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a b s t r a c t

Sub-cellular mechanics plays a crucial role in a variety of biological functions and dysfunctions. Due to
the strong structure-function relationship in cytoskeletal protein networks, light can be shed on their
mechanical functionality by investigating their structures. Here, we present a data-driven approach
employing a combination of confocal live imaging of fluorescent tagged protein networks, in silico
mechanical experiments and machine learning to investigate this relationship. Our designed image pro-
cessing and nanoFE mechanical simulation framework resolves the structure and mechanical behaviour
of cytoskeletal networks and the developed gradient boosting surrogate models linking network struc-
ture to its functionality. In this study, for the first time, we perform mechanical simulations of
Filamentous Temperature Sensitive Z (FtsZ) complex protein networks with realistic network geometry
depicting its skeletal functionality inside organelles (here, chloroplasts) of the moss Physcomitrella patens.
Training on synthetically produced simulation data enables predicting the mechanical characteristics of
FtsZ network purely based on its structural features (R2 P 0:93), therefore allowing to extract structural
principles enabling specific mechanical traits of FtsZ, such as load bearing and resistance to buckling fail-
ure in case of large network deformation.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Bio-polymer networks are pervasive as key promoters of
strength, support and integrity. This is true irrespectively of their
scale, i.e., from the nano-scale of the cytoskeleton to the macro-
scale of connective tissues. As cells sense external physical signals
and translate them into a cellular responses, cellular mechanics
has been proven to be crucial for a wide range of biological func-
tions and dysfunctions. In particular cytoskeletal protein networks
exhibit strong structure-function relationships, e.g., the role of
microtubule network during mitosis [1], cell movement with the
help of actin assembly/disassembly [2] or utilizing intermediate
filament networks for stabilizing mechanical stresses [3]. In all
these processes protein networks transmit besides biochemical
also biophysical cues from the cell microenvironment that trigger
and regulate cell behaviors. Investigating the structure of protein
networks allows deeper insights into cellular functionality and
dysfunctionality and may further elucidate many critical cell
responses observed in vivo. Understanding these cellular responses
in 3D may further lead to the development of functional and bio-
mimetic materials [4] for engineering the 3D cell microenviron-
ment able to control cell behaviors in 3D and may advance the
fields of tissue regeneration and in vitro tissue models.

In the recent decades, taking advantage of new methodological
developments in experimental and computational physics and
applying them to biological systems allowed substantial progress
in elucidating particular mechanical phenomena to biological func-
tion. It have shown that mechanical processes convey biochemical
signals and are therefore crucial for cell functions including
proliferation, polarity, migration and differentiation. Further,
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connections between the mechanical properties of cells and initia-
tion and pathological progression of cancer were established [5,6].
Mendez et al. and Liu et al. showed that the epithelial-to-
mensenchymal transition (EMT) leading to cancer metastasis are
linked to changes in mechanical characteristics of the cytoskeleton
influencing the vimentin network [7,8] as well as the polarity of
the cell [9]. Moreover, cancer cells are typically found to be softer
than normal cells. A decrease in the level of actin in the cytoskele-
ton of cancerous cells was linked to changes in the mechanical
properties of the cell [10]. Such research underpins the importance
of linking molecular changes within the cytoskeleton to structural
and functional changes of the entire cell and therefore changes to
the tissue.

In summary, in-depth knowledge of cellular and sub-cellular
mechanics might allow the identification and classification of cells
at different physiological and patho-physiological stages. However,
to do so, new approaches need to be developed that are capable of
simultaneously performing structural and mechanical analysis of
sub-cellular structures in a (semi-) automated way. Mechanical
stability and its contribution to shaping processes on the molecular
scale are far from being completely understood. Further, it is not
clear, if mechanical processes, besides conveying biochemical sig-
nals, also purely convey mechanical signals to invoke structural
changes. The concept of the cytoskeleton as a shape-determining
scaffold for the cell is well established [11], however, the tight cou-
pling of actin, microtubule and intermediate filament networks
impedes a separate analysis. To date, computer models of
cytoskeletal biopolymer networks are based on models that repre-
sent the geometry in a (strongly) simplified way [12–16]. In depth
analysis of structure-function relationships, however, require
detailed structural and functional modelling.

Development of such models requires a protein network with
similar structural functionality to cytoskeletal networks while
being structurally less complicated, therefore allowing a detailed
validation of the derived results. Proteins homologous to tubulin,
which is part of the eukaryote cytoskeleton, such as the Filamen-
tous Temperature Sensitive Z (FtsZ) protein family in the chloro-
plasts of the moss Physcomitrella patens are excellent examples
for this purpose. FtsZ generates complex polymer networks, show-
ing striking similarity to the cytoskeleton, and hence were named
plastoskeleton [17]. In bacteria, FtsZ is a part of the bacterial
cytoskeleton providing a scaffold for cell division [18–20].

The genome of Physcomitrella patens encodes three subclades
breaking down into five isoforms naming FtsZ1-1, FtsZ1-2, FtsZ2-
1, FtsZ2-2 and FtsZ3 [21,22]. Utilizing reverse genetics, different
essential functionality of the two main classes of FtsZ isoforms
(FtsZ1 and FtsZ2) were observed [23]. It has been shown that dur-
ing evolution, functional characteristics of the FtsZ isoforms has
diverged [23]. Coassembly experiments provide evidence that
FtsZ2 controls filament morphology and FtsZ1 promotes protofila-
ment turnover. It is suggested, that in vivo, FtsZ2 forms the chloro-
plast Z-ring backbone while FtsZ1 facilitates Z-ring remodeling
[24]. These differences in functionality of the FtsZ isoforms point
towards existence of distinguishing structural traits between these
two isoforms. Moreover, as chloroplasts in loss-of-function
mutants show distinct shape defects, FtsZ networks might provide
scaffolds that ensure the stability and structural integrity of the
chloroplast [25]. Additionally, gene knock-out experiments have
shown that the FtsZ network is capable of undergoing large defor-
mations upholding its structural integrity [23]. This adaptive sta-
bility is presumably linked to the developed structural
characteristics of FtsZ network; making the cytoskeletal FtsZ net-
work an ideal first application for introducing and testing a
simulation-based method that aims at identifying a link between
structural features of a cytoskeletal network and its mechanical
functions.
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To date, investigating the characteristics of FtsZ isoform net-
work structure has been mostly carried out in form of visual
inspection and description [24,26]. We have previously developed
a framework for quantitatively describing the structure of
cytoskeletal protein networks [27] and utilized it to compare the
FtsZ1-2 and FtsZ2-1 network structures [28]. As the next step,
automatically finding the distinguishing characteristics of these
two isoforms and linking their structural features to their func-
tional characteristics may shed light on the manifestation of func-
tionality in the network structure. State-of-the-art microscopy
imaging techniques permit resolving micro-structural details of
protein networks. Computational analysis of acquired images facil-
itates the quantification of components and its assembly to net-
works [27], and may allow tracking structural changes of the
network assembly triggered by internal or external stimuli, i.e.,
connecting the structure to functionality or distinguishing
between network types [28]. Machine learning (ML) algorithms
have proven to be remarkably capable of automating such complex
image analysis tasks [29] and of correlating image content to bio-
logical structural functionality [30–32]. Recently, the concept of
ML-based surrogate models has proven to be highly advantageous
in accelerating the performance of numerical simulations of com-
plex mechanical environments [33] as well as predicting material
properties [34]. A ML-based approach could link structural features
to mechanical characteristics and would provide a way to answer
questions like ‘‘How are FtsZ biopolymers capable of exhibiting
adaptive stability?” or ‘‘Interplay of which structural changes in
the cytoskeleton of a cancerous cell leads to adapting stiffness?”

