of internal rotation but is at risk of impingement in
external rotation. Conversely, in deep flexion the hip has a large
range of external rotation but is at risk of impingement in internal
rotation (Burroughs et al., 2005; Kessler et al., 2008;
Nakahara et al., 2011; Tannast et al., 2012). However, clinical
measurements of hip rotation suggest ROM is more symmetrical
than these models indicate (Boone and Azen, 1979; Roach and
Miles, 1991) and indeed recent research has described how the
soft tissues also limit hip ROM (Incavo et al., 2011;
Safran et al., 2013). Including these tissues in ROM models has
demonstrated that variations in hip geometry which affect ROM
within the soft-tissue passive restraint envelope are more impor-
tant than variations outside it (Incavo et al., 2011).

Of the hip soft-tissues, the influence of the hip capsular liga-
ments on ROM restraint is particularly important to consider
because any intra-articular hip surgery necessarily involves an
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Anterolateral view of a hip in the testing rig in flexion, adduction and
external rotation. In this photograph, the iliofemoral capsular ligament can be seen
to be taut and resisting a 5 N m external rotation torque being applied by the servo-
hydraulic machine. Internal/external rotation and vertical loads are controlled by a
dual-axis servo-hydraulic machine (not shown) and horizontal loads and transla-
tions are applied using dead weights and a low-friction x–z table (not shown).
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incision to these ligaments to gain access to the hip, whether open
(Leunig and Ganz, 2014) or arthroscopic (Domb et al., 2013) joint
preserving surgery, or THA (Masonis and Bourne, 2002). In vitro
data indicate the capsular ligaments limit the available ROM in the
native hip (Myers et al., 2011; Safran et al., 2013; van Arkel et al.,
2015), and that when they pull taut in deep flexion they may
protect the hip against posterior edge loading (van Arkel et al.,
2015). In vitro data also demonstrate that synovial fluid flows from
the central intra-articular compartment of the hip to the periph-
eral compartment (Dwyer et al., 2014) and it has been suggested
that tightening of the capsular ligaments may circulate synovial
fluid back to the central compartment again (Field and Rajaku-
lendran, 2011). There are therefore several possible biomechanical
functions of the capsular ligaments and several groups advocate
their repair after joint preserving surgery (Bedi et al., 2011b;
Domb et al., 2013; Frank et al., 2014). However it remains a tech-
nically demanding task and is not routinely performed
(Domb et al., 2013; Ilizaliturri, 2009). This is a concern as failure to
restore these biomechanical functions may increase the risk of
osteoarthritis progression.

Most hip ligament research focusses on a neutral ab/adduction
swing path so it remains unclear when the ligaments engage as
ab/adduction varies (Martin et al., 2008; Myers et al., 2011). There
is therefore a lack of baseline experimental data describing the
positions throughout ROM where the capsular ligaments pull taut
to restrain rotation of the native hip, and what rotational stiffness
of restraint they provide when they do. These data would be useful
for both assessing the importance of the capsular repair for a
patient (Domb et al., 2013) as well as performing the repair to
restore natural biomechanics.

The aims of this study were to quantify the ligamentous passive
restraint envelope for the hip when it is functionally loaded
throughout the whole ROM, and to quantify the amount of rota-
tional stiffness provided by the capsular ligaments once taut. This
would provide the surgeon with an objective target to restore
ligament biomechanics following early intervention surgery. The
null hypothesis is that the passive rotation restraint envelope does
not vary throughout hip ROM.
2. Materials and methods

2.1. Specimen preparation

Following approval from the local Research Ethics Committee, 10 fresh-frozen
cadaveric pelvises (six male) with full length femurs were defrosted and skeleto-
nised, carefully preserving the hip joint capsule. Guide holes were drilled into the
left posterior superior iliac spines and femoral shaft before bisecting the pelvis and
transecting the femoral mid-shaft. The guide holes based on the contra-lateral
pelvis and femoral epicondyles were then used to mount the hip into a six-degrees-
of-freedom testing rig (Fig. 1) according to the International Society of Bio-
mechanics (ISB) coordinate system (Wu et al., 2002). Neutral flexion, rotation and
ab/adduction equated to a standing upright position (when the ISB pelvic X–Y–Z
axes aligned with the femoral x–y–z axes).

