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Abstract

Current knowledge gaps on tendon tissue healing can partly be ascribed to the limited

availability of physiologically relevant culture models. An unnatural extracellular matrix,

high serum levels and random cell morphology in vitro mimic strong vascularization and

lost cell elongation in pathology, and discord with a healthy, in vivo cell microenviron-

ment. The thereby induced phenotypic drift in tendon‐derived cells (TDCs) compromises

the validity of the research model. Therefore, this research quantified the extracellular

matrix (ECM)‐, serum‐, and cell morphology‐guided phenotypic changes in tendon cells of

whole tendon fascicle explants with intact ECM and TDCs cultured in a controlled mi-

croenvironmental niche. Explanted murine tail tendon fascicles were cultured in serum‐
rich or serum‐free medium and phenotype was assessed using transcriptome analysis.

Next, phenotypic marker gene expression was measured in in vitro expanded murine tail

TDCs upon culture in serum‐rich or serum‐free medium on aligned or random collagen I

patterns. Freshly isolated fascicles or TDCs served as native controls. In both systems, the

majority of tendon‐specific genes were similarly attenuated in serum‐rich culture. Strik-

ingly, 1‐week serum‐deprived culture—independent of cell morphology—converged TDC

gene expression toward native levels. This study reveals a dynamic serum‐responsive
tendon cell phenotype. Extracting fascicles or TDCs from their native environment causes

large changes in cellular phenotype, which can be limited and even reversed by serum

deprivation. We conclude that serum‐derived factors override matrix‐integrity and

cell morphology cues and that serum‐deprivation stimulates a more physiological

microenvironment for in vitro studies.
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1 | INTRODUCTION

Healthy tendon tissue is poorly vascularized,1‐3 and characterized by a

network of elongated fibroblasts, named tenocytes, embedded in an

anisotropic extracellular matrix (ECM) mainly composed of collagen I.4

In response to physiological loading, tenocytes remodel the tissue based

on functional mechanical demands. However, tendon tissue overloading

or underloading can induce remodeling toward a pathological state,4,5

which is referred to as “tendinopathy.” Tendinopathy is characterized by

drastic structural changes: anisotropy in the ECM is lost,3,6 the ratio of

collagen I to collagen III decreases while proteoglycan content in-

creases,6‐8 mechanical properties are compromised,4 vascular and

neuronal ingrowth potentially cause pain,2 and cell numbers are in-

creased, whereas cell alignment and elongated morphology are lost.7

The concomitant shift of the predominantly tenogenic cell population

toward other mesenchymal lineages8‐11 decreases the functional re-

modeling capacity of tendon and aggravates the disorder.12,13

Tendinopathy accounts for 30%‐50% of sports‐related injuries5 and

nearly 30% of musculoskeletal issues‐related medical visits.14 Aside

from physiotherapy and analgesic treatment, tendon disorders are

hardly treatable due to gaps in knowledge concerning tissue healing and

remodeling.1 Tendon culture model systems such as tissue explants—

with a native ECM as key tissue feature—and in vitro cells, are widely

used due to their practicality and to gain a better understanding of the

fundamental disease progression and healing mechanisms.15,16

However, culture systems using tendon‐derived cells (TDCs) with a

reduced and therefore more controllable cell environment15 require cell

isolation and expansion to minimize ethical concerns by maximizing cell

yield per animal or to overcome the limited availability of human tissue

for research. Expansion requires culture conditions showing similarities

with tendinopathic tissue: hypercellularity, disorganized cells with loss

of elongated morphology in the culture flask,7 and serum‐rich medium

resembling neovascularization.17 Under these conditions, tenogenic cell

populations lose their original healthy phenotype (“phenotypic drift”),

via either transdifferentiation of cells or disproportional proliferation of

subpopulations, similar to tendinopathic scenarios. Phenotypic drift

likely increases by simplification of the model system, that is, extracting

tissue from the body and further extraction of the cells from their native

environment. As a result, phenotypic drift compromises translatability

of tendon cell properties to in vivo tissue and hinders the development

of effective treatment strategies.18‐20

Limiting phenotypic drift of tendon cells in culture has been tried

before15 by varying biophysical (eg, impose cell morphology using

anisotropic substrates12,21‐25 or mechanical loading20), biochemical (eg,

partial oxygen pressure or temperature17), and biological factors (eg,

hormones, growth factors or cytokines26), while the precise combina-

tion, dosage and time‐dependent administration of various tenogenic

stimulators remains to be determined. Nonetheless, blood serum, which

provides a complex, poorly defined mixture of bioactive molecules, is

widely used for in vitro TDC culture to increase cell proliferation

and activity. This however, conflicts with the quiescent nature of

healthy tendon cells,1,27 and tendon‐specific phenotype seems

to be maintained in low rather than high serum concentrations.18,26

However, the effect of serum‐supplementation, tissue integrity

cues (cell‐matrix contacts) and elongated cell morphology on the

differential cellular response, and phenotypic drift of ECM‐embedded

tendon cells and expanded TDCs has to our knowledge never been

systematically quantified with respect to native tissue.19 Examining the

potential of these factors to reverse phenotypic drift in TDCs is key to

increase the physiological relevance of tendon culture models.