To overcome the challenge of relating structure to function of
cytoskeletal protein networks, we present an ML approach applied
to 3D live laser scanning confocal microscopy images. The outcome
is an end-to-end tool that links structural features associated with
the cytoskeletal network type to its mechanical behaviour and
therefore enables a fast evaluation of structure-function relations
on the sub-cellular scale. This is carried out by combining an in sil-
ico mechanical characterization of protein networks through 3D
nano finite element modeling and an automatic mapping of struc-
tural features to the mechanical network responses. The intro-
duced method consists of two different models. The first model
classifies the respective protein networks based on their structural
features by exploiting an image processing and a gradient boosting
classification model. The second one creates an in silico surrogate
model to predict the sub-cellular mechanical responses of the net-
work. Analyzing the prediction process of the surrogate model
based on the structural feature allows us to deduct the presumed
structure-function relationship. The method is tested and applied
to elucidate isoform-specific structure-function relationships of
FtsZ networks.
2. Materials and methods

2.1. Materials

The ‘‘Gransden 2004” ecotype of the moss Physcomitrella patens
((Hedw.) Bruch & Schimp., IMSC accession number 40001) was cul-
tivated in bioreactors [35].
2.2. Molecular biology and moss transfection

RNA isolation, molecular cloning and moss transfection were
described previously in detail [27,28] and are therefore given here
only in a shortened version. Total RNA was isolated from wild type
Physcomitrella patens protonema using TRIzol Reagent (Thermo
Fisher Scientific) and used for cDNA synthesis using Superscript
III reverse transcriptase (Life Technologies, Carlsbad, CA, USA).
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The coding sequences of PpFtsZ1-2 and PpFtsZ2-1 were PCR-
amplified from this cDNA and cloned into the reporter plasmid
pAct5::Linker:EGFP-MAV4 (modified from [36]) to generate the
fusion constructs PpAct5::PpFtsZ1-2::linker::EGFP-MAV4 and
PpAct5::PpFtsZ2-1::linker::EGFP-MAV4. Moss protoplasts were
isolated and transfected with 50 lg of each of these plasmids,
according to the protocol described by Hohe et al. [37]. The trans-
fected protoplasts were incubated for 24 h in the dark, subse-
quently being returned to normal conditions (25:1 �C; light-dark
regime of 16 : 8 h light flux of 55 lmols�1 m�2 from fluorescent
tubes, Philips TL – 19-65W/25).
2.3. Laser scanning confocal microscopy imaging

In 4 – 7 days after transfection, the protoplasts were concen-
trated to a volume of 100 ll, and 20 ll of this protoplast suspen-
sion was used for imaging. Confocal laser scanning microscopy
(CLSM) images were taken with a Leica TCS SP8 microscope (Leica
Microsystems, Wetzlar, Germany), using the HCX PL APO
100x/1.40 oil objective and applying the microscopy conditions
described previously [27,28]. A selection of images visualising FtsZ
networks is depicted in Fig. 1a. To summarise, the zoom factor was
10.6, the voxel sizes were 21 nm in the X � Y dimensions and
240 nm in the Z dimension and the pinhole was adjusted to
0:70AU (66:8 lm). For the excitation, a WLL laser was applied at
488 nm with an intensity of 4%. The detection ranges were set to
503–552 nm for the EGFP fluorescence and 664–725 nm for the
chlorophyll autofluorescence. All images were deconvolved using
Huygens Professional version 17.04 (Scientific Volume Imaging,
The Netherlands). The effect of the deconvolution on the images
is illustrated in the Supplementary Materials. The imaging and
deconvolution protocol resulted in a dataset of n ¼ 37 3D CLSM
images (i.e., 21 FtsZ2-1 and 16 FtsZ1-2 isoforms). The chloroplast
morphology was not affected by exposure to the laser for the per-
iod of the Z-stack acquisition; hence, phototoxicity is negligible
(Supplementary Video).
2.4. Image processing to extract structural features

A set of 26 structural features describing the assembly of pro-
tein networks from global and local perspectives is extracted from
each network. Here, only a short description of the workflow steps
and features are given, details as well as a validation have been
reported previously [27].
2.4.1. Image pre-processing
Images are segmented using an adaptive local threshold,

T ¼ mþ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
NP

PNP
i¼1 pi �mð Þ2

q
, with NP ¼ 10 � 10 � 10 being the

local window size, m is the average pixel intensity in the window,
pi denotes the intensity of pixel i and k ¼ 10 as a constant value.
Next, by calculating the convex hull of the segmented network a
solid outer surface representing the volume enclosing the network
is determined. To extract the structural features of the network, a
transformation to a spatial graph consisting of points, nodes and
segments is performed. This transformation consists of following
steps: 1. determining the centerline of each filament based on cal-
culating a distance map for each foreground voxel from the edge
voxels, and 2. placing points at the centerline of the filaments
where either thickness or the direction of the filament changes.
The resulting hierarchy of structural elements of the spatial graph
reads as: 1. points, 2. elements as the connection between points,
3. nodes, as points that are connected to more than two other
points, 4. segments as summation of elements from one node to
another (filaments), 5. connections as the meeting points of fila-
2776
ments in a node. This numerical representative in form of a spatial
graph allows determining structural features (Fig. 1b).

2.4.2. Features describing 3D network
26 structural features are designed to quantitatively describe

the structure of the protein network from two perspectives
including overall network morphology and detailed network
structure. Seven shape descriptors, which are extracted by analyz-
ing the segmented network and its convex hull, quantitatively
describe the overall morphology of the network [27]. Moreover,
19 local structural features of the network are determined
employing a spatial graph generation method [27]. These consist
of nodal features, segment features and connection feature. The
designed features and their definitions are presented in table 1.
All morphological and structural features are calculated by a pre-
viously validated set of in-house Matlab codes (Matlab 2019a,
MathWorks, USA) [27].