2.2. The testing rig

The rig comprised of a femoral-fixture that was attached to a dual-axis servo-
hydraulic materials-testing-machine (model 8874, Instron Ltd, High Wycombe,
United Kingdom) equipped with a two-degree-of-freedom (torsion/tension) load
cell and a pelvic-fixture that could constrain, release or load the other four-
degrees-of-freedom (Fig. 1). Pure moments could be applied in all three physiolo-
gical directions: internal/external rotation torque through the rotating axis of the
servo-hydraulic machine and flexion/extension or ab/adduction torques with a
pulley and hanging-weights couple. This meant that any hip could freely rotate
about its natural centre, unconstrained, without affecting the magnitude of applied
torque. Fixed angular positions could be applied using position control on the
servo-hydraulic machine or with screw clamps on the pulleys. Femoral proximo-
distal loads (along the femoral y-axis) were applied by operating the vertical axis of
the servo-hydraulic machine in load control whilst an x–z bearing table and a
hanging weight applied joint reaction force components in the transverse plane;
translations in the secondary translational degrees-of-freedom x–y–z were free to
occur in response to the applied load and ligament tension.

2.3. Testing protocol

For each specimen, all tests were performed at room temperature on the same
day without removing the specimen from the testing rig. The specimens were kept
moist using regular water spray. With the femur in the neutral position, a fixed
compressive load in the coronal plane of 110 N angled 20° medially/proximally
relative to the mechanical axis of the femur was applied. This loading vector was
held constant relative to the femur whilst the pelvis was flexed/extended and ab/
adducted to apply ROM. As load direction was relative to the femur this meant that,
for example, if the hip was flexed to 90° (in the rig this would mean the pelvis was
rotated 90°) then the load would be applied in the transverse plane. This loading
direction was chosen based on the mean (7S.D.) direction of the hip contact force
relative to the femur during functional tasks reported in HIP98 (Bergmann et al.,
2001): 1875° medially/proximally and 076° anteriorly/proximally for an average
patient walking fast/slow, up/down stairs, standing up, sitting down, and
knee bend.

For each specimen, the ROM with the joint capsule intact was established by
applying 5 N m extension/flexion torques with the hip joint in neutral rotation and
ab/adduction to define a value of extension (EXT) and deep flexion (FLX) for the hip.
Then, with the joint still in neutral rotation, 5 N m ab/adduction torques were
applied to measure values of high abduction (ABD) and high adduction (ADD) at six
different flexion angles (EXT, F0°, F30°, F60°, F90° and FLX). Finally, 5 N m torques
were applied in internal/external rotation at 30 different hip positions; all possible
combinations of ABD, AB20° (abducted to 20°), A0° AD20° (adducted to 20°) and
ADD at all six flexion/extension angles. At each hip position, these rotation
movements were applied by the servo-hydraulic machine using a sinusoidal
waveform (neutral-external-neutral-internal-neutral) with a 10 s period
whilst continuously recording the angle of rotation and passive rotation resistance.
Each movement was performed twice and data were analysed from the second
iteration.



Table 1
Morphological measurements of the eight hips
included in the data analysis.

Measurement Mean7S.D.

Age 7679
Femoral head diameter (mm) 5075
Femoral anteversion (deg) 9711
Femoral neck-shaft angle (deg) 13074
Femoral offset (mm) 3679
Femoral head/neck ratio 1.4070.07
Femoral anterior neck offset ratio 0.1870.02
Femoral alpha angle (deg) 4876
Femoral beta angle (deg) 4575
Acetabular centre edge angle (deg) 4179
Acetabular depth ratio 274722
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Fig. 2. The mean ab/adduction with standard deviation (n¼9) when 5 N m torque
was applied as flexion was varied whilst internal/external rotation was fixed in the
neutral position.