We, therefore, investigated phenotypic drift in tendon cells away

from freshly isolated tissue and cells by separately controlling for

complexity of the ECM niche and tendinopathic features of the mi-

croenvironment (serum and cell morphology). First, we used tran-

scriptome analysis to screen for tendon‐relevant genes and quantify

culture‐driven phenotypic drift in whole tendon explants—with a

complex and intact ECM—upon serum‐free and serum‐rich culture.

Subsequently, we validated serum‐dependent phenotypic drift in

expanded TDCs and tested the potential for reversibility, by culturing

TDCs in serum‐free or serum‐rich medium on random and aligned

collagen I substrates—with a limited ECM complexity and controlled

cell morphology. Their phenotypic gene expression was assessed and

compared to freshly isolated TDCs. Hereby we highlighted the in-

fluence of the culture environment on the dynamic tendon cell

phenotype and contributed to the increased physiological relevance

of different in vitro model systems.

2 | METHODS

2.1 | Harvesting and culture of tendon fascicles

All experiments on tendon fascicle explants were ethically approved by

the Cantonal Veterinary office of Zurich (permit number ZH265/14). In

total, nine C57BL6/J mice, 11 to 12‐week‐old, were euthanized and tail

tendon fascicles were isolated as described before.12 Briefly, the tail tip

was clamped with locking forceps and bent. The tendon fascicles were

pulled out, hydrated in phosphate‐buffered saline (PBS) and cut off.

Freshly isolated fascicles served as native control immediately after

extraction. Explanted fascicles were cultured deprived from load at

standard cell culture conditions (37°C, 5% CO2) in high‐glucose Dul-

becco's Modified Eagle's Medium (HG‐DMEM; Sigma D6429) with or

without 10% fetal bovine serum (FBS) (Gibco 26140079) for 6 days

(Figure 1), as previously described.17

2.2 | RNA sequencing and data analysis

RNA sequencing and data analysis were performed as previously

described.17 In short, approximately 20 fascicles per animal (re-

presenting n = 1) were snap‐frozen in liquid nitrogen and pulverized

in QIAzol lysis reagent by cryogenic grinding (FreezerMill 6870,

SPEX SamplePrep). Tissue lysates were phase‐separated using

5Prime PhaseLock Gel Heavy (Quantabio). RNA was extracted by

using the RNeasy micro Kit (Qiagen 74004), according to the man-

ufacturer's instructions. The TruSeq Stranded mRNA Sample Prep Kit
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(Illumina, Inc, San Diego, CA) was used in the succeeding steps.

Briefly, total RNA samples (100 ng) were poly‐A selected and then

reverse‐transcribed into double‐stranded complementary DNA

(cDNA), which was fragmented, end‐repaired, and adenylated before

ligation of TruSeq adapters. The adapters contained the index for

multiplexing. Fragments containing TruSeq adapters on both ends

were selectively enriched with polymerase chain reaction (PCR). The

libraries were normalized and the TruSeq SR Cluster Kit v4‐cBot‐HS

(Illumina, Inc) was used for cluster generation using 8 pM of pooled

normalized libraries on the cBOT. Sequencing was performed on the

Illumina HiSeq 4000 single end 125 bp using the TruSeq SBS Kit

v4‐HS (Illumina, Inc). Bioinformatic analysis was performed using the

R package ezRun28 within the data analysis framework SUSHI.29 Raw

read counts were normalized using the quantile method, and differ-

ential expression analysis was performed using the DESeq2 pack-

age.30 Only significantly and differentially expressed (upregulated/

downregulated) genes between a serum condition and native were

considered and were defined at the cut‐off values of |log2(fold

change)| > 1 and P < .05 (Figure 3C). Exclusively differentially ex-

pressed genes met these requirements in one experimental group

and not in the other. Subsets of significantly and differentially ex-

pressed genes were functionally enriched within the gene ontology

domain “Biological process” using the Kyoto Encyclopedia of Genes

and Genomes (KEGG) database.