2.5. Mechanical nano-FE modeling

To investigate the mechanical response of the protein net-
works to external load, we designed a generic in silico experiment
reflecting a compression against a plate, hence, a scenario that is
typically used to experimentally investigate the mechanical beha-
viour of whole cells [38]. To capture the overall mechanical
behavior of each network in a comparative manner, compression
tests along the three principal axis of each system were modeled
employing a nano-FE approach. All simulations were done with
the finite element analysis software Abaqus 6.14 (Dassault
Systémes, France). It is important to note that, the goal of this
setup is to depict the mechanical behavior of the protein network
morphology rather than replicating the real physical condition
and dynamics of the biopolymers in their biological roles. Such
a task would require consideration of highly complicated interac-
tions of the network with its surrounding, which are not com-
pletely understood to date.

2.5.1. 3D protein network model generation
For all samples, protein network surface meshes were defined

from the segmented images using a triangular approximation algo-
rithm coupled with a best isotropic vertex placement algorithm to
achieve high triangulation quality [39]. The surface area of the
resulting surface mesh was calculated and further remeshed using
nt ¼ qtAt triangles for the remeshed surface, where
qt ¼ 900 triangles=lm2

� �
is the constant surface mesh density and

At denotes the surface area. Furthermore, the remeshed surface
was smoothed by shifting the vertices towards the average posi-
tion of its neighbours. The enclosed surfaces were filled with volu-
metric tetrahedral elements, resulting in an adaptive multi-
resolution grid (Fig. 1b) using FEI Amira 6.3.0 (Thermo Fisher Sci-
entific, USA).

The principal directions of a network were determined based on
its convex hull and shape matrix. The eigenvectors of the shape
matrix (EV1; EV2 and EV3), which are orthogonal to each other,
represent the network’s principal directions, Vi (i ¼ 1;2;3). The
mesh is then transformed to the coordinate system spanned by
Vi. Afterwards, along each Vi, the pair of nodes exhibiting the lar-
gest distance in-between the two points and in the direction of
Vi were determined and named Ni1 and Ni2 and i ¼ 1;2;3,
respectively.

For each considered protein network, the geometry of the pro-
tein network was imported to Abaqus and three compression sim-
ulations (one per direction d) were carried out. For each
simulation, the initial set-up was determined by first identifying
the initial position of two parallel rigid plates, which are defined



Fig. 1. Correlating structure of FtsZ network to its mechanical functionality utilizing CLSM images. a) Sample 3D CLSM images of FtsZ1-2 and FtsZ2-1 networks in a cell (two
left images) and single FtsZ1-2 and 2-1 networks (two right images), respectively. b) Sample of a 3D segmented image and its spatial graph, convex hull and mesh. c) The 26
shape and element descriptors that are extracted and used as input features to train a gradient boosting model for classifying FtsZ1-2 and FtsZ2-1 isoforms. d) A second
gradient boosting model (regression) is trained on the structural features to predict the results of the mechanical simulation of compressing the network in its principal
directions (3 Eigenvectors determined from segmented images).
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for each simulation in direction d by its normal vector Nd1Nd2
����!

(with
d ¼ 1;2, or 3), and the respective nodal points Nd1 and Nd2 (cf.
Fig. 2a-c).
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2.5.2. Governing equations
The simulations were carried out by solving the balance of lin-

ear momentum,



Table 1
Definitions of the employed structural features describing the protein network
morphology.

Network gross morphology

Feature Definition
VEN volume of the convex hull
dmax
PN

greatest diameter of the network
VPN volume of the segmented protein network

dmin
PN

smallest diameter of the network

qPN network volume density
StPN stretch of the network
ObPN oblateness of the network

Detailed network structure

Feature Definition
Nn number of nodes
thn thickness of nodes
qn node density
dnn node-to-node distance
dns node-to-surface distance
dnc node-to-centre distance
Nop number of open nodes
CPN dnc � dnsð Þ=dnc

dns=dnc node-to-surface to node-to-center ratio
Ns number of segments
Ls segment length
js segment curvature
ths mean segment thickness
Is segment inhomogeneity
dpp segment point-to-point distance
noe percentage of open nodes
nc mean number of connections per node

h3 and
h4

mean angles between segments in a connection with 3and 4
filaments meeting

Fig. 2. Simulation setups. a–c) Initial set-up for virtual compression experiments of
a sample protein network in primary directions EV1, EV2 and EV3, respectively. d–f)
Stress distribution after applying a displacement (a ¼ 0:02) to the upper plate in
EV1, EV2 and EV3 directions, respectively. The displacements are scaled by a factor
of 5.
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q _v �r � r� qb ¼ 0; ð1Þ
in an explicit manner, where q is the mass density, v denotes the
velocity, r describes the Cauchy stress, and b are the body forces.
The contact between the protein network and the rigid plates was
chosen as a rough contact meaning that any two points, which
come in contact, will stick together (relative penetration tolerance:
1e� 3). The governing equation is discretized using the FE method,
tetrahedral elements and linear spatial Ansatz functions.

2.5.3. Boundary conditions
The generic boundary conditions for each simulation setup (one

simulation for each primary directions: EV1; EV2 and EV3) consist
of applying displacement boundary conditions at node Nd1 to
mimic compression experiments. The displacement itself is applied

in the EVd ¼ Nd1Nd2
����!

direction and in fractions (a) of the initial dis-

tance, kNd1Nd2
����!k, between the two plates (cf. Fig. 2). Therefore, the

amount of displacement along the respective Eigenvector EV1 is

defined by Ud ¼ a � kNd1Nd2
����!k.

To investigate anisotropy in the mechanical response of the net-
work, compression tests along all three primary directions were
performed and compared. Furthermore, for analyzing changes in
the structural behavior with increasing deformation grade, we
increased the displacement of the plate gradually in steps of
da ¼ 0:02. We applied a total of 10 steps, which is equivalent to
a ¼ 0:20. Due to no apparent significant differences in the mechan-
ical behaviour of the network between the three directions at
a ¼ 0:02 and the required computational resources, we chose to
focus only on one direction to continue the simulations for
a ¼ 0:02 ! 0:20.