-50

-40

-30

-20

-10

0

10

20

30

40

(-)
 E

xt
er

na
l /

 In
te

rn
al

 (+
) R

ot
at

io
n 

(°
)

Hip Joint Position (°)

5Nm
Restraint

Passive
restraint
envelope

Mid-
slack

A
B

D
A

B
20 A
0

A
D

D

A
B

D
A

B
20 A
0

A
D

D

A
B

D
A

B
20 A
0

A
D

20
A

D
D

A
B

D
A

B
20 A
0

A
D

20
A

D
D

A
B

D
A

B
20 A
0

A
D

20
A

D
D

A
B

D
A

B
20 A
0

A
D

D

EXT F0 F30 F60 F90 FLX

Fig. 3. The rotation passive restraint envelope (with standard deviation, n¼8), the
points of mid-slack and the 5 N m measurement boundaries across a complete hip
range of motion. It can be seen that there was a greater range of un-resisted
rotation (space between the solid black lines) in mid-flexion and mid-ab/adduction
than when the hip was deeply flexed/extended, or highly ab/adducted. It can also
be seen that the hip was more open to internal rotation in extension, and external
rotation in flexion as the mid-slack points (grey dots) shifted to external rotation as
hip flexion was increased. However once the ligaments had started to restrain hip
rotation, the internal/extenral rotation restraint is more symmetrical (equal spacing
between solid black lines and dashed grey lines at each position).
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In order to assess specimen morphology, following testing, the following
measurements were made: femoral head diameter, offset, anteversion, neck-shaft
angle and head/neck ratio (Doherty et al., 2008), as well as acetabular centre edge
angle and depth ratio (Cooperman et al., 1983). The α and β angles, and the anterior
neck offset ratio were also measured (Meyer et al., 2006). Specimens with α455°
or centre-edge angle o25° were considered abnormal and were excluded from the
data analyses (Ellis et al., 2011; Jacobsen, 2006).

2.4. Data analysis

Internal/external torque–rotation curves for each specimen in each hip position
were plotted using MatLab (version 2011b, The MathWorks, Inc., Austin, TX). The
angular positions where the hip joint motion transitioned from slack to stiff were
identified by finding the first points where the torque–rotation gradient exceeded
0.03 N m/° for both internal and external rotation. This value of 0.03 N m/° was
determined from pilot data by visually inspecting plots of the torque–rotation data
alongside the calculated gradient values.

The slack/stiff transition points were then used to calculate three parameters
for further analysis: the range of un-resisted rotation (slack region), the location of
the mid-slack point and the change in rotation from the transition point to 5 N m of
passive rotation restraint (slack-to-taut). In cases where there was continually
passive restraint with no slack region, the mid-slack angle was defined at 0 N m
passive resistance torque (the x-intercept). Finally, the gradient values were addi-
tionally used to quantify the aggregate torsional stiffness provided by the capsular
ligaments at the point of 5 N m passive resistance.

2.5. Statistical analysis

The values recorded at AD20° and AB20° could not be included in the repeated
measures analyses because not all hips could reach these positions in extension or
deep flexion. Data were analysed in SPSS (version 22, SPSS Inc, Chicago, Illinois)
with two- or three-way repeated measured analyses of variance (RMANOVA). The
independent variables were the angles of hip flexion (EXT, F0°, F30°, F60°, F90° and
FLX) and hip ab/adduction (ABD, A0° and ADD) for the two-way analyses, with an
additional factor of direction of rotation (ER and IR) for the three-way analyses.
Four dependant variables were analysed: the range of un-resisted rotation (two-
way analysis), the angle of mid-slack (two-way analysis), the angular change from
the transition point to 5 N m passive restraint (three-way analysis) and finally the
torsional stiffness of the hip at the point of 5 N m restraint (three-way analysis).
Post-hoc paired t-tests with Bonferroni correction were applied when differences
across tests were found. The significance level was set at po0.05. The number of
post-hoc comparisons at a given level of flexion was different from that at a given
level of ab/adduction. Therefore adjusted p-values, multiplied by the appropriate
Bonferroni correction factor in SPSS, have been reported rather than reducing the
significance level.
3. Results