2.3 | Harvesting and culture of TDCs

TDCs were harvested from the tails of thirteen 7 to 9‐week‐old C57BL/

6J mice that were euthanized as untreated control for other, unrelated

experimental studies. When all tissues, as described in the respective

permits, had been harvested, the tails were collected, and tendon fas-

cicles were isolated as described above. The ECM was dissolved using

sterile‐filtered 3mg/mL collagenase IV (Gibco 17104019) in PBS for

4 hours at 37°C. TDCs were either lysed for gene expression analysis

directly after tissue digestion as freshly isolated TDCs controls (pooled

from two mice) or resuspended and expanded in complete growth

medium, consisting of HG‐DMEM (Gibco 42430‐025) supplemented

with 10% FBS (Greiner Bio‐One 758073/Bovogen SFBS), 1% penicillin‐
streptomycin (Lonza DE17‐602E), and 1% nonessential amino acids

(Gibco 11140‐035). Resuspended TDCs were seeded at 10 000 cells/cm2

in culture flasks coated with 50 µg/mL collagen I (Corning 354236) in

PBS for 2 hours. The cells were cultured under standard conditions and

passaged 1:3 every 3 to 4 days. Experimental readouts were performed

at passage 4 (p4): TDCs were seeded on two‐dimensional (2D) sub-

strates and grown to sub‐confluency in complete growth medium (re-

ferred to as day 0; Figure 1). At day 0, the culture medium was switched

to complete growth medium, with or without 10% FBS for 7 days. To

differentiate the effect of serum‐free medium from culture duration

while preventing over‐confluency when using FBS, cells were not

F IGURE 1 Schematic overview of experimental setup. Complete fascicles were cultured for 6 days in serum‐rich (+FBS) or serum‐free (−FBS)
medium. mRNA was sequenced, cell viability was determined, and both readouts were compared to freshly isolated fascicles (“native fascicles”). TDCs
were expanded in +FBS medium, and at sub‐confluency in passage 4 (day 0) medium was switched to +FBS or −FBS medium. Gene expression, cell

viability, and functional intercellular communication were monitored over time, and gene expression was compared to TDCs directly after fascicle
digestion (“native TDCs”). 2D, two‐dimensional; ECM, extracellular matrix; FBS, fetal bovine serum; mRNA, messenger RNA; qPCR, quantitative
polymerase chain reaction; TDCs, tendon‐derived cells [Color figure can be viewed at wileyonlinelibrary.com]
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consecutively cultured in serum‐rich medium for 7 days, but mediumwas

re‐supplemented with FBS for 2 days after 7 days serum deprivation

(Figure 1).

2.4 | Microcontact printing

Collagen I patterns for controlling cell morphology and orientation

were created using microcontact printing as described before.31

Briefly, 15 × 15mm polydimethylsiloxane (PDMS; Dow Corning Syl-

gard 184) stamps were made, with either 10 µm wide lines and 10 µm

spacing, or a “fishing net” structure with 5 µm wide lines and 10 µm

spacing (Figure 2A1‐B1). These corresponded to aligned and random

cell morphologies, respectively, with similar collagen I‐covered sur-

face areas for cell attachment in both patterns (±50%).

Substrates were prepared by spin‐coating PDMS on coverslips,

and curing overnight at 65°C. In all, 50 µg/ml collagen I in PBS was

adsorbed onto the stamps for 1 hour, and meanwhile the substrates

were hydrophilized with UV‐Ozone for 8minutes. The stamps were

blow‐dried with compressed air, gently pressed onto the substrates,

and collagen was transferred for 15minutes. Stamps were removed,

substrates were washed 3× with PBS, and nonprinted areas were

blocked with 10mg/mL Pluronic‐F127 (Sigma P2443) in PBS for

5minutes. Finally, the substrates were washed for 5 minutes with

PBS and stored in PBS at 4°C until further use.

2.5 | Quantitative polymerase chain reaction

TDCs (pooled from two mice) seeded on the microcontact printed pat-

terns were grown to sub‐confluency in complete medium for 3 days. This

moment of sub‐confluency is referred to as day 0 after which the culture

medium was switched to serum‐free or serum‐rich HG‐DMEM or low‐

glucose DMEM (Gibco 22320‐022). TDCs were lysed in RLT buffer di-

rectly after tissue digestion (“native TDCs”) and at days 0, 1, 7, or 9

(Figure 1), pooling up to four substrates to one sample. Total RNA was

isolated using the RNeasy mini Kit (Qiagen 74106) and cDNA was syn-

thesized using Moloney Murine Leukemia Virus reverse transcriptase

(Invitrogen 28025‐013). Quantitative polymerase chain reaction (qPCR)

primer sequences were obtained from literature or Primer‐BLAST,32

checked for specificity using Primer‐BLAST, and for proper efficiency

using positive control mRNA dilution series. Sequences of primer sets

(Sigma‐Aldrich) that passed all tests are listed in Table 1, and corre-

sponding details are given in Supporting Information Table S1.