2.5.4. Constitutive law and material parameters
Employing the concept of linear elasticity, the stress tensor r is

given by

r ¼ k tr �ð Þ Iþ 2l�; ð2Þ
where � denotes the strain tensor and I is the second-order identity
tensor. Further, k and l are the first and the second Lamé coeffi-
cients, respectively. The Lamé coefficients are related to Young’s
modulus E and Poisson’s ratio m by

k ¼ Em
1þ mð Þ 1� 2mð Þ ; l ¼ E

2 1þ mð Þ : ð3Þ

In classical continuum mechanics, the material parameters
(here k and l or E and m) are obtained by making a constitutive
assumption, i.e., selecting a particular phenomenological constitu-
tive law (here the form of rÞ and ensuring that the computed stres-
ses match the experimental ones. The mechanical behavior of
filamentous biopolymers is, however, commonly quantified by
means of the flexural rigidity, j [40–42], which is the force couple
required for one unit of curvature [43]. The flexural rigidity, j, is
defined as j ¼ EI, where I is the second moment of inertia. In the
context of protein filament mechanics, the flexural rigidity is calcu-
lated as j ¼ kBTlp, where kB ¼ 1:38� 10�23 J=K is the Boltzmann
constant, T defines the temperature, and lp denotes the correspond-
ing thermal persistence length. Recently, persistence length and
flexural rigidity of FtsZ filaments reported by Turner et al. as
j ¼ 4:7� 1:0� 10�27 Nm2 and lp ¼ 1:15� 0:25lm are commonly
employed [44,45]. The average thickness of filamentous elements
of the FtsZ network has been reported to be 117� 28nm [28].
Assuming circular cross sections, I equals 1:81� 10�29m4 [46].
Based on these values, we set within our simulations the elasticity
modulus to E ¼ 2:6� 102 Pa and the Poisson’s ratio to m ¼ 0:5, i.e.,
assuming incompressibility [47–49].
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2.5.5. Calculated mechanical parameters
We performed a total of 111 simulations (3 simulations per net-

work) on a CPU cluster with 32 cores (4 AMD Opteron Socket G34
Eight-Core 6328, 3.2 GHz, 8C, Abu Dhabi). One simulation took on
average 19� 7 hours (for the entire 20% compression).

To quantitatively assess the mechanical behavior of the protein
network isoforms, we determined four mechanical parameters
using NanoFE simulations. These four parameters consists of mean
mechanical stress (�r), mean mechanical strain (��), buckling failure
factor (FB) and rupture failure factor (FR). Stress represents the
internal forces that neighbouring particles of a continuous material
exert on each other, strain refers to the deformation of a material in
response to a mechanical loading. �r and �� are determined by aver-
aging the L1 norms of the von Mises stresses and principal strains
over the elements of the NanoFE model, respectively. FB and FR are
introduced to describe the mechanical failure behaviour of the pro-
tein networks. Since a local failure might not lead to a collapse of
the whole network structure, we define failure factors based on
the assumption that if a certain portion m of all elements
(m � nelem

all ) exhibit stresses or strains above the critical stress or
strain value, the whole structure will fail by buckling or rupture
of an individual or several segments, as shown for other biological
materials [50,38]. Since for protein networks, these threshold val-
ues have not been experimentally investigated yet, we report only
the portion of elements that exceed a particular critical stress or
strain value, i.e., the higher the values the higher the failure prob-
ability. We define the buckling failure factor as FB ¼ nelem

rcrit
=nelem

all , and

the rupture failure factor as FR ¼ nelem
�crit

=nelem
all , where nelem

all is the total

number of elements, nelem
rcrit

and nelem
�crit

are the number of elements
with stress and strain exceeding the critical buckling or rupture
values, respectively.

Cytoskeletal structures are reported to fail by buckling or rup-
ture [51]. We therefore, further analyzed the structural stability
of the network by calculating a buckling failure factor based on
critical stresses rcrit and a rupture failure factor based on critical
strains �crit . Buckling of a single filament is assumed to occur if local
von Mises stresses exceed a critical value. A filament is assumed to
rupture, if strains locally exceed a critical strain value. To our
knowledge, rcrit and �crit of FtsZ have not been measured to date.
However, despite fundamental structural differences, F-actin and
FtsZ show similar mechanical behavior. The rigidity of F-actin is
assumed to be j ¼ 7:5 � 10�26 Nm2 [52,40] whereas the rigidity,
which we assume for FtsZ filaments, is j ¼ 4:7� 1:0� 10�27 Nm2

(lp of F-actin: 1:77lm and lp of FtsZ: 1:15lm [40,44]). Therefore,
we use the values reported for F-actin (rcrit ¼ 3:2Pa and
�crit ¼ 0:2 [52,48]).

2.6. Data-driven analysis using machine learning

To relate the mechanical functionality of protein networks to
their structure, we utilize a ML approach. To do so, we trained
two sets of ML models on the dataset containing the 26 calculated
structural features of the n ¼ 37 protein networks. The aim of these
ML models is to 1) perform a classification of the networks as well
as an analysis of the structural features dominating the decision
process and 2) map the structural features of the network to its
mechanical behavior by employing a regression model. This fur-
ther allows us to identify the most dominant structural features
contributing to specific mechanical traits of the network.

2.6.1. Classification of FtsZ isoforms
We designed and trained a gradient boosting model [53], to per-

form the prediction task based on the extracted features (Fig. 1c):

f � ~xð Þ ¼ y; ð4Þ
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where we produce a prediction model (f �) in the form of an ensem-
ble of weak prediction models to map the set of protein structural
features:

~x ¼ VEN;VPN;qPN;d
max
PN ;dmin

PN ; StPN;ObPN ;Nn; thn;qn; dnn;dns;dnc;dns=
h
dnc;CPN;Nop;Ns; Ls;js; ths; Is; dpp;nc;noe; h3; h4

�
;

to an isoform (y: FtsZ1-2 or FtsZ2-1). During learning, we consecu-
tively fit new models to provide a more accurate prediction [54].
The new models are constructed to be maximally correlated with
the negative gradient of the loss function W, associated with how
wrong the prediction is. Given Nn training examples:
~x1; y1ð Þ; � � � ; ~xN; yNð Þf g, where~xi 2~x and yi 2 y, the gradient boosting

decision tree model estimates the function f of future~x by the linear
combination of individual decision trees

f M ~xð Þ ¼
XM
m¼1

T ~x; hmð Þ; ð5Þ

where T ~x; hmð Þ denotes the m-th decision tree, hm is its parameter
set, M is the number of decision trees. The final estimation is deter-
mined in a forward stage-wise fashion, i.e. based on an initial model
f 0 ~xð Þ of ~x, the model of step m is determined as:

f m ~xð Þ ¼ f m�1 ~xð Þ þ T ~x; hmð Þ; ð6Þ
where f m�1 ~xð Þ is the model in step m� 1. hm is learned by empirical
loss minimization as

hm ¼ argmin
hm

XM
i¼1

W yi; f m�1 ~xð Þ þ T ~x; hmð Þð Þ; ð7Þ

with the loss function W. The assumption of linear additivity of the
base function, leads to the estimation of hm for the best fitting resid-
ual W y� f m�1 ~xð Þð Þ. To this end, the negative gradient of the loss
function at f m�1 is used to approximate the residual R:

Rm;i ¼ � @W
y; f xið Þ
@f xið Þ

� �
f xð Þ¼f m�1 xð Þ

;

"
ð8Þ

with i as the index of the i-th example.
We randomly divided the dataset into 80% training set (n ¼ 30)

and 20% test set (n ¼ 7) with test set being stratified for number of
isoforms. The model is trained on the training set employing a 5-
fold cross validation [55] and applied on the test set.