One male hip had a visibly aspherical head (α¼64°) and was
excluded from the data analysis. External rotation data for one
female specimen was lost due to the capsule rupturing from the
bone when 5 N m torque was applied in external rotation meaning
that subsequent hip rotation results are presented for only eight
specimens. Morphological measurements of these specimens are
presented in Table 1.
Under 5 N m torque the mean (7 standard deviation) hip joint
flexion was 112710° and extension was �1277°. The range of
hip joint ab/adduction varied with the angle of hip flexion; it was
largest in 60–90° of flexion and smallest in hip extension (Fig. 2).
3.1. The passive restraint envelope: the range of un-resisted rotation

The range of un-resisted rotation (slack region) varied with
both the angle of hip flexion and ab/adduction (Fig. 3) and the
effect of flexion on the slack region was found to be dependant on
the level of ab/adduction and vice-versa (po0.001). The post-hoc
analysis showed that the slack region in neutral ab/adduction was
greater than that in high ab/adduction (all po0.014, Table 2 and
Fig. 4). The largest difference was at F60° where the mean slack
region was 41713° larger in neutral ab/adduction than when the
hip was highly adducted (po0.001). Similarly, the hip had a
greater slack region in mid-flexion compared to extension and
deep flexion (with neutral abduction, all po0.006, Table 2 and
Fig. 4). The largest difference was at F60° where the mean slack
region was 44715° larger at F60° than EXT (p¼0.001).



Table 2
All significant increases/decreases measured for the slack region, slack-to-taut and torsional stiffness. Hip positions where there were common significant differences (i.e. the
key findings of the study) are in italics.

Hip position Significant differences (with p-values)

Slack region Slack-to-taut Torsional stiffness

ABD None – None – F304EXT 0.022
F604F90 0.018

A0 F304EXT 0.002
F604EXT 0.001 F30oEXT 0.044
F904EXT 0.005 F60oEXT 0.003 F304EXT o0.001
F604F90 0.006 F90oEXT 0.040 F604EXT 0.004
F604FLX 0.008 F60oF90 0.046 F904EXT 0.012
F904FLX 0.022

ADD None – None – F904F0 0.001
F904F30 0.033

EXT None – A0oABD 0.050 A04ABD 0.043
F0 A04ABD 0.013 A0oABD 0.010 A04ADD 0.048

A04ADD 0.012 ADDoABD 0.035
F30 A04ABD 0.001 A0oABD 0.001 ABD4ADD 0.031

A04ADD o0.001 A0oADD 0.023 A04ADD o0.001
ADDoABD 0.022

F60 A04ABD o0.001 A0oABD o0.001 A04ABD 0.008
A04ADD o0.001 A0oADD o0.001 A04ADD 0.028

F90 A04ABD o0.001 A0oADD 0.006 A04ABD 0.003
A04ADD 0.001

FLX A04ABD 0.001 None – None –

A04ADD 0.008
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3.2. The passive restraint envelope: mid-slack

The position of the mid-slack point also varied with the angle
of hip flexion and abduction (Fig. 3) with an interaction effect
between flexion and ab/adduction (po0.001). Post-hoc analyses
showed that, for both neutral and high adduction, the mid-slack
point was found with the hip internally rotated in extension,
externally rotated in deep hip flexion (po0.001, Fig. 5a and b).
However, when the hip was highly abducted, no difference was
detected between the position of the mid-slack point in deep
flexion and extension. Instead, the mid-slack point was found with
the hip externally rotated in mid flexion, resulting in a parabolic-
like shift in the location of the mid-slack point (po0.028 for both
F30° and F60° compared to extension, Fig. 5c).

3.3. Slack-to-taut and torsional stiffness

Neither the angular change from the transition point to 5 N m
passive restraint (slack-to-taut) nor the torsional stiffness at 5 N m
restraint was affected by a three-way interaction between flexion,
ab/adduction and rotation direction. However, both dependant
variables did vary with hip position with a two-way interaction
detected between flexion and ab/adduction across both directions
of rotation (for slack-to-taut p¼0.006, and for torsional stiffness
p¼0.036). Post-hoc analysis detected differences in similar posi-
tions to those found for the slack region (in mid-flexion and mid-
ab/adduction, Fig. 3). Generally, when the slack region increased,
torsional stiffness increased and slack-to-taut decreased (Table 2
and Fig. 6).
4. Discussion