For gene expression analysis, cDNA samples were diluted 60× in

ddH2O, and cDNA amplification was measured in the CFX 384

Thermal Cycler (BioRad) for 40 cycles, using corresponding iQ SYBR

Green Supermix (BioRad 1708886). Ct‐values were normalized to the

mean Ct‐values of housekeeping genes Rpl4 and Rps29 and native

TDCs (Figure 1).

2.6 | Cell viability

Cell viability was assessed from fascicles of six different mice as

previously described,17 and in adherent TDCs (pooled from nine

mice). A detailed description of both methods is provided in the

Supporting Information.

2.7 | Fluorescence recovery after photobleaching

Intercellular communication was examined on randomly oriented

TDCs (pooled from two mice) using fluorescence recovery after

photobleaching (FRAP).33 Details are provided in the Supporting

Information.

F IGURE 2 TDC morphology and
orientation were controlled using

microcontact printed collagen I patterns.
Schematic of aligned (A) and random (B)
microcontact printing patterns (1), with
collagen I printed surfaces in gray and

Pluronic‐F127–coated surfaces in black.
Microcontact printed substrates with collagen
I fluorescently stained in green (2) and

resulting phase contrast microscopy images of
seeded TDCs (3). All sizes are given in
micrometers. TDCs, tendon‐derived cells

[Color figure can be viewed at
wileyonlinelibrary.com]
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3 | RESULTS

3.1 | Phenotypic drift of cells in tendon explants is
more pronounced in serum‐rich medium

To evaluate the impact of serum on the phenotypic drift of tendon

cells within their native ECM, murine tail tendon explants were cul-

tured in serum‐free or serum‐rich medium. Differential gene ex-

pression of tendon explants was assessed between native, freshly

isolated, and cultured tail fascicles (Figure 1).

The number of differentially expressed genes compared to

native was higher in tendon fascicles cultured with serum than in

the serum‐free condition at all cut‐off values (Figure 3A). Based on

expression of the 100 most active genes in native tendon tissue

(Supporting Information Table S2), drastic phenotypic drift was

observed in both the serum‐free and serum‐rich condition

(Figure 3B). Strikingly, most of the tendon‐specific markers (Tnmd,

Scx, Col1a1, Col1a2) were downregulated exclusively in the serum‐
rich condition (Figure 3D and Supporting Information Table S3).

This suggests a strong phenotypic drift away from the tenogenic

lineage due to the serum‐rich environment. Genes upregulated

exclusively in the serum‐rich condition comprised several

vasculature‐ (eg, Wnt7b, Hif1a), immune system‐ and inflammatory‐
associated markers (eg, Nfkb2, Il1a, Il20, Cxcl1, Hmgb2, Mmp1) and

interestingly also the tendon marker Tenascin C (Tnc) (Supporting

Information Table S3). Gene ontology analysis of these genes

further indicated activation of processes related to proliferation,

angiogenesis, inflammation, and immune response (Supporting In-

formation Table S4). Genes regulated exclusively in the serum‐free
condition included ECM (modulating) proteins (eg, Col3a1, Col6a5,

Acan, Lox, Postn) and growth factors (eg, Tgfa, Fgf2) (Supporting

Information Table S5) involved in different biosynthetic processes

(Supporting Information Table S6). Overall, 1428 genes were sig-

nificantly regulated, exclusively in the serum‐rich condition and 952

genes exclusively in the serum‐free condition, compared to native,

but the majority of the genes significantly regulated relative to

native (3775) were not exclusive, and thus in both the serum‐rich
and serum‐free conditions. However, genes deviating less from

native in serum‐free compared to serum‐rich conditions comprised

tendon‐specific (eg, Dcn, Fmod) and several inflammation‐
associated (eg, multiple Mmps, Il1b, Il11, Ccl2, Cxcl12) genes

(Figure 3E and Supporting Information Table S7).

TABLE 1 qPCR primer sequences Marker Gene F/R Primer (5′ to >3′)

Tenogenic Tenomodulin (Tnmd) F GCGATAATGTGACCATGTACTG

R GTCTTCTCCACCTTCACTTGC

Scleraxis (Scx) F GTTGAGCAAAGACCGTGACAG

R CCGTGACTCTTCAGTGGCAT

Tenascin C (Tnc) F TATCTGGTGCTGAACGGACTG

R CGGTTCAGCTTCTGTGGTAG

Tendon ECM Collagen I, α1 (Col1a1) F AGCACGTCTGGTTTGGAGAG

R GACATTAGGCGCAGGAAGGT

Collagen III, α1 (Col3a1) F CACGTAAGCACTGGTGGACA

R AGAAGTCTGAGGAATGCCAGC

Decorin (Dcn) F GAGGGAACTCCACTTGGACAAC

R CCAGCTCGGCAGAAGTCATT

Myogenic α‐Smooth muscle actin (Acta2) F GTGATCACCATTGGAAACGAAC

R GCATAGAGATCCTTCCTGATGTC

Fibrogenic Connective tissue growth

factor (Ctgf)