2.6.2. Surrogate mechanical model for predicting function from
structure

To investigate the structural approach(es) employed by nature
to provide networks with specific mechanical functionality, e.g.
adaptive stability, a set of surrogate models (SM) in the form of
regression boosted gradient models are designed as:

SMi ~xð Þ ¼ M: ð9Þ
These 8 surrogate models serve as a tool to map the structural

features (~x, including the isoform class) of the protein networks
to their mechanical behavior (Fig. 1d), with M 2 �r; ��; FB; FR½ � as
the calculated mechanical parameter in EV3 direction (cf. 2.5.5)
for small and large deformations (a ¼ 0:02 and 0:20) separately.
The design and training of the regression surrogate models are
similar to the described classifier model with the only difference
being the definition of the loss function.

Here, the dataset is randomly divided into 90% training set
(n ¼ 33) and 10% test set (n ¼ 4) with test set being stratified for
number of isoforms. The model is trained on the training set
employing a 5-fold cross validation and applied on the test set.
Moreover, to further validate the performance of the gradient



Table 2
Classification and regression model parameters and definition.

Classification output: Network isoform

y Definition
FtsZ1-2 An isoform of FtsZ, which presumably promotes

protofilament turnover
FtsZ1-2 An isoform of FtsZ, which presumably controls filament

morphology

Regression output: Network mechanical behaviour

M Definition
�r Mean L1 norms of the von Mises stresses in simulated model
�� Mean L1 norms of the principal strains in simulated model
FB Ratio of elements failed due to buckling to all elements
FR Ratio of elements failed due to rupture to all elements
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boosting model for both classification and regression tasks, the
results are compared to a random forest model as another ensem-
ble method [56]. Definitions of parameters predicted by the two
ML model types in equations 4 and 9 are presented in Table 2.

2.6.3. Analyzing feature importance
We determined the importance of each structural feature in

both, the classifier and the surrogate mechanical models. To do
so, each feature is noised up and the plurality of out-of-bag vote
and the reality are determined allowing to measure a wrong pre-
diction rate [57] for each feature.

2.7. Statistical analysis and model performance evaluation

To distinguish the mechanical behavior of FtsZ1-2 isoforms
from FtsZ2-1 isoforms, statistical analysis of �r; ��; FB and FR was
performed using repeated measures ANOVA and paired or
unpaired student’s t-tests, as appropriate, followed by Bonferroni
corrections for multiple comparisons. All values are presented as
mean � standard deviation and statistical significance was set to
p < 0:05.

The performance of the both classifer model and the surrogate
models is assessed by applying the models on the corresponding
test set. The classifier model is evaluated by calculating the F1-
score and the accuracy of prediction [58]. The performance of each
surrogate models is assessed by calculating R2-values between the
model predictions and simulation results. To further measure the
differences between the surrogate model predictions and the true
Fig. 3. Image pre-processing of FtsZ1-2 (a–d) and FtsZ2-1 (e–h) isoforms. a) Sample 3D CL
d) resulting volume mesh. e) Sample 3D CLSM image of FtsZ2-1 isoform, f) resulting sp

2780
values of simulation results, we calculated the mean percentage
error (MPE) of prediction as well as the slope of the linear fit for
scattered data of model predictions vs. simulation results (ŷ).
3. Results

3.1. Effect of load direction on mechanical response

N ¼ 16 FtsZ1-2 and n ¼ 21 FtsZ2-1 isoforms images (see exam-
ples in Fig. 3a, e) were processed. For each protein network, the
image processing resulted in distinct spatial graphs (Fig. 3b, f),
convex hulls (Fig. 3c, g; Supplementary Video), and FE meshes
(Fig. 3d, h).

All mechanical parameters (�r; ��; FR and FB) were affected by
load direction as well as isoform type (ANOVA, p < 0:01). �r, in
the FtsZ1-2 isoform, was significantly lower for the EV2 load case
than for the other two load cases (p ¼ 0:01, Fig. 4a). In FtsZ2-1
bucking failure (FR) was significantly lower for the EV1 load case
than the EV3 load case (p < 0:01, Fig. 4d). Comparing the mechan-
ical parameters (x; ��; FR; FB) between the isoforms revealed that all
mechanical parameters of the FtsZ2-1 isoform were for the EV2
loading case significantly higher than for the FtsZ1-2 isoform
(p 	 0:04; Fig. 4a-d). Additionally, FtsZ2-1 responded to compres-
sion in EV3 direction with a significant higher �� than FtsZ1-2
(p ¼ 0:049; Fig. 4b).
3.2. Effect of displacement on mechanical response

The mechanical response with increasing compression was
investigated only in EV3 direction. Increasing the compression of
the isoforms from 2% to 20% (Fig. 5; Supplementary Video 2)
revealed that, at all displacement steps, no significant difference
between the two isoforms in the four calculated mechanical
parameters occurred (Fig. 5c–f). For mean stress, mean strain and
rupture failure factor (Fig. 5 gradual increase in both network types
was detected with increasing displacements. In contrast, with
increasing compression, FB converges toward a buckling failure
factor of 1% (Fig. 5f).

Comparing the mechanical responses at 20% displacement
shows no significant difference between the two FtsZ isoforms
(Fig. 5h). At 20% displacement, the buckling failure factor (FtsZ1-
2: 1:0� 0:1% and FtsZ2-1: 1:0� 0:1%) is significantly higher than
the rupture failure factor (FtsZ1-2: 0:3� 0:2% and FtsZ2-1:
SM image of FtsZ1-2 isoform, b) resulting spatial graph, c) resulting convex hull and
atial graph, g) resulting convex hull and h) resulting volume mesh.



Fig. 4. Mechanical responses to small deformations (2% compression). a) �r. b) ��. c) FR d). FB. Data is shown as mean�standard deviation. * denotes a significant difference
between load directions (student’s t-test, Bonferroni correction), X denotes a significant difference between isoforms. Data is shown as mean�standard deviation.