The most important finding of this study was that the passive
restraint envelope for hip rotation varied with the angle of flexion/
extension and ab/adduction (Fig. 3). In a position of mid-flexion
and mid-ab/adduction there were large slack regions where the
capsular ligaments provided no rotational restraint (Fig. 4), which
indicate a large in-vivo ROM that allows the hip to move freely
under the action of hip muscles during many daily activities.
Conversely, towards the extremes of hip ROM (in positions of deep
flexion/extension or high levels of ab/adduction) there was a
minimal/non-existent slack region, thus limiting the available
range of rotation in positions where the hip is vulnerable to
impingement and/or subluxation. The results also showed that
internal/external rotation restraint is not symmetrical; the mid-
slack point displayed a shift from an internally rotated position in
extension to an externally rotated position in hip flexion (Fig. 5).

Our results do not distinguish between capsular rotational
restraint and that from labral impingement, but provide an
aggregate rotational restraint from the peri-articular tissues.
However, within the 5 N m restraint boundaries examined, our
previous research found that the mean labral contribution to
rotational restraint only exceeded 20% in 6/36 hip positions and
was less than the capsular contribution to rotational restraint in all
hip positions (po0.05) (van Arkel et al., 2015). These labral
impingements were observed most frequently when the hip was
in high abduction, which may be the cause of the parabolic shift of
the mid-slack point in high abduction (Fig. 5), and also the few hip
positions in low flexion and high abduction where slack-to-taut
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and torsional stiffness seemingly both increase (Fig. 6). Another
limitation was the high mean age of the cadaveric specimens; they
are better matched to patients undergoing THA than those
receiving early intervention surgery. Our study also did not con-
sider the effects of osteoarthritis on capsular stiffness, or how a
smaller head size for a THA may affect the ability of the capsule to
wrap around the head and tauten (Colbrunn et al., 2013). By only
including normal hips in the study it was also not possible to
address whether hips suffering from FAI have normal capsular
anatomy/function. However, studies have suggested similarities
between hip capsule dimensions in pathological hips (Weidner et
al., 2012) and normal hips (Stewart et al., 2002).

In Fig. 7, the passive restraint envelope measured in this study
is overlaid on ROM data taken from 18 studies with a total of more
than 2400 subjects, which include clinical goniometer readings,
in-vitro experiments including skin and muscles and computa-
tional impingement models. Our data are in good agreement with
other cadaver based studies, but the passive restraint envelope is
typically less than clinical measurements. This is to be expected as
clinical ROM measurements usually measure the relative move-
ment between the thigh and trunk, thus including contributions
from the lumbar spine, sacro-iliac joint as well as the anatomic hip
joint. However, the ROM measured in the current study was
always less than that measured when only bone-on-bone impin-
gement was considered for normal hips (the computational stu-
dies in Fig. 7) indicating the capsular ligaments engage to prevent
impingement. The impingement-free range of rotation measured
in bone–bone impingement studies is biased towards internal
rotation in extension (Kessler et al., 2008; Tannast et al., 2012), and
external rotation in flexion (Kubiak-Langer et al., 2007;
1Tannast et al., 2012). Our data indicate capsular rotation restraint
guides the available range of rotation towards these impingement-
free positions as the mid slack point shifts 30° from an internally
rotated position in extension to a more externally rotated position
in deep flexion (Fig. 5).

Several authors have reported the total resistance to hip joint
distraction/dislocation (Elkins et al., 2011; Ito et al., 2009), the
stiffness of individual ligaments (Hewitt et al., 2002), their con-
tribution to hip rotation restraint (Myers et al., 2011; Smith et al.,
2014; van Arkel et al., 2015), or their influence on hip ROM (Safran
et al., 2013). However to our knowledge there are no studies
measuring the slack region, or the angular change required to
tauten the ligaments or torsional stiffness provided by an intact
capsule once the ligaments are taut. This study quantifies these



-60
-40
-20

0
20
40
60
80

100
120
140

   
   

R
oa

ch
 e

t a
l. 