F CAAGGACCGCACAGCAGTTG

R AGAACAGGCGCTCCACTCTG

Osteogenic Alkaline phosphatase (Alpl) F GCAATGAGGTCACATCCATC

R CTCTGGTGGCATCTCGTTATC

Adipogenic Fatty acid‐binding protein 4

(Fabp4)

F GATGAAATCACCGCAGACGAC

R CCAGCTTGTCACCATCTCGTT

Housekeeping gene Ribosomal protein L4 (Rpl4) F CTTCGCCAGGCCAGAAATCA

R TCTCGGATTTGGTTGCCAGTG

Ribosomal protein S29

(Rps29)

F CACGGTCTGATCCGCAAATACG

R GCATGATCGGTTCCACTTGGTA

Abbreviations: ECM, extracellular matrix; F, forward; qPCR, quantitative polymerase chain reaction;

R, reverse.
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Cells showed comparable viability in native fascicles and serum‐free
conditions, whereas cell number and viability were increased after 6 days

of culture in the serum‐rich group (Supporting Information Figure S1A).

In summary, tendon tissue explant culture drastically changes

cellular phenotype, and a serum‐rich environment exacerbates this

phenotypic drift.

3.2 | Serum deprivation for 7 days nearly restores
native levels of phenotype marker genes in TDCs

We next aimed at assessing the phenotypic drift in cultured TDCs

compared to native TDCs (lysed directly after tissue digestion) when cells

were decoupled from their native ECM (Figure 1). Therefore, expression

of phenotypic marker genes found to be relevant in the explant cultures

was quantified in 2D expanded TDCs, in response to up to 9 days culture

on random substrates in serum‐rich or serum‐free medium. Comparison

of normalized read counts of native tendon fascicles and ΔCt values of

native TDCs showed strong correlation (R2 = 0.91), indicating that cell

isolation from the fascicle alone did not drastically affect gene expression

in TDCs (Supporting Information Figure S2).

Strong phenotypic drift was observed in the expanded TDCs in

serum‐rich medium, which was indicated by an impressive deviation

from native gene expression levels (fold change = 1) for Tnmd, Tnc,

Col1a1, Dcn, Acta2, and Fabp4 at day 0 (Figure 4). All of the above‐
mentioned genes were regulated toward native levels in serum‐free
medium after 1 day of culture except for Col1a1 and Fabp4, which

remained similar to serum‐rich conditions. Only Ctgf and Col3a1 di-

verged from native levels without serum, while remaining at original

levels in serum‐rich medium. Upon 7 days in serum‐free medium, Acta2

and Col1a1 remained stable compared to day 1. Scx varied over time,

but did not show a clear serum‐dependency. Tnmd, Tnc, and Fabp4

continued to converge toward native levels, whereas the fold changes

for osteogenic marker Alpl dropped below 1 (Figure 4 and Supporting

Information Figure S3). Remarkably, Tnmd gene expression increased

almost 100‐fold upon 7 days serum deprivation.

Strikingly, gene expression levels of Tnc, Dcn, and Acta2 nearly

approached levels of day 0 cells within 2 days after switching the

medium back to serum‐rich in serum‐deprived samples. In the same

time span, Tnmd dropped 10‐fold, compared to day 7 (Figure 4).

3.3 | The effects of morphology and glucose level
on TDC phenotype are negligible compared to serum
concentration

To assess whether confining TDCs to an elongated morphology fur-

ther rescues gene expression toward native levels, murine TDCs

were seeded on random and aligned microcontact printed collagen I

substrates. Figure 2A3‐B3 confirms that TDCs seeded on these

substrates adapted their morphology to the patterns. All changes in

gene expression were shown to be independent of cell orientation

(Supporting Information Figure S4).

To rule out any gene modulatory effect of the high glucose level

in the culture medium, gene expression levels of in vitro TDCs were

assessed in high‐ and low‐glucose DMEM. No phenotypic recovery in

low glucose levels was detected (Supporting Information Figure S4).

3.4 | Serum deprivation slightly affects cell viability
and does not affect intercellular communication

TDC viability in serum‐rich and serum‐free conditions was assessed.

Number and percentage of live cells dropped approximately 25%

upon 7 days serum deprivation, resulting in a similar distribution as in

native and serum‐deprived fascicles. Remarkably, many cells died

when serum was added after 7 days serum deprivation (Supporting

Information Figure S1B).