Fig. 5. Changes in mechanical response with increasing compression. a, b) Stress distributions at 20% displacement in sample networks of FtsZ1-2 an FtsZ2-1, respectively. c)
�rEV3. d) ��EV3. e) FREV3. f) FBEV3. g) Mean stress vs mean strain in EV3 direction. h) Calculated mechanical parameters (�rEV3; ��EV3; FREV3 and FBEV3 respectively) at the 20%
displacement step. Results are presented as mean�standard deviations. Displacement step size is 2%with minimum displacement of 2% and maximum displacement of 20%.
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0:4� 0:2%; p 	 0:01). However, the first derivative of the failure
factors with respect to the displacement (FR: FtsZ1-2: 0:04,
FtsZ2-1: 0:05 and FB: FtsZ1-2: 0:00, FtsZ2-1: 0:00) shows that with
increasing displacement, FR would presumably become the domi-
nating failure factor.

3.3. Isoform classification based on structural features

The receiver operating characteristics (ROC) curve and the area
under the ROC curve (AUC) for each of the folds during training and
the test set is shown in Fig. 6a. The model classification metrics on
the test set are: F1� score ¼ 0:89;AUC ¼ 0:91 and accuracy of 6
out of 7 correct predictions. A correctly classified FtsZ2-1 isoform
and a correctly classified FtsZ1-2 isoform, as well as the wrongly
classified isoform (FtsZ1-2) are depicted in Fig. 6b, respectively.
Furthermore, the gradient boosting model outperformed the ran-
dom forest classifier with higher classification metrics on the test
set (Table 3).

Analyzing the importance of each of the structural features in
the classification model reveals which of the features contribute
most and which least in terms of classifying isoform-inherent
structural properties. The five most important structural features
are the node-surface to node-center ratio (11%), network stretch
(10%), largest diameter (9%), node density (8%) and the node-
surface distance (7%). These have in total 44% of the overall impor-
Fig. 6. Classification of isoforms. a) Receiver operating characteristics of the trained class
area mark the average performance of the model on 5 folds and the standard deviation, re
classified FtsZ1-2 (middle) and a wrongly classified FtsZ1-2 (right). c) Feature importan
maximum of each feature). Data shown as mean � standard deviation. * indicates a sig
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tance in the classification model (Fig. 6d). Interestingly, three of
these five are nodal features of the network and two represent
the overall morphology.
3.4. Mechanical behavior prediction based on structural features

The trained surrogate models predicted the mechanical
response (simulation results) for small (2%) and large (20%) defor-
mations purely based on structural features. Despite the high cor-
relations between simulated and predicted mechanical parameters
in both small and large deformations (Table 3), the performance
metrics of the trained surrogate models increase with advancing
compression (Fig. 7a-h). This specifically holds for predicting fail-
ure factors (FR in a ¼ 0:02 ! 0:20 : R2 ¼ 0:96 ! 0:97; MPE ¼
10% ! 5% and ŷ ¼ 0:95 ! 1:03; FB in a ¼ 0:02 ! 0:20 :

R2 ¼ 0:81 ! 0:95; MPE ¼ 11% ! 1% and ŷ ¼ 0:91 ! 1:00). More-
over, comparing the R2 of surrogate models for all four predicted
parameters (SMs) in case of small and large deformation shows
considerable higher predictive capability of the trained gradient
boosting models than the random forest models (Table 4).

The structural features show different importance in predicting
the mechanical parameters in case of large deformations. For both
surrogate models predicting the mean stresses and strain, most
important features (more than 70% of total importance) are net-
ification model for 5-fold cross validation and the test set. The blue line and the gray
spectively. b) Sample spatial graphs of a correctly classified FtsZ2-1 (left), a correctly
ce for the classification model as well as normalized feature values (normalized to
nificant difference between isoform (un-paired students’ t-test).



Table 3
Classification metrics of the 5 folds and the test set for the gradient boosting (GB) compared to the model random forest (RF) models.

Gradient boosting Random forest

Step Accuracy F1 AUC Accuracy F1 AUC

training fold 1 0.5 0.40 0.67 0.67 0.5 0.83
training fold 2 0.67 0.50 0.83 0.67 0.5 0.44
training fold 3 0.67 0.57 0.44 0.67 0.67 0.67
training fold 4 0.67 0.40 0.75 0.67 0.5 0.75
training fold 5 0.83 0.67 0.94 0.83 0.8 1.0

test 0.88 0.89 0.91 0.75 0.67 0.88
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work density (qPN; �r : 56% and �� : 50%) and node density
(qN; �r : 13% and �� : 22%; Fig. 7i, j). The prevailing structural fea-
tures for predicting rupture failure factor are node density
(qN : 15%), segment inhomogeneity (IS : 15%), network density
(qPN : 14%) and percentage of open nodes (%noe : 9%; Fig. 7k) with
cumulative importance of more than 50%. In case of predicting
buckling failure factor, segment inhomogeneity (IS : 41%), node-
center distance (dnc : 12%) and node density (qPN : 9%) are the
most important features with cumulative importance of more than
60% (Fig. 7l).

4. Discussion

Structure and functionality of cytoskeletal protein networks are
deeply linked. Although biochemical aspects have been thoroughly
studied, little is known about the interplay between the structural
characteristics of these networks with their mechanical functional-
ity. Here we proposed a data-driven approach to investigate this
structure-function relationship and presented the application to
FtsZ protein network.

4.1. Mechanical response of FtsZ isoforms

Wewere able to show the mechanical response of a protein net-
work to external loads and specifically that the precise structural
response of FtsZ networks to compression is independent of the
load direction and is different for FtsZ1-2 and FtsZ2-1 isoforms.
This is to our knowledge the first detailed in silico investigation
of the mechanical behaviour of cytoskeletal protein structures in
response to external micro-environmental stimuli. This identified
isoform-specific mechanical responses support the assumption of
potentially different structural roles of these two main FtsZ iso-
forms [23]. Further, the isoform-specific mechanical responses
are in accordance with the functional- and morphology-related
observations of the same isoforms in yeast cells [24,20].