(n
=1

68
3)

   
 P

hi
lip

po
n 

et
 a

l. 
(n

=3
01

)
   

   
  B

oo
ne

 e
t a

l. 
(n

=5
6)

   
   

 C
lo

hi
sy

 e
t a

l. 
(n

=5
1)

   
   

B
ru

nn
er

 e
t a

l. 
(n

=5
0)

   
   

 L
in

co
ln

 e
t a

l. 
(n

=1
6)

  N
us

sb
au

m
er

 e
t a

l. 
(n

=1
5)

   
  A

ud
en

ar
t e

t a
l. 

(n
=1

3)
   

   
   

B
ed

i e
t a

l. 
(n

=1
0)

   
   

  I
nc

av
o 

et
 a

l. 
(n

=8
)

   
   

  S
af

ra
n 

et
 a

l. 
(n

=8
)

   
   

   
B

ar
tz

 e
t a

l. 
(n

=6
)

   
  B

ur
ro

ug
hs

 e
t a

l. 
(n

=1
)

   
   

 K
es

sl
er

 e
t a

l. 
(n

=1
)

   
 N

ak
ah

ar
a 

et
 a

l. 
(n

=1
06

)
Ta

nn
as

t e
t a

l. 
(2

00
7)

 (n
=3

6)
Ta

nn
as

t e
t a

l. 
(2

01
2)

 (n
=2

7)
 K

ub
ia

k-
La

ng
er

 e
t a

l. 
(n

=3
3)

(-)
 E

xt
en

si
on

/F
le

xi
on

 (+
) (

°)

Passive Restraint
Envelope (This Study)

5Nm Restraint
(This Study)

Predicted 10Nm
Restraint (This Study)

Clinical Normal

Clinical FAI

Cadaveric Normal
(with Skin+Muscles)

Cadaveric THA
(Ø32mm Head)

In Vitro THA
(Ø32mm Head)

Computational THA
(Ø32mm Head)

Computational
Normal

Computational FAI

-120

-100

-80

-60

-40

-20

0

20

40

60

(-)
 E

xt
er

na
l/I

nt
er

na
l (

+)
 R

ot
at

io
n 

(°
)

Fig. 7. A comparison between clinical, experimental and computational range of
motion measurements and the results from the present study for internal and
external rotation at 90° flexion with neutral ab/adduction (top), and for flexion/
extension (bottom). It can be seen that the passive restraint envelope (for un-
resisted rotation) measured in the present study was within clinical measurements
for normal subjects, compares well to previous cadaveric work, and was always less
than results from studies which only considered bony impingement as a limit to
hip rotation (computational studies). The predicted 10 N m restraint values were
calculated using the mean torsional stiffness measured at 5 N m restraint.
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variables and the findings correlate well with the understanding of
the anatomy of the capsular ligaments. The four capsular liga-
ments available for limiting hip rotation (medial and lateral arms
of the iliofemoral, ischiofemoral and pubofemoral) are the same
ligaments which can generate resistive moments against deep
flexion/extension or high ab/adduction (Fuss and Bacher, 1991;
Martin et al., 2008). This explains the reduced hip rotation slack
region observed in the more extreme hip positions (Figs. 3 and 4)
as the ligaments are recruited to limit both large movements of
the lower limb (flexion/extension or ab/adduction) and hip rota-
tion. It also explains the reduced rotational stiffness (Fig. 6) in
these hip positions as the ligament fibres do not align to purely
resist hip rotation but also the other movements. Conversely in
mid-flexion and mid-ab/adduction, there is a large slack region
available as the ligaments are not resisting movements in any
direction. When the hip is excessively rotated in these mid-ROM
positions such that the ligaments start to tauten, the ligaments
develop high levels of torsional stiffness in small angular changes
(Fig. 6) as the fibres are orientated more perpendicularly to the
axis of hip rotation, directly opposing the movement.

In conclusion, to our knowledge, this is the first study to
quantify the hip positions where the capsular ligaments restrain
hip rotation and those where the joint is slack, how much rotation
is required to tighten the ligaments, and how much rotational
stiffness is provided by them once taut. These results provide a
benchmark for the normal joint that can be used as a target for
capsular repair in joint preserving surgery, and enable the
restoration of capsular biomechanical function after surgery.
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