F IGURE 3 Serum induced phenotypic drift of tenocytes in tendon explants. RNA sequencing of native and explanted murine tail tendon
fascicles cultured in serum‐rich (+FBS) or serum‐free (−FBS) medium. A, Number of significantly regulated genes (P < .05) between explant

cultures and native tendon fascicles at various fold change cut‐off values. B, Heatmap of the 100 most highly expressed genes in native tendon
according to the highest average normalized raw read counts. Depicted are normalized raw read counts of native fascicles and explants,
cultured in serum‐rich or serum‐free medium. The heatmap is arranged using unsupervised hierarchical clustering in which columns and rows

are grouped by similarity. Raw read count values of each gene (row) are separated by color using z‐score transformation, where positive and
negative row‐scaled z‐scores are represented in brown and yellow, respectively. The z‐score indicates how many standard deviations the raw
read count deviates from the mean of all the raw read counts in a row. C, Grouping of significantly and differentially regulated genes according

to the selection criteria |log2(fold change)| > 1 and P < .05. D, Volcano plots showing the number of exclusively regulated genes between +FBS
and native (red) or −FBS and native (blue) with the P‐value plotted against the |log2(fold change)| of +FBS vs native (right) or |log2(fold change)|
of −FBS vs native (left). E, A total of 3775 significantly regulated genes in both conditions (+FBS and −FBS) when compared to native tissue
(nonexclusive, displayed in purple in (C)). Triangles I and II show genes that are upregulated compared to native, whereas triangles III and IV are

downregulated when compared to native. Genes with a blue background (triangles I and IV) benefit from serum‐free conditions by being
regulated more toward native levels, when compared to serum‐rich conditions. Genes with a red background (triangles II and III) are regulated
more toward native levels due to the serum‐rich conditions, compared to the serum‐free conditions. The diagonal black line represents genes

that are equally regulated in +FBS and −FBS conditions, compared to native. Indicated gene abbreviations in (D) and (E) are all upregulated and
downregulated genes of the top 100 most highly expressed genes in native tendon, as shown in (B). Genes that were investigated in the follow‐
up cell culture experiments (see next paragraph) are highlighted in bold. n = 3, each n represents an independent pool of 20 fascicles from one

mouse. FBS, fetal bovine serum [Color figure can be viewed at wileyonlinelibrary.com]
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To rule out differences in cell connectivity, we examined gap

junction functionality—an important functional hallmark of tenocytes

—by FRAP. We compared TDCs expanded in serum‐rich medium

(day 0) and after 7 days of serum deprivation on random substrates.

Serum deprivation did not abolish fluorescence recovery in serum‐
deprived TDCs, indicating that functional intercellular communica-

tion was maintained (Supporting Information Figure S5).

Altogether, in these 2D experiments, serum‐rich medium in-

duced strong deviations from native gene expression levels, whereas

7 days of serum deprivation appeared to reverse this phenotypic

drift, particularly for the tenogenic marker and tendon ECM genes

(as classified in Table 1). No large adverse effects on TDC viability or

functionality were found. The impact of cell morphology and glucose

level appeared negligible in this system (Table 2)

4 | DISCUSSION

The relevance of in vitro tendon culture models is compromised by

phenotypic drift of tendon‐derived cells, in response to high serum

levels and random cell morphology.18,21‐23 While previously pheno-

typic properties were compared between cultured cells in different

passages19,21 or various culture conditions within the same passage

number,18,22,23,25 quantification and comparison of phenotypic drift

in tendon culture models with respect to native tissue and TDCs was

scarcely described.34 In this study, we explored the phenotypic drift

of tendon cells by stepwise reduction of model system complexity

using first explanted tendon fascicles with preserved native three‐
dimensional (3D) ECM and then expanded TDCs on 2D substrates.

Using these model systems, we investigated whether native cell

F IGURE 4 Gene expression of expanded TDCs (p4) cultured in serum‐rich and serum‐free medium on random substrates for 7 days after the
moment of sub‐confluency (day 0), compared to freshly isolated TDCs (fold change = 1). After 24 h, serum deprivation had a “rescuing” effect on
phenotype marker genes (Tnmd, Tnc, Dcn, Acta2) in TDCs that were expanded in serum‐rich medium. Tendon‐specific phenotypic markers were

almost restored to native levels in p4 TDCs after 7 days of serum deprivation, and this effect was counteracted by serum supplementation for
2 days. n = 2. TDCs, tendon‐derived cells [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Expression and significance of

selected tendon‐specific markers for
explanted fascicles in the +FBS and −FBS
culture conditionGene

+FBS −FBS

P‐value
log2(fold
change) P‐value

log2(fold
change)