In case of mechanical response of FtsZ in large deformation, we
focus only on one direction due to four reasons: 1) the similar
mechanical response at 2% displacement for all loading cases, 2)
according to calculations in [27], variations of the two significant
different parameters for all three principal directions (FtsZ1-2:
�r ¼ 55% and FtsZ2-1: FB ¼ 35%) can be explained by differences
in stretch (FtsZ1-2 St ¼ 0:76� 0:11, FtsZ1-2 St ¼ 0:67�
0:20; p ¼ 0:05), 3) the need of significant computational resources
and 4) EV3 has the overall highest (combining FtsZ2-1 and
FtsZ1-2) mean values at 2% plate displacement in all four param-
eters (�r ¼ 1:7� 1:3 Pa; �� ¼ 0:7� 0:6e� 3; FR ¼ 1:6� 3e� 3; FB ¼
4:2� 1:9e� 1). The similarity of mechanical responses between
the two isoforms suggests that they contribute in response to large
chloroplast deformation in a comparable (or combined) fashion to
the plastid mechanics. Moreover, FtsZ isoforms show a semi-
nonlinear increase in stress and strain with an increase in network
deformation. This is similar to previously reported behavior of
microtubule [59,60] and actin filaments [61]. This points toward
similar load-bearing functionality of FtsZ (as plastoskeleton). Fur-
2783
thermore, for compression up to 20%, buckling remains the pre-
vailing failure factor. The convergence of FB, which reaches its
limit at about 1%, suggests that the network minimizes the buck-
ling probability, indicating an adaptive stability of FtsZ networks as
previously suggested based on experimental observations [23,62].
Although the rupture failure probability steadily increases with
increasing compression, it remains significantly below the bulking
failure factor, thus rupture failure is a less defining parameter for
network failure. One reason for this might be, that FtsZ filaments
experiencing high strain values leading to rupture only after buck-
ling and at the location of bucking, which would be similar to the
fragmentation of buckled actin filaments [63].

Previous studies employing simplified geometries, such as
tensegrity models allowed theoretical studies of cellular mecha-
nism such as cell reorientation [12,16]. More detailed FE models
have been developed to investigate the mechanical role of
cytoskeletal components [14] and cell mechano-sensitivity [64].
However, the generic and strongly simplified geometrical repre-
sentation of the cells, e.g ellipsoid [65,66] (even when cytoskeleton
filament directions were considered), potentially prevents compre-
hensive studies of the influence of structural features on the
mechanical behavior of cytoskeletal protein networks. Our
approach of performing nanoFE simulations on segmented 3D net-
work geometries of life networks allows one to analyse structure-
related aspects of protein network mechanics in a sample specific
manner. Further, investigating the sub-cellular components sepa-
rated from their surrounding allows to decouple protein network
mechanics from whole cell mechanics. To date, contributions of
cytoskeletal structures to whole cellular mechanics can only be
indirectly inferred from experimental techniques such as AFM
[67] and optical tweezers [68]. However, since the mechanical
behavior of a cellular structure is determined by many compo-
nents, such as of the structure of the cortical, intra-cellular (non-
cortical) cytoskeletal, and nuclear networks, as well as their distri-
bution in space, decoupling the individual components remains
challenging [14,69,70]. It has been suggested that AFM measure-
ments with sharp tips tend to emphasize biomechanical properties
of the cell cortex, whereas AFM measurements with round-tips
tend to emphasize stiffness of the intra-cellular network [70].
Combing such measurements with a structural detailed models,
as shown here, would possibly further advance the understanding
of cellular mechanics.

4.2. Structure-function relationship in FtsZ network

Our mechanical surrogate model is capable of predicting the
mechanical behavior of protein networks in response to external
loading. This holds for 2% as well as 20% compression
(0:81 6 R2 6 0:96 and 0:93 6 R2 6 0:97, respectively). However,
the relatively higher accuracy for large network compression
points toward higher correspondence of the extracted structural
features to the mechanical behavior of the network in response
to large deformations. This specifically coheres to the hypothesis
that these networks are able to undergo large deformations with-



Fig. 7. Surrogate mechanical models. a–d) Simulation results vs. surrogate model prediction for the test and training sets networks for small deformation in EV3 primary
direction. a) �r. b) ��. c) FR. d) FB. e–h) Simulation results vs. Surrogate model prediction for the test and training set networks for large deformation in EV3 primary direction. e)
�r. f) ��. g) FR. h) FB. Training and test datasets are shown in gray and green, respectively. Dashed line represents a liner fit to the data points. i–l) Importance of structural
features for the set of surrogate model predicting each mechanical parameter, i) �r. j) ��. k) FR. l) FB. The gray line represents cumulative importance. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

P. Asgharzadeh, A.I. Birkhold, Z. Trivedi et al. Computational and Structural Biotechnology Journal 18 (2020) 2774–2788
out losing their structural integrity, as previously postulated [23];
hence, possessing structural features conforming to response in
case of large deformations. Moreover, the high accuracy in map-
ping the structural features to the mechanical behavior of the net-
works further demonstrates the potential load bearing
functionality of FtsZ protein in chloroplasts. Furthermore, this
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shows that the capability of the network to keep its stability by
undergoing deformations relies not only on material properties
of the biopolymer, but probably more prominently, on the struc-
tural features of the network. This is in accordance with the effects
of the network architecture on the overall mechanical behavior
reported in actin protein network [71]. In summary, to our knowl-



Table 4
Surrogate models performance in predicting calculated mechanical parameters in case of small (a ¼ 0:02) and large deformations (a ¼ 0:20) for the gradient boosting (GB)
compared to the model random forest (RF) models.

GB RF

a ¼ 0:02 a ¼ 0:2 a ¼ 0:02 a ¼ 0:2

SM Pred. R2 MPE Lin. fit ŷ Pred. R2 MPE Lin. fit ŷ Pred. R2 Pred. R2

�r 0.90 4% 1.04 0.96 5% 0.97 0.39 �4.5
�� 0.89 14% 1.11 0.93 9% 0.99 0.14 �5.16
FR 0.96 10% 0.95 0.97 5% 1.03 �0.14 0.20
FB 0.81 11% 0.91 0.95 1% 1.00 0.66 �0.35
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edge, this is the first detailed investigation of these sample-specific
structure-based mechanical analysis of performance correlations.
This enables us to not only have a image-based virtual mechanical
testing method, but also a method to investigate the manifestation
of the mechanical characteristics of structural network features. In
addition, comparing the prediction performance metrics from the
gradient boosting models to random forest models confirmed the
superior effectiveness of the chosen classification and regression
models.

By analyzing the importance of the features of the surrogate
models in predicting stresses and strains of the network, we could
show that the network density and the node density are the struc-
tural features mostly contributing to load bearing characteristic of
the network. However, the mechanical failure behaviour of the
networks is mostly corresponding to more local structural charac-
teristics. Specifically, in the case of buckling failure behaviour, the
surrogate model shows that local changes in the filament (segment
inhomogeneity) and the distance of the nodes to the center dictate
the observed mechanical behaviour. This can be interpreted as the
network being capable of stopping the increase in failure possibil-
ity due to buckling of its filaments by possessing an arrangement of
the nodes and filaments with the specific architecture that
includes: local changes of direction and thickness of filaments in
FtsZ1-2 and FtsZ2-1: IS ¼ 18:8 and the distance between the nodes
and the center of the network: dnc ¼ 1:85 lm. This could poten-
tially be used to design adaptively stable structures capable of
undergoing large deformations [72] or mechanically optimized
and synthetically engineered biomaterials [73,74].

Our feature-based classification and regression models
achieved on par accuracy with deep learning based protein net-
work classification methods [75,76], while adding the ability of
extracting specific structural features enabling the predictions.
This is specifically beneficial in the context of mechanical function-
ality, where our designed extracted features correspond to
mechanical traits in their nature. Whereas, extracted features uti-
lizing convolutional networks tend to be abstract and at best very
challenging to interpret [77,30]. Moreover, unlike deep learning
models that require extremely large dataset for meaningful train-
ing, our models could reach high accuracy on n ¼ 37, 3D CLSM
images.
4.3. Outlook

Here, we could show, that besides the biochemical properties
and dynamic behaviour of the two FtsZ isoforms being different
[78], also the mechanical function encoded in the network struc-
ture seems to be different between the two isoforms. Since the
two FtsZs represent gene duplication during chloroplast evolution
from cyanobacteria to algae and further [78–80], combined struc-
tural and functional analysis focusing on mechanical aspects of
FtsZ, as introduced here, might open new doors to gain deeper
insight into chloroplast evolution and structural consequences of
the gene duplication of FtsZ in eukaryotic forms. Unlike FtsZ found
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in eukaryotic plastids, FtsZ in bacteria does not have these two
phylogenetically distinct families of FtsZ, which co-localize at the
division site to form the Z-ring. As the function of FtsZ in bacteria
is to date also not completely revealed, application of the method
presented here may allow to identify similarities and differences
between eukaryotic and prokaryotic FtsZ and may allow studying
cytoskeletal evolution from prokaryotes to eukaryotes and to elu-
cidate common structural mechanisms involved in division. This
may also allow insights into FtsZ filament dynamics and force gen-
eration in bacterial cells [81].

FtsZ being an ancestor of tubulin and the homology between
these two [82,83], might further allow comprehending structural
and functional aspects of microtubule by understanding mecha-
nism of FtsZ dynamics. The structural evidence obtained from
studies pointed out that ring polymers are homologous across
tubulin family [84]. As functions of these rings are expected to
be found in disassembly and force generation due to shifting from
one conformation to the other, a transfer of knowledge gained from
the simpler FstZ or an application of the method presented here to
microtubule will might allow to further elucidate these mechanical
functions. In line with this, the introduced automatic analysis of
subcellular structure-function relationships can be potentially uti-
lized to perform in silico investigations of the effects of structural
alterations on subcellular mechanical functions. For instance,
treatment of various cancers e.g. breast and prostate cancers are
carried out using agents influencing microtubule stability and pro-
moting microtubule assembly [85–87]. The similarity between
FtsZ and microtubule as well as the capability of our method to
analyze structural stability of the protein networks can be poten-
tially utilized to investigate or monitor treatment-induced changes
in stability of microtubule proteins. Another possible application is
analyzing the reported structural changes of cytoskeletal proteins
correlated to EMT. EMT-induced alterations in cytoskeletal protein
networks such as irregular and flattened morphology of cancer-
associated-fibroblasts [88] and increase in compactness of fibrob-
last membrane leading to higher cell membrane fluidity [89,88]
can potentially be detected by the designed structural and mor-
phological features i.e. stretch and oblateness of the cell cytoskele-
ton as well as compactness of the cytoskeletal protein in
fibroblasts.
4.4. Limitations

Our study has limitations. First, the imaging resolution might
affect the simulation results as well as the mapping of the surro-
gate models. However, we have previously shown that our quanti-
tative imaging method is capable of resolving the micro-structure
of FtsZ networks [28]. Second, the commonly used linear elastic
material model in FE simulations of cytoskeletons [14,15,64,90]
might not completely capture the mechanical behavior of the net-
work. However, to our knowledge, to date no constitutive law has
been developed for describing mechanical behavior of FtsZ.
Although more complicated constitutive laws for the mechanical
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behavior of single actin filaments have been proposed [91–93], lin-
ear elasticity is the prevailing choice for cytoskeletal networks in
whole-cell models [14,15,64,90]. Moreover, our focus was not on
exactly matching the mechanical behaviour, but on the influences
of structural features. Future studies could focus on combining our
approach of precisely modeling the micro-structure with experi-
mental techniques, such as atomic force microscopy, to further
investigate material properties of the FtsZ-based plastoskeleton.
Third, the loading conditions of our simulations are not an exact
duplication of reality, where a combination of active dynamic
forces [44] as well as osmotic pressure [94] drive the morphologi-
cal changes of the network. Moreover, the FtsZ isoform is sur-
rounded by other proteins as well as other materials, such as
inter-organelle fluids. Our designed simulation setup provides a
generic platform to investigate the structure-function relationships
in FtsZ protein network rather than a one-to-one simulation of
dynamics of plastids. The failure criteria used in this study are
experimentally derived from actin filaments [95,48], since no fail-
ure criteria has been experimentally derived for FtsZ to date. How-
ever, due to the assumed similarity in structural functionality
between the FtsZ network and actin networks and the similarity
of rigidity in FtsZ and actin filaments, actin failure criteria might
represent FtsZ behavior to a certain extent. Finally, the dataset size
might restrict the generality of conclusions made by means of the
introduced data-driven approach. Although the in silico experi-
mental setup increases the dataset size, more images would fur-
ther improve the performance of the designed methodology.
Future studies could benefit from synthetically generated network
geometries to augment the training data, which has the potential
to further increase the robustness of the developed models.
5. Conclusions

In this work, we showed that combing confocal microscopy
imaging with nanoFE analysis employing a machine learning
framework allows for an image-based surrogate model capable of
predicting cellular mechanical responses to external stimuli. Addi-
tionally, by providing a way to identify structural features deter-
mining the mechanical response with respect to a given
stimulus, we were, for the first time, able to directly investigate
the structure-function relationship of individual protein networks
in a sample-specific manner. Our ML surrogate model trained on
in silico data generates highly accurate and fast predictions of iso-
form classification and the mechanical behavior on the sub-cellular
level. Therefore, the method provides a framework to further
investigate structural functionality of protein networks in plants
as well as in humans, as it would allow to monitor the structure-
function relationships of cytoskeletal components during morpho-
logical and, hence, time-dependent, changes, e.g., actin-driven cell
shaping. This may also lead to an improved understanding of the
mechanical aspects of cell-biomaterial interaction, and would pro-
vide insights into designing micro/nanoengineered functional bio-
materials for future research on regenerative medicine, cell
biology, development and diseases, as well as drug development.
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