Biglycan (Bgn) .001 0.57 .90 −0.02

Collagen I, α1 (Col1a1) 6.35 × 10−18 −3.10 .11 0.61

Collagen I, α2 (Col1a2) 3.32 × 10−22 −3.40 .86 0.07

Decorin (Dcn) 2.61 × 10−12 −1.76 8.03 × 10−5 −1.13

Mohawk homeobox (Mkx) .004 −0.91 .72 −0.10

S100 calcium binding protein

(S100a4)

4.49 × 10−10 −1.51 .002 −0.79

Scerlaxis (Scx) 3.03 × 10−14 −3.53 .01 −0.81

Tenascin C (Tnc) .01 1.25 .36 1.04

Tenomodulin (Tnmd) 7.45 × 10−30 −4.16 .01 −0.82

Thrombospondin 4 (Thb4) .11 −0.48 9.34 × 10−16 −1.95

Abbreviation: FBS, fetal bovine serum.
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microenvironment of tendon explants, serum deprivation, or elon-

gated in vitro TDC morphology could limit the loss and stimulate the

restoration of tenogenic phenotype in tendon cell culture systems.

Transcriptome analysis of tendon fascicle explants cultured in

serum‐rich vs serum‐free medium—mimicking pathologically vascu-

larized vs limitedly nourished healthy tissue, respectively—showed

that tissue explant culturing downregulated the most highly ex-

pressed tendon genes, and that serum‐rich medium aggravated this

phenotypic drift. Serum supplementation directed tendon explant

cells to an active, inflammatory phenotype, whereas serum‐
deprivation stimulated biosynthetic processes. This might explain the

difficulties in resolving tendinopathy, that is, soluble blood factors

increase after local damage, directing cells in healthy areas toward

inflammation and thereby possibly aggravating tendinopathy.

Next, using microcontact printed collagen I patterns—providing

the most prominent substrate molecule in healthy tendon tissue, but

without an out‐of‐plane structural component—we decoupled the

influence of native cell‐matrix contacts from the bioactive effect of

serum and matched the purely 2D structure of regular expansion

cultures. TDCs experienced a significant phenotypic drift upon in

vitro expansion in serum‐rich medium similar to—but stronger than—

the explant model (eg, Tnmd: 0.002‐fold vs 0.05‐fold). This indicates

that intact tissue architecture tends to alleviate phenotypic drift.

Serum deprivation revealed a highly dynamic serum‐responsive
nature of TDCs, which is independent of cell morphology and glu-

cose concentration: tendon‐specific genes (Tnmd, Dcn, Tnc) con-

verged or even fully recovered toward native levels upon serum‐
deprivation, while subsequent serum supplementation reversed gene

expression changes induced by serum deprivation. Serum deprivation

slightly decreased cell viability—remarkably more closely resembling

native fascicles than serum‐supplemented cultures.

In both culture models (explants or in vitro TDCs) native gene ex-

pression levels were highly similar, and all measured genes showed the

same differential gene expression patterns for the serum‐free and serum‐
rich conditions compared to the native controls, except for Scx, Acta2,

Col1a1, and Fabp4. This indicates that cues from serum‐derived factors

override matrix‐integrity cues for these genes. The fascicle explant is

expected to provide lower substrate stiffness than in vivo tendon,

whereas the thin PDMS film on glass in vitro is expected to be stiffer.

Proposedly, this relates to the mechanosensitive nature of certain dif-

ferentially regulated genes in the explant vs the TDC culture, like Scx,35

which was downregulated in the free‐floating fascicle and constantly

expressed in vitro. Similarly, Acta2 equilibrates cytoskeletal tension to

substrate stiffness,36 and was decreased in the load‐deprived, lower
substrate stiffness explant culture. The constant, serum‐independent,
Col1a1 expression in vitro may be ascribed to the absence of ascorbic

acid in the culture medium, which is essential for collagen transcription.37

Technical feasibility of the experiments and ethical concerns

required expansion of TDCs until passage 4. During this cultivation

period certain cellular subpopulations were possibly selected, which

may additionally explain differences between the 2D and 3D model

systems. Besides that, the collagen coating of the substrates in all

passages may have influenced proliferation of certain TDC

subpopulations.38,39 Collagen I coating has been shown to promote

TDC adhesion, proliferation,40 and elongated morphology,41 and the

ability of the TDCs to adhere to collagen was essential due to

the performed cell patterning method with collagen substrates.

Moreover, we cannot conclusively ascribe the observed phenotypic

dynamics to more proliferative cellular subpopulations or transdif-

ferentiation. Considering the phenotypic shift observed after a

relatively short culture period of 1 day in a serum‐free (non-

proliferative) environment, we speculate that transdifferentiation is

the driving mechanism.

Despite abundant literature describing the negative influence of FBS

or some of its components (eg, bone morphogenetic proteins, trans-

forming growth factor‐β, platelet‐derived growth factor, fibroblast

growth factor) on tenocyte‐like phenotype,18 the underlying mechanism

has not been elucidated. There is however reason to believe that xe-

nogenic serum may result in an unnatural cell behavior and protein

release pattern,42 possibly by differences in epigenetic patterns and

resultant differentiation potential of stem cells according to the use of

autologous or xenogenic serum.43 However, for practical and financial

reasons FBS is currently the standard in cell culture experiments, making

our culture conditions a proxy for the numerous tendon cell culture

experiments that use FBS. It remains to be shown that the use of au-

tologous serum is more beneficial for tenogenic phenotype expression.

We speculate that high serum levels in vitro, resembling neovascu-

larization in vivo, may induce a switch in tenocytes toward a more active,

metabolic, inflammatory phenotype (supported by our ontology analysis),

analogous to tendinopathy, and similar to cells that crossed the “meta-

bolic tipping point,” which recruit extrinsic tissue compartments to heal

the damaged tissue.1 Strikingly, Tnmd—the gene that was most affected

by serum—has an anti‐angiogenic role in (healthy) tendons.44 This implies

a positive feedback loop of low tissue vascularization promoting Tnmd

expression, which in turn prevents angiogenesis. On the other hand, Tnc

might be a pro‐angiogenic factor, which was increased in the vascularized

(serum‐rich) model and is similarly found in blood vessel‐infiltrated ten-

don tissue.3

The serum‐induced phenotypic drift during in vitro cell expan-

sion appears to be reversible by serum deprivation. This is a simple

and effective procedure to obtain a large number of tenocyte‐like
cells for in vitro studies, compared to mechanical, topological, bio-

logical, or biochemical stimuli that are currently applied to induce

tenogenic differentiation of stem cells or maintaining phenotype in

primary TDC expansion.15,26

Previously, cell alignment has been shown to increase

tenogenic markers (eg, Tnmd: 80‐ to 200‐fold) during stem cell

differentiation,22,23,45 although this effect was not detected

consistently.24 However, the increase in tenogenic markers upon

cell alignment in primary TDCs rarely exceeds 5‐ to 10‐fold,21,25,45

similar to our results.

The options and boundaries of serum deprivation as experi-

mental phenotypic drift‐limiting method need to be further de-

termined. Firstly, prominent tendon markers Col1a1 and Tnmd did

not completely recover to native levels in this research, but expres-

sion of these genes can potentially be stimulated biochemically with
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ascorbic acid or additional bioactive stimuli.46 Secondly, all in vitro

readouts in this research were performed at p4. However, pheno-

typic drift may also be reversible at higher passages, which would be

ethically favorable due to a maximized cell yield per animal, reducing

the number of animals sacrificed for in vitro tendon research. Thirdly,

with qPCR and RNA sequencing, the most important readouts in this

research focused on gene expression levels. These are indicators—

but no direct measures—for protein production, cell behavior, and

phenotype.47 However, “alterations in (…) gene expression” are ex-

plicitly mentioned in the definition of phenotypic drift,15 justifying

the choice for these readouts. It is important to consider that gene

expression analysis by transcriptomics and qPCR requires a certain

level of mRNA production to exceed the detection limits. Serum

starvation decreases the production of mRNA27 and therefore re-

quires high numbers of cells in order to guarantee feasibility of the

readout. The clinical implications need to be explored as well. Despite

the fact that rodent animal models of (tendon) tissue repair can de-

viate from human system behaviors,48 for instance in immune system

involvement during healing,49 an impressive phenotypic plasticity is

observed in both murine and human TDCs.50 This arguably gives

confidence for the clinical translatability of the presented findings in

the search for an established tendinopathy treatment. Improving

properties of tendinopathic cells and tissues by controlling vascu-

larization —analogous to serum deprivation in this research pro-

moting a healthier tenocyte‐like phenotype—might be a potential

path to follow in the quest for a clinical tendinopathy treatment

aiming at (partial) tissue recovery.

In summary, this study quantified the phenotypic drift away from

native gene expression in different tendon culture models revealing an

extremely dynamic phenotype of tendon cells. It provided a valuable

set of tendon maker genes that contributed to the further char-

acterization of the underresearched tendon tissue. We conclude that

serum supplementation exacerbates phenotypic drift in tendon tissue

explant and in vitro cell culture systems, and overrides cues from ECM

integrity, cell orientation, and morphology. Serum deprivation limits

phenotypic drift in cells of explanted tendon tissues, reverses it after in

vitro expansion, and therefore represents a method to potentially in-

crease physiological relevance of in vitro studies.
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